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Abstract
We analyze the training dynamics for deep linear networks using a new metric – layer imbalance

– which defines the flatness of a solution. We demonstrate that different regularization methods,
such as weight decay or noise data augmentation, behave in a similar way. Training has two distinct
phases: 1) ‘optimization’ and 2) ‘regularization’. First, during the optimization phase, the loss
function monotonically decreases, and the trajectory goes toward a minima manifold. Then, during
the regularization phase, the layer imbalance decreases, and the trajectory goes along the minima
manifold toward a flat area. Finally, we extend the analysis for stochastic gradient descent and show
that SGD works similarly to noise regularization.

1. Introduction

In this paper, we analyze regularization methods used for training of deep neural networks. To
understand how regularization like weight decay and noise data augmentation work, we study
gradient descent (GD) dynamics for deep linear networks (DLNs). We study deep networks with
scalar layers to exclude factors related to over-parameterization and to focus on factors specific to
deep models. Our analysis is based on the concept of flat minima [5]. We call a region in weight
space flat, if each solution from that region has a similar small loss. We show that minima flatness
is related to a new metric, layer imbalance, which measures the difference between the norm of
network layers. Next, we analyze layer imbalance dynamics of gradient descent (GD) for DLNs
using a trajectory-based approach [10]. With these tools, we prove the following results:

1. Standard regularization methods such as weight decay and noise data augmentation, decrease
layer imbalance during training and drive trajectory toward flat minima.

2. Training for GD with regularization has two distinct phases: (1) ‘optimization’ and (2)
‘regularization’. During the optimization phase, the loss monotonically decreases, and the
trajectory goes toward minima manifold. During the regularization phase, layer imbalance
decreases and the trajectory goes along minima manifold toward flat area.

3. Stochastic Gradient Descent (SGD) works similarly to implicit noise regularization.

2. Linear neural networks

We begin with a linear regression y = w · x+ b with mean squared error (MSE) on N scalar samples
{xi, yi}: E(w, b) = 1

N

∑
(w ·xi + b−yi)2 → min. The training dataset is centered and normalized:
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∑
xi = 0; 1

N

∑
x2
i = 1;

∑
yi = 0; 1

N

∑
xiyi = 1. The solution for this normalized linear

regression is (w, b) = (1, 0).
Next, let’s replace y = w · x + b with a linear network with d scalar layers w = (w1, . . . , wd):
y = w1 · · ·wd · x + b. Denote W := w1 · · ·wd. The network is trained with MSE loss function:
E(w, b) = 1

N

∑
(W · xi + b− yi)2 → min.

DLN training on the normalized dataset is equivalent to the non-convex optimization problem [2]:

L(w) = (w1 · · ·wd − 1)2 = (W − 1)2 → min (1)

2.1. Flat minima and Layer imbalance

Compute the loss gradient ∂L
∂wi

= 2(w1 · · ·wd − 1)(w1 · · ·wi−1wi+1 · · ·wd) = 2(W − 1)(W/wi) .
Here we denote W/wi := w1 · · ·wi−1 ·wi+1 · · ·wd for brevity.

Figure 1: 2D-contour plot of the loss L(w1, w2) = (w1w2 − 1)2 for the linear network with two
layers. The loss L has only global minima, located on the hyperbola w1w2 = 1. Minima near
(−1,−1) and (1, 1) are flat, and minima near the axes are sharp.

The minima of loss L are located on hyperbola w1 · · ·wd = 1 (see Fig. 1). Following Hochreiter
et al [5, 6], we are interested in flat minima – “a region in weight space with the property that each
weight from that region has similar small error". In contrast, sharp minima are regions where the
function can increase rapidly. Hochreiter et al suggested that flat minima have smaller generalization
errors than sharp minima. Keskar et al. [7] observed that large-batch training tends to converge
towards a sharp minima with large positive eigenvalues of Hessian, and suggested that sharp minima
generalize worse than flat minima.

