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Abstract
Stochastic Gradient Descent (SGD) has been widely studied with classification accuracy as a per-

formance measure. However, these algorithms are not applicable when non-decomposable pairwise
performance measures are used, such as Area under the ROC curve (AUC)—a standard perfor-
mance metric when the classes are imbalanced. Recently, a Stochastic Proximal Gradient Algo-
rithm (SPAM) has been proposed to optimize AUC. However, SPAM suffers from high variance
leading to slower convergence. In this paper, we develop a Variance Reduced Stochastic Proximal
algorithm for AUC Maximization (VRSPAM). We show that our algorithm converges faster than
SPAM both theoretically and empirically.

1. Introduction

Class imbalance poses a challenge in several domains [5] for instance, medical diagnosis of rare
diseases. Classification accuracy is not an appropriate performance metric in this setting, as predict-
ing the majority class will give a high classification accuracy. AUC is commonly used to evaluate
the performance of a binary classifier in this setting [6]. AUC measures the ability of a family of
classifiers to correctly rank an example from the positive class with respect to a randomly selected
example from the negative class.

From an optimization perspective, the AUC metric is non-convex and thus, hard to optimize.
Instead it is attractive to optimize the convex surrogate such as, the pairwise squared surrogate [1,
8, 14]. Further, the AUC metric does not decompose over individual datapoints unlike classification
accuracy —in each step, an algorithm needs to pair the current datapoint with all previously seen
datapoints leading toO(td) space and time complexity at step t, where the dimension of the instance
space is d. Recently, Ying et al. [18] reformulated the pairwise squared loss surrogate of AUC as
a saddle point problem and gave an algorithm that has a convergence rate of O

(
1√
t

)
. Natole

et al. [15] improved on this by achieving a convergence rate of O
(

log t
t

)
, under strong convexity.

It has per iteration complexity of O(d) and applies to general, non-smooth regularization terms.
Both these rates are sub-optimal to the linear rate SGD achieves with classification accuracy as a
performance measure The slow convergence is caused by the high variance of the gradient in each
iteration in both [15],[18].

In the context of classification accuracy, techniques to reduce the variance of SGD have been
proposed—SAG [16], SVRG [10] and it’s proximal variant [17]. In this paper, we present Variance
∗. These authors contributed equally to this work
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Reduced Stochastic Proximal algorithm for AUC Maximization (VRSPAM). VRSPAM extends pre-
vious work for surrogate-AUC maximization by using the Proximal SVRG algorithm [17]. We show
that VRSPAM achieves a linear convergence rate with a fixed step size which is better than the sub-
linear rate of exisiting algorithms [15],[18]. Numerical experiments demonstrate faster convergence
of VRSPAM.

2. AUC formulation

The AUC score associated with a linear scoring function g(x) = wTx, is defined as the probability
that the score of a randomly chosen positive example is higher than a randomly chosen negative
example [4] and is denoted by AUC(w). If z = (x, y) and z′ = (x′, y′) are drawn independently
from an unknown distribution Z = X × Y , then

AUC(w) = Pr(wTx ≥ wTx′|y = 1, y′ = −1) = E[IwT (x−x′)≥0|y = 1, y′ = −1]

Since AUC(w) in the above form is not convex because of the 0-1 loss, it is a common practice to
replace this by a convex surrogate loss. In this paper, we use the least square loss which is known
to be consistent (minimizing the surrogate loss function, maximizes the AUC). Let f(w) = p(1 −
p)E[(1−wT (x− x′))2|y = 1, y′ = −1] and Ω be the convex regularizer where p = Pr(y = +1)
and 1 − p = Pr(y = −1) are the class priors. We consider the following objective for surrogate-
AUC maximization :

min
w∈Rd

f(w) + Ω(w) (1)

