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Abstract
Learning rate schedule can significantly affect generalization performance in modern neural net-
works, but the reasons for this are not yet understood. Li et al. [12] recently proved this behav-
ior can exist in a simplified non-convex neural-network setting. In this work, we show that this
phenomenon can exist even for convex learning problems – in particular, linear regression in 2 di-
mensions. We give a toy convex problem where learning rate annealing (large initial learning rate,
followed by small learning rate) can lead gradient descent to minima with provably better general-
ization than using a small learning rate throughout. In our case, this occurs due to a combination of
the mismatch between the test and train loss landscapes, and early-stopping.

1. Introduction

The learning rate schedule of stochastic gradient descent is known to strongly affect the generaliza-
tion of modern neural networks, in ways not explained by optimization considerations alone (e.g.
[6, 9, 12, 19]). In particular, training with a large initial learning-rate followed by a smaller annealed
learning rate can vastly outperform training with the smaller learning rate throughout – even when
allowing both to reach the same train loss. The recent work of Li et al. [12] sheds some light on
this, by showing a simplified neural-network setting in which this behavior provably occurs.

It was proposed (e.g. in Li et al. [12]) that non-convexity is crucial for learning-rate schedule to
affect generalization, because strongly-convex objectives have unique global minima. However, we
show this behavior can appear even in strongly-convex learning problems. The key insight is that
although strongly-convex problems have a unique minima, early-stopping breaks this uniqueness:
there is a set of minima with the same train loss ε. And these minima can have different gener-
alization properties when the train loss surface does not closely approximate the test loss surface.
In our setting, a large learning-rate prevents gradient descent from optimizing along high-curvature
directions, and thus effectively regularizes against directions that are high-curvature in the train set,
but low-curvature on the true distribution (see Figure 1).

Technically, we model a small learning rate by considering gradient flow. Then we compare the
following optimizers:

(A) Gradient descent with an infinitesimally small step size (i.e. gradient flow).

(B) Gradient descent with a large step size, followed by gradient flow.

We show that for a particular linear regression problem, if we run both (A) and (B) until reaching
the same ε > 0 train loss, then with probability 3/4 over the train samples, the test loss of (A) is
twice that of (B). That is, starting with a large learning rate and then annealing to an infinitesimally
small one helps generalization significantly.
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(a) Small learning rate (b) Large, then small LR (c) Test loss landscape

Figure 1: How learning rate can affect generalization: Minima with the same train loss can have
different test losses, if the empirical loss landscape is distorted relative to the population
loss (e.g. due to undersampling/overparameterization). Figures (a) and (b) show gradient
descent on the train loss, with different learning rate schedules, stopping at the same small
value of train-loss (red ellipse). Note that the minima found in (a) is worse than (b) in test
loss (shown in Figure (c)), through they have identical train loss.

Our Contribution. We show that non-convexity is not required to reproduce an effect of learning
rate on generalization that is observed in deep learning models. We give a simple model where
the mechanisms behind this can be theoretically understood, which shares some features with deep
learning models in practice. We hope such simple examples can yield insight and intuition that may
eventually lead to a better understanding of the effect of learning rate in deep learning.

Organization. In Section 2 we describe the example. In Section 3 we discuss features of the
example, and its potential implications (and non-implications) in deep learning. In Appendix A, we
include formal proofs and provide a mild generalization of the example in Section 2.

1.1. Related Work

This work was inspired by Li et al. [12], which gives a certain simplified neural-network setting
in which learning-rate schedule provably affects generalization, despite performing identically with
respect to optimization. The mechanisms and intuitions in Li et al. [12] depend crucially on non-
convexity of the objective. In contrast, in this work we provide complementary results, by showing
that this behavior can occur even in convex models due to the interaction between early-stopping
and estimation error. Our work is not incompatible with Li et al. [12]; indeed, the true mechanisms
behind generalization in real neural networks may involve both of these factors (among others).