In contrast, Dinh et al. [4] argued that flatness of minima can’t directly applied to explain
generalization; since both flat and sharp minima represent the same function, they perform equally
on a validation set. Dinh showed that minima flatness is defined by the largest Hessian eigenvalue.
For L(w) = (w1 · · ·wd − 1)2 = (W − 1)2 the Hessian H(w) is:

H(w) = 2
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The eigenvalues of H(w) are {0, . . . , 0,
∑ 1

w2
i

}. The largest eigenvalue
(∑ 1

w2
i

)
defines a mini-

mizer flatness. Note that flat minima are balanced: |wi| ≈ 1 for all layers.
In the spirit of [1, 9], let’s define layer imbalance for a deep linear network:

D(w) := max
i,j
| ||wi||2 − ||wj ||2 | (2)

Note that sharp minima (close to the axes) have high layer imbalance.1

3. The analysis of layer imbalance for gradient descent

Following Saxe et al. [10] we take a time limit for GD step: wi(t + 1) = wi(t) − λ · ∇L(w), to
obtain Continuous Gradient Descent CGD: dwi

dt = −λ ∂L
∂wi

= −2λ(W − 1)(W/wi).
For CGD, the loss L monotonically decreases:

dL

dt
=
∑( ∂L

∂wi
· dwi

dt

)
= −4λ(W − 1)2W 2

(∑ 1

w2
i

)
= −4λW 2

(∑ 1

w2
i

)
· L(t) ≤ 0

and the CGD trajectory is a hyperbola: w2
i (t)−w2

j (t) = const (see Fig. 2a) [10]. The layer imbalance
remains constant during training. If training starts close to the origin, then a final point will also have
a small layer imbalance and a minimum will be flat.

Let’s turn from CGD back to the regular GD2:wi(t+1) = wi−2λ ∂L
∂wi

= wi−2λ(W−1)(W/wi).
We would like to find conditions, which would guarantee that the loss monotonically decreases. Note
that for any fixed learning rate, one can find a point w, such that the loss will increase after the GD
step. But we can define an adaptive learning rate λ(w) which guarantees that the loss decreases.

Theorem 1 Consider GD: wi(t+ 1) = wi − 2λ(W − 1)(W/wi). Assume that |W − 1| < 1

2
.

If we define an adaptive learning rate λ(w) =
1

4
∑

(1/w2
i )

, then the loss monotonically converges

to 0 with a linear rate, and the layer imbalance monotonically decreases.

Proof The convergence rate is proved in App. A.1. The layer imbalance analysis is in App. A.2.

Note that we proved only that the layer imbalance D decreases, but not that D converges to
0. The layer imbalance may stay large, if the loss L → 0 too fast or if W ≈ 0, so the factor
k = 1− 4λ2 · L ·W 2(1/(wiwj))

2 → 1. To make the layer imbalance D → 0, we should keep the
loss in certain range, e.g. 1

4 < |W − 1| < 1
2 . For this, we could increase the learning rate if the loss

becomes too small, and decrease learning rate if loss becomes large.

4. The analysis of layer imbalance for gradient descent with explicit regularization

In this section, we prove that the layer imbalance decreases for GD with explicit regularization, such
as weight decay, noise data augmentation, dropout etc.

1. The question of how minima flatness is related to generalization is out of scope of this paper. Our interest in flat
minima is related to training robustness. Gradient descent is more stable in the flat area than in the sharp area: the

gradient
∂L

∂wi
vanishes if |wi| is very large, and the gradient explodes if |wi| is very small.

2. We omit t in the right part for brevity, so wi means wi(t).
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4.1. The analysis of layer imbalance for gradient descent with weight decay

As before, we consider the GD for linear network (w1, . . . , wd) with d layers. Let’s add the weight
decay (WD) term to the loss: L̄(w) = (w1 · · ·wd − 1)2 + µ(w2

1 + · · ·+ w2
d).

The CGD with weight decay is described by the following DEs:

dwi

dt
= −λ ∂L̄

∂wi
= −2λ

(
(W − 1)(W/wi) + µ · wi

)
(3)

Accordingly, the loss dynamics for CGD with weight decay is:

dL

dt
=
∑ ∂L

∂wi
· dwi

dt
= −4λ

(
(W − 1)2W 2

(∑
1/w2

i

)
+ µ · d · (W − 1)W

)
= −4λ

(∑
1/w2

i

)
W 2
(
W − 1

)(
W − (1− µ d

W (
∑

1/w2
i )

)
)

The loss decreases when k = (W − 1)
(
W − (1− µ d

W (
∑

1/w2
i )

)
)
> 0, outside the weight decay

band: 1− µ d

W (
∑

1/w2
i )
≤W ≤ 1. The width of this band is controlled by the weight decay µ.