The form for f(w) follows from the definition of AUC : expected pairwise loss between a positive
instance and a negative instance. Throughout this paper we assume a) Ω is β strongly convex and
b) ∃M such that ‖x‖ ≤ M ∀x ∈ X . We use the Frobenius norm Ω(w) = β‖w‖2 and Elastic
Net Ω(w) = β‖w‖2 + ν‖w‖1 as the convex regularizers where β, ν 6= 0 are the regularization
parameters. The minimization problem in (1) can be reformulated such that stochastic gradient
descent can be performed to find the optimum value. Below is an equivalent formulation from
Theorem B in Natole et al. [15]-

min
w,a,b

max
ζ∈R

E[F (w, a, b, ζ; z)] + Ω(w)

where the expectation is with respect to z = (x, y) and F (w, a, b, ζ; z) = (1−p)(wTx−a)2
I[y=1]+

p(wTx− b)2
I[y=−1] + 2(1 + ζ)wTx(pI[y=−1] − (1− p)I[y=1])− p(1− p)ζ2.

Thus, f(w) = mina,b maxζ∈R E[F (w, a, b, ζ; z)]. Natole et al. [15] also state that the optimal
choices for a, b, ζ satisfy (note all are functions of w) :

• a = wT E[x|y = 1] • b = wT E[x|y = −1] • ζ = wT (E[x′|y′ = −1]− E[x|y = 1])

It is important to note here that we differentiate the objective function only with respect to w and
do not compute the gradient with respect to the other parameters which themselves depend on w.
This is the reason why existing methods cannot be applied directly.

3. Method

The major issue that slows down convergence for SGD is the decay of the step size to 0 as the
iteration increases. This is necessary for mitigating the effect of variance introduced by random
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sampling in SGD. We apply the Prox-SVRG method Xiao and Zhang [17] on the reformulation
of AUC to derive the proximal SVRG algorithm for AUC maximization presented in Algorithm
1. We store w̃ after every m Prox-SGD iterations that is progressively closer to the optimal w
(essentially an estimate of the optimal value of (1), w∗). Full gradient µ̃ = 1

n

∑n
i=1G(w̃, zi) is

computed whenever w̃ gets updated—after every m iterations of Prox-SGD: where G(w; z) =
∂wF (w, a(w), b(w), ζ(w); z) and µ̃ is used to update next m gradients. Next m iterations are
initialized by w0 = w̃. For each iteration, we randomly pick it ∈ {1, ..., n} and compute ŵt =
wt−1 − ηvt−1 where vt = G(wt, zit−1) − G(w̃, zit−1) + µ̃ and then the proximal step is taken:
wt = proxη,Ω(ŵt).

Algorithm 1 Proximal SVRG for AUC
maximization
INPUT Constant step size η and update fre-
quency m
INITIALIZE W̃0

for s = 1, 2, ... do
w̃ = w̃s−1

µ̃ = 1
n

∑n
i=1G(w̃, zi)

w0 = w̃
for t = 1, 2, ...,m do

Randomly pick it ∈ {1, .., n} and
update weight
ŵt = wt−1 − η(G(wt−1, zit) −
G(w̃, zit) + µ̃)
wt = proxηΩ(ŵt)

end
w̃s = wm

end

Notice that if we take expectation of G(w̃, zit−1)
with respect to it we get E[G(w̃, zit−1)] = µ̃. Now
if we take expectation of vt with respect to it condi-
tioned on wt−1, we can get the following:

E[vt|wt−1] =E[G(w, zit−1)]− E[G(w̃, zit−1)] + µ̃

=
1

n

n∑
i=1

G(w̃t−1, zi)

Hence the modified direction vt is stochastic gra-
dient of G at wt−1. However, the variance
E ‖vt − ∂f(wt−1)‖2 can be much smaller than
E ‖G(wt−1, zit−1) − ∂f(wt−1)‖2 which we will
show in section 4. We will also show that the vari-
ance goes to 0 as the algorithm converges. Thus, this
is a multi-stage scheme to explicitly reduce the vari-
ance of the modified proximal gradient.