There are many empirical and theoretical works attempting to understand the effect of learning-
rate in deep learning, which we briefly describe here. Several recent works study the effect of
learning rate by considering properties (e.g. curvature) of the loss landscape, finding that different
learning rate schedules can lead SGD to regions in parameter space with different local geome-
try [8, 11]. This fits more broadly into a study of the implicit bias of SGD. For example, there
is debate on whether generalization is connected to “sharpness” of the minima (e.g. Dinh et al.
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[1], Hochreiter and Schmidhuber [4], Keskar et al. [9]). The effect of learning-rate is also often
also studied alongside the effect of batch-size, since the optimal choice of these two parameters is
coupled in practice [3, 10, 16]. Several works suggest that the stochasticity of SGD is crucial to the
effect of learning-rate, in that different learning rates lead to different stochastic dynamics, with dif-
ferent generalization behavior [5, 12–15, 17]. In particular, it may be the case that the stochasticity
in the gradient estimates of SGD acts as an effective “regularizer” at high learning rates. This aspect
is not explicitly present in our work, and is an interesting area for future theoretical and empirical
study.

2. Convex Example

The main idea is illustrated in the following linear regression problem, as visualized in Figure 1.
Consider the data distribution D over (x, y) ∈ R2 × R defined as:

x ∈ {e1, e2} uniformly at random ; y = 〈β∗, x〉

for some ground-truth β∗ ∈ R2. We want to learn a linear model ŷ(x) := 〈β, x〉 with small mean-
squared-error on the population distribution. Specifically, for model parameters β = (β1, β2) ∈ R2,
the population loss is

LD(β) := E
x,y∼D

[(〈β, x〉 − y)2]

We want to approximate β∗ = argminβ LD(β). Suppose we try to find this minima by drawing n
samples {xi, yi} from D, and performing gradient descent on the empirical loss:

L̂n(β) :=
1

n

∑
i∈[n]

(〈β, xi〉 − yi)2

starting at β = 0, and stopping when L̂n ≤ ε for some small ε.
Now for simplicity let n = 3, and let the ground-truth model be β∗ = (β∗1 , β

∗
2) ∈ R2. With

probability 3/4, two of the samples will have the same value of x – say this value is x = e1, so the
samples (xi, yi) are {(e1, β

∗
1), (e1, β

∗
1), (e2, β

∗
2)}. In this case the empirical loss is

L̂n(β) =
2

3
(β1 − β∗1)2︸ ︷︷ ︸

(A)

+
1

3
(β2 − β∗2)2︸ ︷︷ ︸

(B)

(1)

which is distorted compared to the population loss, since we have few samples relative to the
dimension. The population loss is:

LD(β) =
1

2
(β1 − β∗1)2 +

1

2
(β2 − β∗2)2 (2)

The key point is that although the global minima of LD and L̂n are identical, their level sets
are not: not all points of small train loss L̂n(β) have identical test loss LD(β). To see this, refer
to Equation 1, and consider two different ways that train loss L̂n = ε could be achieved. In the
“good” situation, term (A) in Equation 1 is ε, and term (B) is 0. In the “bad” situation, term (A) is 0
and term (B) is ε. These two cases have test losses which differ by a factor of two, since terms are
re-weighted differently in the test loss (Equation 2). This is summarized in the below table.
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Residual (β − β∗) Train Loss L̂n(β) Test Loss LD(β)

Good: [
√

3ε
2 , 0] ε 0.75ε

Bad: [0,
√

3ε] ε 1.5ε

Now, if our optimizer stops at train loss ε, it will pick one of the points in {β : L̂n(β) = ε}. We see
from the above that some of these points are twice as bad as others.

Notice that gradient flow on L̂n (Equation 1) will optimize twice as fast along the β1 coordinate
compared to β2. The gradient flow dynamics of the residual (β − β∗) are:

dβ

dt
= −∇βL̂n =⇒

{
d
dt(β1 − β∗1) = −4

3(β1 − β∗1)
d
dt(β2 − β∗2) = −2

3(β2 − β∗2)

This will tend to find solutions closer to the “Bad” solution from the above table, where (β1−β∗1)2 ≈
0 and (β2 − β∗2)2 � 0.