We can divide GD training with weight decay into two phases: (1) optimization and (2) regular-
ization. During the first phase, the loss decreases until the trajectory gets into the WD-band. During
the second phase, the loss L can oscillate, but the trajectory stays inside the WD-band (Fig. 2b) and
goes toward a flat minima area. The layer imbalance monotonically decreases during second phase:

d(w2
i − w2

j )

dt
= −4λ ·

((
(W − 1)W + µw2

i

)
−
(
(W − 1)W + µw2

j

))
= −4λ · µ · (w2

i − w2
j )

(a) Continuous GD (b) GD with weight decay (c) GD with noise augmentation

Figure 2: The training trajectories for (a) continuous GD, (b) GD with weight decay, and (c) GD
with noise augmentation. The trajectory for continuous GD is a hyperbola: w2

i (t)− w2
j (t) = const.

The trajectories for GD with weight decay and noise augmentation have two parts: (1) optimization –
the trajectory goes toward the minima manifold, and (2) regularization – the trajectory goes along
minima manifold toward a flat area.
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4.2. The analysis of layer imbalance for gradient descent with noise augmentation

Bishop [3] showed that for shallow networks, training with noise is equivalent to Tikhonov regulariza-
tion. We will extend this result to DLNs. Let’s augment the training data with noise: x̃ = x · (1 + η),
where the noise η has 0−mean and is bounded: |η| ≤ δ < 1

2 . The DLN with noise augmentation can
be written in the following form:

ỹ = w1 · · ·wd · (1 + η)x = W · (1 + η)x. (4)

This model also describes continuous dropout [11] when layer outputs hi are multiplied with the
noise: h̃i = (1 + η) · hi. This model can be also used for continuous drop-connect [8, 12] when the
noise is applied to weights: w̃i = (1 + η) · wi. The CGD with noise augmentation is described by
the following DEs: dwi

dt = −λ ∂L̃
∂wi

= −2λ · (1 + η)(W (1 + η)− 1)(W/wi).
Let’s consider loss dynamics:

dL

dt
=
∑( ∂L

∂wi
· dwi

dt

)
= −4λ(1 + η)W 2

(∑
1/w2

i

)
(W − 1)(W (1 + η)− 1)

= −4λ(1 + η)2W 2
(∑

1/w2
i

)
·
(

(W − 1)(W − 1

1 + η
)
)

The loss decreases while the factor k = (W − 1)(W − 1

1 + η
) = (W − 1)(W − 1− η

1 + η
) > 0,

outside of the noise band 1 − δ

1 + δ
< W < 1 +

δ

1− δ
. The training trajectory is the hyperbola

w2
i (t) − w2

j (t) = const. When the trajectory gets inside the noise band, it oscillates around the
minima manifold, but the layer imbalance remains constant for continuous GD.

For discrete GD, noise augmentation works similarly to weight decay. Training has two phases:
(1) optimization and (2) regularization (Fig. 2c). During the first phase, the loss decreases until the
trajectory hits the noise band. Next, the trajectory oscillates inside the noise band, and the layer
imbalance decreases. The noise variance σ2 defines the band width, similarly to the weight decay µ.

Theorem 2 Consider GD with noise wi(t+ 1) = wi − 2λ(1 + η)(W (1 + η)− 1)(W/wi). Assume

that the noise η has 0-mean and it is bounded: |η| < δ <
1

2
. If we define the adaptive learning

rate λ(w) = λ0
1∑
1/w2

i

, then the layer imbalance monotonically decreases inside the noise band

|W − 1| < δ. The layer imbalance monotonically converges to 0, if layers are also uniformly
bounded: |wi| < C.

Proof See Appendix. A.3.

5. The analysis of layer imbalance for SGD

In this section, we show that the layer imbalance converges to 0 for SGD, and that SGD works
as implicit noise regularization. As before, we train a linear network y = Wx with loss L(w) =
1
N

∑
(Wxn − yn)2. The dataset {xn, yn} is normalized:

∑
xi = 0; 1

N

∑
x2
i = 1;

∑
yi =

0; 1
N

∑
xiyi = 1. A stochastic gradient for a batch B̄ with B < N samples is:

∂LB

∂wi
=

1

|B|
∑
B̄

2(Wx2
n − xnyn)W/wi = 2

(
W (

1

B

∑
B̄

x2
n)− (

1

B

∑
B̄

xnyn)
)
W/wi
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If batch size B → N , then terms
∑

B̄ x
2
n →

∑
N x2

n = 1 and
∑

B̄(xnyn) →
∑

B̄(xnyn) = 1. So
we can write the stochastic gradient in the following form:

∂LB

∂wi
= 2
(
W (1 + η1)− (1 + η2)

)
W/wi = 2

(
W − 1 + (Wη1 − η2)

)
W/wi

The factor (1 + η1) works as noise data augmentation, and the term η2 works as label noise. Both η1

and η2 have 0-mean. When loss is small, we can combine both components into one SGD noise term:
η = Wη1 − η2. SGD noise η has 0-mean. We assume that SGD noise variance depends on batch

size in the following way: σ2 ≈ (
1

B
− 1

N
).