4. Convergence Analysis

We present a lemma giving the bound on the variance of modified gradient vt. Proof of the lemma
is given in Appendix C.

Lemma 1 Consider VRSPAM (Algorithm 1), then the variance of the vt is upper bounded as:

E[‖vt−∂f(wt)]‖2]
)
≤ 4(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2

At the convergence, w̃ = w∗ and wt = w∗. Thus, the variance of the updates are bounded and
go to zero as the algorithm converges. Whereas, in the case of the SPAM algorithm in [15], the
variance of the gradient does not go to zero as it is a stochastic gradient descent based algorithm.
The following is the main theorem of this paper stating the convergence rate of Algorithm 1 and the
proof is in Appendix B.

Theorem 2 Consider VRSPAM (Algorithm 1) and let w∗ = arg minw f(w) + Ω(w); if η <
β

128M4 , then there exists α < 1 and we have the geometric convergence in expectation:

E[‖w̃s −w∗‖2] ≤ αs E[‖w0 −w∗‖2]

Hence, we get a geometric convergence rate of αs which is much stronger than the O(1
t ) conver-

gence rate obtained in Natole et al. [15]. In the next section we derive the time complexity of the
algorithm and investigate dependence of α on the problem parameters.

3



VARIANCE REDUCED STOCHASTIC PROXIMAL ALGORITHM FOR AUC MAXIMIZATION

4.1. Complexity analysis

Using Theorem 2, the number of iterations s required is ≥ 1
log 1

α

log E ‖w0−w∗‖2
ε to get E ‖w̃s −

w∗‖2 ≤ ε. At each stage, the number of gradient evaluations are n + 2m where n is the number
of samples and m is the iterations in the inner loop and the complexity is O(n + m)(log(1

ε )) i.e.
Algorithm 1 takes O(n + m)(log(1

ε )) gradient complexity to achieve accuracy of ε. Here, the
complexity is dependent on M and β as m itself is dependent on M and β.

Using the corollary proved in Appendix D, for any 0 < θ < 1 and E = 1

(1+ θβ2

128M4 )
, if we

choose m ≈ 2 log θ
logE then α ≈ 2θE2, which is independent of m. Thus the time complexity of the

algorithm is O(n + 2 log θ
logE )(log(1

ε )) when m = Θ( log θ
logE ). As the order has inverse dependency on

logE = log 128M4

128M4+θβ2 , increase in M will result in increase in number of iterations i.e. as the
maximum norm of training samples is increased, larger m is required to reach ε accuracy.

Figure 1: The top row shows that VRSPAM (SPAM-L2-SVRG) has lower variance than SPAM-L2 across
different datasets. The bottom row shows VRSPAM (SPAM-L2-SVRG) converges faster and performs better
than existing algorithms on AUC maximization.

Now we will compare the time complexity of our algorithm with SPAM algorithm. First, we
find the time complexity of SPAM. We will use Theorem 3 from Natole et al. [15] which states that
SPAM achieves the following:

E[‖wT+1−w∗‖2] ≤ t0
T

E[‖wt0 −w∗‖2] + c
log T

T

where t0 = max
(
2,
⌈
1 + (128M4+β2)2

128M4β2

⌉)
, T is the number of iterations and c is a constant. Through

averaging scheme developed by Lacoste-Julien et al. [11] the following can be obtained:

E[‖wT+1−w∗‖2] ≤ t0
T

E[‖wt0 −w∗‖2] (2)

where E[‖wt0 − w∗‖2] ≤ 2σ2
∗

C̃2
β,M

+ exp
(

128M4

C̃2
β,M

)
= F , C̃2

β,M = β

(1+ β2

128M4 )2
and E[‖G(w∗; z) −

∂f(w∗)‖2] = σ2
∗ . Using Equation 2, time complexity of SPAM algorithm can be written asO( t0Fε )
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i.e. SPAM algorithm takes O( t0Fε ) iterations to achieve ε accuracy. Thus, SPAM has lower per
iteration complexity but slower convergence rate as compared to VRSPAM. Therefore, VRSPAM
will take less time to get a good approximation of the solution.