However, gradient descent with a large step size can oscillate on the β1 coordinate, and achieve
low train loss by optimizing β2 instead. Then in the second stage, once the learning-rate is annealed,
gradient descent will optimize on β1 while keeping the β2 coordinate small. This will lead to a
minima closer to the “Good” solution, where (β2 − β∗2) ≈ 0. These dynamics are visualized in
Figure 1.

This example is formalized in the following proposition. The proof is straightforward, and
included in Appendix A.

Proposition 1 For all 0 < α < 1, there exists a distribution D over (x, y) ∈ R2 × R and a
learning-rate η > 0 (the “large” learning-rate) such that for all 0 < ε < 1, the following holds.
With probability 3/4 over n = 3 samples:

1. Gradient flow from 0-initialization, early-stopped at train loss ε, achieves population loss

LD(βbad) ≥ 3

2
ε(1− α)

2. Annealed gradient descent from 0-initialization (i.e. gradient descent with stepsize η for K
steps, followed by gradient flow) stopped at train loss ε, achieves population loss

LD(βgood) ≤ 3

4
ε+ exp(−Ω(K))

In particular, since α can be taken arbitrarily small, and K taken arbitrarily large, this implies
that gradient flow achieves a population loss twice as high as gradient descent with a careful step
size, followed by gradient flow.

Moreover, with the remaining 1/4 probability, the samples will be such that gradient flow and
annealed gradient descent behave identically:

βgood = βbad
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3. Discussion

Similarities. This example, though stylized, shares several features with deep neural networks in
practice.

• Neural nets trained with cross-entropy loss cannot be trained to global emperical risk mini-
mas, and are instead early-stopped at some small value of train loss.

• There is a mismatch between train and test loss landscapes (in deep learning, this is due to
overparameterization/undersampling).

• Learning rate annealing typically generalizes better than using a small constant learning
rate [2].

• The “large” learning rates used in practice are far larger than what optimization theory would
prescribe. In particular, consecutive iterates of SGD are often negatively-correlated with each
other in the later stage of training [18], suggesting that the iterates are oscillating around a
sharp valley. Jastrzebski et al. [7] also finds that the typical SGD step is too large to optimize
along the steepest directions of the loss.

Limitations. Our example is nevertheless a toy example, and does not exhibit some features of
real networks. For example, our setting has only one basin of attraction. But real networks have
many basins of attraction, and there is evidence that a high initial learning rate influences the choice
of basin (e.g. Jastrzebski et al. [8], Li et al. [12]). It remains an important open question to under-
stand the effect of learning rate in deep learning.
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Appendix A. Formal Statements

In this section, we state and prove Claim 1, along with a mild generalization of the setting via
Lemma 2.

A.1. Notation and Preliminaries

For a distribution D over (x, y) ∈ Rd × R, let LD(β) := Ex,y∼D[(〈x, β〉 − y)2] be the population
loss for parameters β. Let L̂n(β) = 1

n

∑
i(〈xi, β〉 − yi)2 be the train loss for n samples {(xi, yi)}.

Let GFβ0(L, ε) be the function which optimizes train loss L from initial point β0, until the train
loss reaches early-stopping threshold ε, and then outputs the resulting parameters.

Let GDβ0(L,K, τ, ε) be the function which first optimizes train loss L with gradient-descent
starting at initial point β0, with step-size η, for K steps, and an early-stopping threshold ε, and then
continues with gradient flow with early-stopping threshold ε.

For n samples, let X ∈ Rn×d be the design matrix of samples. Let ΣX = Ex,y∼D[xxT ] be the
population covariance and let Σ̂X = 1

nX
TX be the emperical covariance.

We assume throughout that ΣX and Σ̂X are simultaneously diagonalizable:

ΣX = UΛUT ; Σ̂X = UΓUT

for diagonal Λ = diag(λi), S = diag(γi) and orthonormal U . Further, assume without loss of
generality that Σ̂X � 0 (if Σ̂X is not full rank, we can restrict attention to its image).