The trajectory for continuous SGD is described by the stochastic DEs:

dwi

dt
= −λ · ∂LB

∂wi
= −2λ

(
W − 1 + η

)
W/wi

Let’s start with loss analysis: dL
dt = −4λW 2

(∑
1/w2

i

)
· (W − 1)(W − 1 + η). For continuous

SGD, the loss decreases anywhere except in the SGD noise band: (W − 1)(W − 1 + η) < 0. The
band width depends on B: the smaller the batch, the wider the band. The SGD training consists of
two parts. First, the loss decreases until the trajectory hits the SGD-noise band. Then the trajectory
oscillates inside the noise band. The layer imbalance remains constant for continuous SGD. But the
layer imbalance decreases for discrete SGD.

Theorem 3 Consider SGD: wi(t+ 1) = wi − λ ·
∂LB

∂wi
. Assume that |W − 1| < δ, and that SGD

noise satisfies |η| ≤ δ < 1. Then the layer imbalance monotonically decreases for the adaptive

learning rate λ(w) =
1

2δ(1 + δ)(
∑

(1/w2
i )

.

Proof See Appendix. A.4

The layer imbalance D → 0 at a rate proportional to the variance of SGD noise. It was observed by
Keskar et al. [7] that SGD training with a large batch leads to sharp solutions, which generalize worse
than solutions obtained with a smaller batch. This fact directly follows from Theorem 3. The layer
imbalance decreases at a rate O(1− kλ2σ2). When a batch size increases, B → N , the variance of

SGD-noise decreases as ≈ (
1

B
− 1

N
). One can compensate for smaller SGD noise with additional

generalization: data augmentation, weight decay, dropout, etc.

6. Discussion

In this work, we explore dynamics for gradient descent training of deep linear networks. Using
the layer imbalance metric, we analyze how regularization methods such as weight decay, data
augmentation, dropout, etc, affect training dynamics. We show that for all these methods the training
has two distinct phases: optimization and regularization. During the optimization phase, the training
trajectory goes from an initial point toward minima manifold, and loss monotonically decreases.
During the regularization phase, the trajectory goes along minima manifold toward flat minima, and
the layer imbalance monotonically decreases. We showed that noise augmentation and continuous
dropout work similarly to L2-regularization. Finally, we show that SGD behaves in the same way

6
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as gradient descent with noise regularization. This work provides an analysis of regularization for
scalar linear networks. We leave the question of how regularization works for over-parameterized
nonlinear networks for future research.
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Appendix A. Proofs

A.1. Convergence analysis for gradient descent

Theorem 4 Consider discrete GD:

wi(t+ 1) = wi − 2λ
∂L

∂wi
= wi − 2λ(W − 1)(W/wi)

Assume that |W − 1| < 1

2
. If we define an adaptive learning rate λ(w) =

1

4
∑

(1/w2
i )

, then the loss

monotonically converges to 0 with a linear rate.

Proof Let’s estimate the loss change for a GD step:

W (t+ 1)− 1 =
∏(

wi − 2λ(W − 1)W/wi

)
− 1

=
∏(

wi(1− 2λ(W − 1)W/w2
i )
)
− 1 = W ·

∏(
1− 2λ(W − 1)W/w2

i

)
− 1

= W ·
(

1− 2λ(W − 1)W
(∑

i

1/w2
i

)
+ 4λ2(W − 1)2W 2

(∑
i 6=j

1/(w2
iw

2
j )
)

− 8λ3(W − 1)3W 3
( ∑
i 6=j 6=k

1/(w2
iw

2
jw

2
k)
)

+ ...
)
− 1

= (W − 1) ·
(

1− 2λW 2
(∑

i

1/w2
i

)
+ 4λ2(W − 1)W 3

(∑
i 6=j

1/(w2
iw

2
j )
)

− 8λ3(W − 1)2W 4
( ∑
i 6=j 6=k

1/(w2
iw

2
jw

2
k)
)

+ ...
)

= (W − 1) ·
(

1− W

W − 1
· S
)

Here S = a1−a2+a3−...+ad is a series with ak =
(
2λ(W−1)W

)k(∑
i 6=j 6=...m 1/(w2

iw
2
j ...w

2
m)
)
:

S = 2λ(W − 1)W
(∑

i

1/w2
i

)
− 4λ2(W − 1)2W 2(

∑
i 6=j

1/(w2
iw

2
j ))

+ 8λ3(W − 1)3W 3
( ∑
i 6=j 6=k

1/(w2
iw

2
jw

2
k)
)

+ . . .