Name VRSPAM-L2 VRSPAM-NET SPAM-L2 SPAM-NET SOLAM OPAUC

DIABETES .8299±.0323 .8305±.0319 .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350
GERMAN .7902±0386 .7845±.0398 .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347
SPLICE .9640±.0156 .9699±.0139 .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099
USPS .8552±.006 .8549±.0059 .8542±.0388 .8537±.0386 .8395±.0061 .8114±.0065
LETTER .9834±.0023 .9804±.0032 .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040
A9A .9003±.0045 .8981±.0046 .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047
W8A .9876±.0008 .9787±.0013 .9682±.0020 .9604±.0020 .9817±.0015 .9633±.0035
MNIST .9465±.0014 .9351±.0014 .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021
ACOUSTIC .8093±.0033 .8052±.033 .8120±.0030 .8109±.0028 8099±.0036 .8192±.0032
IJCNN1 .9750±.001 .9745±.002 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021

Table 1: AUC values (mean±std) comparison for different algorithms on test data. Best values are in bold.

5. Experiment

Here we empirically compare VRSPAM with other existing algorithms used for AUC maximiza-
tion. We use the following two variants of our proposed algorithm based on the regularizer used:

• VRSPAM − L2 : Ω(w) = β
2 ‖w‖

2 (Frobenius Norm Regularizer)

• VRSPAM−NET : Ω(w) = β
2 ‖w‖

2
2+β1‖w‖1 (Elastic Net Regularizer [19]). The proximal

step for elastic net is given as arg minw{1
2‖w −

ŵt+1

ηtβ+1‖
2 + ηtβ1

ηtβ+1‖w‖1}

VRSPAM is compared with SPAM, SOLAM [18] and one-pass AUC optimization algorithm
(OPAUC) [9]. SOLAM was modified to have the Frobenius Norm Regularizer [15]. VRSPAM is
compared against OPAUC with the least square loss. Details of the datasets are described Table 2
in Appendix E.

• Variance results: In the top row of Figure 1, we show the variance of the VRSPAM update
(vt) in comparison with the variance of SPAM update (G(wt−1, zit−1)) . We observe that the
variance of VRSPAM is lower than the variance of SPAM and decreases to the minimum
value faster, which is in line with Theorem 2.

• Convergence results: In the bottom row of Figure 1, we show the performance of our al-
gorithm compared to existing methods for AUC maximization. We observe that VRSPAM
converges to the maximum AUC value faster than the other methods, and on several datasets,
VRSPAM achieves better test AUC value than other methods, as seen in Table 1.

Note that, the initial weights of VRSPAM are set to be the output generated by SPAM after one
iteration, which is standard practice [10]. Table 1 summarizes the AUC evaluation for different
algorithms. AUC values for SPAM-L2, SPAM-NET, SOLAM and OPAUC are from [15].
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6. Conclusion

In this paper, we propose a variance reduced stochastic proximal algorithm for AUC maximization
(VRSPAM). We theoretically analyze the proposed algorithm and derive a much faster convergence
rate of O(αt) where α < 1 (linear convergence rate), improving upon state-of-the-art methods
Natole et al. [15] which have a convergence rate ofO(1

t ) (sub-linear convergence rate), for strongly
convex objective functions with per iteration complexity of one data-point. We showed theoretically
and empirically VRSPAM converges faster than existing methods for AUC maximization.
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Appendix A. Helper lemmas

We first define some lemmas which will be used for proving the Theorem 2 which is the main
theorem proving the geometric convergence of Algorithm 1. First is the Lemma 3 from Natole
et al. [15] which states that ∂wF (wt, a(wt), b(wt), α(wt); zt) is an unbiased estimator of the true
gradient. As we are not calculating the true gradient in VRSPAM, we need the following Lemma
to prove the convergence result.