We consider optimizing the the train loss:

L̂(β) =
1

n
||X(β − β∗)||22 = ||β − β∗||2

Σ̂X

Observe that the optimal population loss for a point with ε train loss is:

min
s.t. LΣ̂(β)=ε

LΣ(β) = εmin
i

({λi
γi
}) (3)

Similarly, the worst population loss for a point with ε train loss is:

max
s.t. LΣ̂(β)=ε

LΣ(β) = εmax
i

({λi
γi
}) (4)

Now, the gradient flow dynamics on the train loss is:

dβ

dt
= −∇βL̂(β) = − 2

n
XTX(β − β∗)

Switching to coordinates δ := UT (β − β∗), these dynamics are equivalent to:

dδ

dt
= −2Γδ

The empirical and population losses in these coordinates can be written as:

LD(δ) =
∑
i

λiδ
2
i ; L̂(δ) =

∑
i

γiδ
2
i
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And the trajectory of gradient flow, from initialization δ(0) ∈ Rd, is

∀i ∈ [d] : δi(t) = δi(0)e−2γit

With this setup, we now state and prove the following main lemma, characterizing the behavior
of gradient flow and gradient descent for a given sample covariance.

A.2. Main Lemma

Lemma 2 Let Σ, Σ̂ ∈ Rd×d be as above. Let eigenvalues be ordered according to Σ̂: γ1 ≥ γ2 ≥
· · · ≥ γd.

Let S = {k, k + 1, . . . , d} for some k. That is, let S index a block of “small” eigenvalues. Let
S = [n] \ S. Assume there is an eigenvalue gap between the “large” and “small” eigenvalues,
where for some p > 0

∀i ∈ S : γi/γk ≥ 1 + p.

For all 0 < α < 1, if the initialization δ(0) = UT (β0 − β∗) ∈ Rd satisfies

1. At initialization, the contribution of the largest eigenspace to the train loss is at least ε:

γ1δ1(0)2 > ε

2. The eigenvalue gap is large enough to ensure that eventually only the “small” eigenspace is
significant, specifically:

εp
∑
i∈S

γiδi(0)2

(|S|γj∗δj∗(0)2)1+p
≤ α where j∗ := argmin

j∈S
γjδj(0)2

Then there exists a learning-rate η := 1/γ1 (the “large” learning-rate) such that

1. Gradient flow βslow ← GFβ0
(L̂, ε) achieves population loss

LD(βslow) ≥ ε(1− α) min
j∈S

λj
γj

2. Annealed gradient descent run for K steps βfast ← GD(L̂,K, η, ε) has loss

LD(βfast) ≤ ε max
j:γj=γ1

(
λj
γj

) + exp(−Ω(K))

In particular, if the top eigenvalue of Γ is unique, then

LD(βfast) ≤ ε
λ1

γ1
+ exp(−Ω(K))

The constant Ω(K) depends on the spectrum, and taking Ω(K) = −K log(maxj:γj 6=γ1 |1 −
2γj/γ1|) suffices.

8



LEARNING RATE ANNEALING

Proof
Gradient Flow.
The proof idea is to show that gradient flow must run for some time T in order to reach ε train

loss – and since higher-eigenvalues optimize faster, most of the train loss will be due to contributions
from the “small” coordinates S.

Let T be the stopping-time of gradient flow, such that L̂(δ(T )) = ε. We can lower-bound the
time T required to reach ε train loss as:

|S|γj∗δj∗(0)2e−4γkT ≤
∑
j∈S

γjδj(0)2e−4γjT ≤
∑
j∈[n]

γjδj(0)2e−4γjT = L̂(δ(T )) = ε (5)

=⇒ T ≥ 1

4γk
log(
|S|γj∗δj∗(0)2

ε
) (6)

Decompose the train loss as:
L̂(δ) = L̂S(δ) + L̂S(δ)

Where L̂S(δ) :=
∑

i∈S γiδ
2
i and L̂S(δ) :=

∑
i∈S γiδ

2
i . Now, we can bound L̂S(δ(T )) as:

L̂S(δ(T )) =
∑
i∈S

γiδi(T )2 =
∑
i∈S

γiδi(0)2e−4γiT

≤
∑
i∈S

γiδi(0)2(
ε

|S|γj∗δj∗(0)2
)γi/γk (by Equation 6)

≤
∑
i∈S

γiδi(0)2(
ε

|S|γj∗δj∗(0)2
)1+p

≤ αε

Where the last inequality is due to Condition 2 of the Lemma. Now, since L̂(δ) = L̂S(δ) + L̂S(δ),
and L̂(δ(T )) = ε, and L̂S(δ(T )) ≤ αε, we must have

L̂S(δ(T )) ≥ (1− α)ε

This lower-bounds the population loss as desired.