Consider the factor k =
(
1− W

W−1 · S
)
. To prove that |k| < 1, we consider two cases.

CASE 1: (W − 1)W < 0. In this case, the series S can be written as:

S = −
(

2λ(1−W )W (
∑
i

1/w2
i ) + 4λ2(1−W )2W 2(

∑
i 6=j

1/(w2
iw

2
j ))+

+ 8λ3(1−W )3W 3(
∑

i 6=j 6=k

1/(w2
iw

2
jw

2
k)) + ...

)
≥ 2λ(W − 1)W (

∑
i

1/w2
i )

1

1− q

where q is:

q =
∣∣∣ak+1

ak

∣∣∣ =

∣∣∣∣∣(2λ(W − 1)W )k+1
(∑

i 6=... 6=m+1 1/(w2
i ...w

2
m+1)

)
(2λ (W − 1)W )k

(∑
i 6=... 6=m 1/(w2

i ...w
2
m)
) ∣∣∣∣∣

≤ 2λ|(W − 1)W |
(∑

i 6=... 6=m 1/(w2
i ...w

2
m)
)(∑

1/w2
i

)∑
i 6=... 6=m 1/(w2

i ...w
2
m)

= 2λ|(W − 1)W |
(∑

1/w2
i

)
≤ 3

8

8
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So on the one hand: k = 1− W
W−1S ≥ 1− W

W−1 · 2λ(W − 1)W (
∑

1/w2
i ) 1

1−q ≥ −
4
5 .

On the other hand: k < 1− W
W−1 · 2λ(W − 1)W (

∑
i 1/w2

i ) = 1− 2λW 2(
∑

1/w2
i ) < 7

8 .
CASE 2: (W − 1)W > 0. In the series S = a1 − a2 + a3 − ..., all terms ai are now positive.

Since q =
∣∣∣ak+1

ak

∣∣∣ < 3

8
, we have that

5

8
a1 < a1 − a2 < S < a1.

On the one hand: k = 1− W
W−1S ≥ 1− W

W−1a1 = 1− 2λ(
∑

1/w2
i ) ·W 2 > −1

8 .
On the other hand: k = 1− W

W−1S ≤ 1− 5
8 ·

W
W−1a1 = 1− 5

8 · 2λ(
∑

1/w2
i ) ·W 2 < 59

64 .
To conclude, in CASE 1 we prove that −4

5 < k < 7
8 and in CASE 2 that −1

8 < k < 59
64 .

Since L(t+ 1) < L(t) · k2, the loss L monotonically converges to 0 with rate k2.

A.2. Implicit regularization for discrete gradient descent

Theorem 5 Consider discrete GD

wi(t+ 1) = wi − 2λ
∂L

∂wi
= wi − 2λ(W − 1)(W/wi)

Assume that |W − 1| < 1

2
. If we define an adaptive learning rate λ(w) =

1

4
∑

(1/w2
i )

, then the

layer imbalance monotonically decreases.

Proof Let’s compute the layer imbalance Dij for the layers i and j after one GD step:

Dij(t+ 1) = wi(t+ 1)2 − wj(t+ 1)2 =
(
wi − 2λ(W − 1)W/wi

)2 − (wj − 2λ(W − 1)W/wj

)2
= (w2

i − w2
j ) ·
(
1− 4λ2(W − 1)2W 2/(wiwj)

2
)

= Dij ·
(
1− 4λ2(W − 1)2W 2/(wiwj)

2
)

On the one hand, the factor k = 1− 4λ2(W − 1)2W 2/(wiwj)
2 ≤ 1.

On the other hand:

k = 1− 4λ2(W − 1)2W 2/(wiwj)
2 ≥ 1− λ2(W − 1)2W 2(1/w2

i + 1/w2
j )2

≥ 1− λ2(
∑

1/w2
l )2(W − 1)2W 2 ≥ 1− 9

256
=

247

256

So Dij(t+ 1) = k ·Dij(t) and 247
256 < k ≤ 1. This guarantees that the layer imbalance decreases.

A.3. Training with noise augmentation

Theorem 6 Consider discrete GD with noise augmentation

wi(t+ 1) = wi − 2λ(1 + η)(W (1 + η)− 1)(W/wi)

Assume that the noise η has 0-mean and is bounded: |η| < δ <
1

2
. If we define the adaptive learning

rate λ(w) =
1

2

(2

3

)5 1∑
1/w2

i

, then the layer imbalance monotonically decreases inside the noise

band |W − 1| < δ.

9
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Proof Let’s estimate the layer imbalance:

w2
i (t+ 1)− w2

j (t+ 1)

=
(
wi − 2λ(1 + η)(W (1 + η)− 1)W/wi

)2 − (wj − 2λ(1 + η)(W (1 + η)− 1)W/wj

)2
= (w2

i − w2
j ) + 4λ2(1 + η)2(W (1 + η)− 1)2

(
W 2/w2

i −W 2/w2
j

)
= (w2

i − w2
j ) ·
(

1− 4λ2(1 + η)4
(
W − 1

1 + η

)2
W 2/(wiwj)

2
)

On the one hand, the factor k = 1− 4λ2(1 + η)4
(
W − 1

1 + η

)2
W 2/(wiwj)

2 ≤ 1.

On the other hand:

k = 1− 4λ2(1 + η)4
(
W − 1

1 + η

)2
W 2/(wiwj)

2

≥ 1− λ2(1 + η)4
(
W − 1

1 + η

)2
W 2(1/w2

i + 1/w2
j )2

≥ 1− λ2(1 + η)4
(
W − 1 +

η

1 + η

)2
W 2
(∑

i

1/w2
i

)2
≥ 1− λ2

(∑
i

1/w2
i

)2 · (1 + δ)4
(
δ +

δ

1− δ
)2

(1 + δ)2 ≥ 1− λ2
(∑

i

1/w2
i

)2
(3/2)10

Taking λ =
1

2

(2

3

)5 1∑
1/w2

i

makes 0 < k ≤ 1, which proves that the layer imbalance decreases.

We can prove that the layer imbalance E[D] → 0 if we also assume that all layers are uniformly
bounded |wi| < C. This implies that there is ε > 0 such that for all w the adaptive learning rate
λ(w) > ε, and we can prove that the expectation E(k) < 1:

E(k) = 1− E
[
4λ2(1 + η)4

(
W − 1

1 + η

)2
W 2/(wiwj)

2
]

≤ 1− 4λ2W 2/(wiwj)
2 · (1 + σ2)2 σ2

1 + σ2
≤ 1− 4λ2 1

4C4

(
1 + σ2

)
σ2 ≤ 1− λ2σ2

C4

This proves that the layer imbalance D → 0 with rate
(
1− λ2σ2

C4

)
.

A.4. SGD noise as implicit regularization

Theorem 7 Consider discrete SGD

wi(t+ 1) = wi − 2λ(W − 1 + η)W/wi

Assume that |W − 1| < δ, and that SGD noise satisfies |η| ≤ δ < 1. If we define the adaptive

learning rate λ(w) =
1

2δ(1 + δ)(
∑

(1/w2
i )

, then the layer imbalance monotonically decreases.

10
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Proof Let’s estimate the layer imbalance:

w2
i (t+ 1)− w2

j (t+ 1) =
(
wi − 2λ(W − 1 + η)W/wi

)2 − (wj − 2λ(W − 1 + η)W/wj

)2
= (w2

i − w2
j ) ·
(

1− 4λ2(W − 1 + η)2W 2/(wiwj)
2
)

On the one hand, the factor k = 1− 4λ2(W − 1 + η)2W 2/(wiwj)
2 ≤ 1. On the other hand:

k = 1− 4λ2(W − 1 + η)2W 2/(wiwj)
2 ≥ 1− 2λ2(W − 1 + η)2W 2

(
1/w2

i + 1/w2
j

)2
≥ 1− 4λ2W 2

(∑
1/w2

i

)2 · ((W − 1)2 + η2) ≥ 1− 4λ2
(∑

1/w2
i

)2 · δ2(1 + δ)2

Setting λ =
1

2δ(1 + δ)(
∑

(1/w2
i )

makes 0 < k ≤ 1, which completes the proof.
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