LD(δ(T )) ≥
∑
i∈S

λiδi(T )2 ≥ min
j∈S

(
λj
γj

)
∑
i∈S

γiδi(T )2 = min
j∈S

(
λj
γj

)L̂S(δ(T )) ≥ min
j∈S

(
λj
γj

)(1− α)ε

Annealed Gradient Descent.
For annealed gradient descent, the proof idea is: set the learning-rate such that in the gradient

descent stage, the optimizer oscillates on the first (highest-curvature) coordinate δ1, and optimizes
until the remaining coordinates are ≈ 0. Then, in the gradient flow stage, it optimizes on the first
coordinate until hitting the target train loss of ε. Thus, at completion most of the train loss will be
due to contributions from the “large” first coordinate.

Specifically, the gradient descent dynamics with stepsize η is:

δi(t+ 1) = (1− 2ηγi)δi(t)
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for discrete t ∈ N. We set η := 1/γ1, so the first coordinate simply oscillates: δ1(t+ 1) = −δ1(t).
This is the case for the top eigenspace, i.e. all coordinates i where γi = γ1. The remaining
coordinates decay exponentially. That is, let Q := {i : γi 6= γ1} be the remaining coordinates
(corresponding to smaller eigenspaces). Then we have:

∀i ∈ Q : δi(t)
2 ≤ c−tδi(0)2 (7)

for constant c = maxj:γj 6=γ1 |1− 2ηγj |2 < 1.
Recall, the population and empirical losses are:

LD(δ) =
∑
i

λiδ
2
i ; L̂(δ) =

∑
i

γiδ
2
i

By Equation 7, after K steps of gradient descent, the contribution to the population loss from the
coordinates i ∈ Q is small: ∑

i∈Q
λiδi(K)2 ≤ exp(−Ωc(K))

By Condition 1 of the Lemma, the train loss is still not below ε after the gradient descent stage,
since the first coordinate did not optimize: δ1(0) = ±δ1(0). We now run gradient flow, stopping at
time T ∈ R when the train loss is ε. At this point, we have

L̂(δ(T )) ≤ ε =⇒
∑
i 6∈Q

γiδi(T )2 ≤ ε

And thus,

LD(δ(T )) =
∑
i 6∈Q

λiδi(T )2 +
∑
i∈Q

λiδi(T )2

≤ (max
k 6∈Q

λk
γk

)
∑
i 6∈Q

γiδi(T )2 + exp(−Ω(K))

≤ (max
k 6∈Q

λk
γk

)ε+ exp(−Ω(K))

as desired.

As a corollary of Lemma 2, we recover the 2-dimensional of Claim 1.

A.3. Proof of Claim 1

Proof [Proof sketch of Claim 1] Consider the distribution D defined as: Sample x ∈ {e1, e2}
uniformly at random, and let y = 〈β∗, x〉 for ground-truth β∗ = (100α−1/2, 100α−1/2). The
population covariance is simply

ΣX =

[
1/2 0
0 1/2

]
With probability 3/4, two of the three samples will have the same value of x. In this case, the

sample covariance will be equal (up to reordering of coordinates) to

Σ̂X =

[
2/3 0
0 1/3

]
10
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This satisfies the conditions of Lemma 2, taking the “small” set of eigenvalue indices to be S = {2}.
Thus, the conclusion follows by Lemma 2.

With probability 1/4, all the samples will all be identical, and in particular share the same value
of x. Here, the optimization trajectory will be 1-dimensional, and it is easy to see that gradient flow
and annealed gradient descent will reach identical minima.
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