Lemma 3 ([15]) Let wt be given by VRSPAM in Algorithm 1. Then, we have

∂f(wt) = Ezt [∂wF (wt, a(wt), b(wt), α(wt); zt)]

This Lemma is directly applicable in VRSPAM since the proof of the Lemma hinges on the objec-
tive function formulation and not on the algorithm specifics.

The next lemma provides an upper bound on the norm of difference of gradients at different
time steps.

Lemma 4 ([15]) Let wt be described in the main paper. Then, we have

‖G(wt′ ; zt)−G(wt; zt)‖ ≤ 8M2‖wt′ −wt‖

Proof

‖G(wt′ ; zt)−G(wt; zt)‖ ≤ 4M2p‖wt′ −wt‖1[yt=−1] + 4M2(1− p)‖wt′ −wt‖1[yt=1]

+ 4M2p‖wt′ −wt‖1[yt=−1] + 4M2|p− 1[yt=1]|‖wt′ −wt‖
≤ 8M2‖wt′ −wt‖

The proof directly follows by writing out the difference and using the second assumption on the
boundedness of ‖x‖.

We now present and prove a result that will be necessary in showing convergence in Theorem 2

Lemma 5 Let C = 1+128M4η2

(1+ηβ)2
and D = 128M4η2

(1+ηβ)2
; if η ≤ β

128M4 then Cm +DC Cm−1
C−1 ≤ 1 holds

true.

Proof We start with:

η ≤ β

128M4

⇒128M4η2 ≤ ηβ
⇒128M4η2(2 + 128M4η2) ≤ ηβ(2 + 1ηβ)

⇒128M4η2 + (128M4η2)2 ≤ (ηβ)2 + 2ηβ − 128M4η2

⇒128M4η2 ≤ (1 + ηβ)2 − 1− 128M4η2

1 + 128M4η2

⇒128M4η2 ≤
1− 1+128M4η2

(1+ηβ)2

1+128M4η2

(1+ηβ)2
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Substituting values of C and D and using the condition that D ≤ 128M4η2, we get

⇒D ≤ 1− C
C

⇒DCC
m − 1

C − 1
≤ 1− Cm

⇒Cm +DC
Cm − 1

C − 1
≤ 1

Appendix B. Proof of Theorem 1

From the first order optimality condition, we can directly write

w∗ = proxηΩ(w∗ − η∂f(w∗))

Using the above we can write

‖wt+1 −w∗‖2 = ‖proxηΩ(ŵt+1)− proxηΩ(w∗ − η∂f(w∗))‖2

Using Proposition 23.11 from Bauschke et al. [2], we have proxηΩ is (1 + ηβ)-cocoercieve and for
any u and w using Cauchy Schwartz we can get the following inequality

‖ proxηΩ(u)− proxηΩ(w)‖ ≤ 1

1 + ηβ
‖u−w‖

From above we get

‖wt+1 −w∗‖2 ≤ 1

(1 + ηβ)2
‖(ŵt+1)− (w∗ − η∂f(w∗))‖2

≤ 1

(1 + ηβ)2
‖(wt −w∗)− η(G(wt, zit)−G(w̃, zit) + µ̃− ∂f(w∗))‖2

Taking expectation on both sides we get

E ‖wt+1 −w∗‖2 ≤ 1

(1 + ηβ)2

(
η2 E[‖G(wt, zit)−G(w̃, zit) + µ̃− ∂f(w∗))‖2]

+ E[‖wt −w∗‖2]− 2η E[〈wt −w∗, G(wt, zit)−G(w̃, zit) + µ̃− ∂f(w∗)〉]
) (3)

Now, we first bound the last term T = E[〈wt − w∗, G(wt, zit) − G(w̃, zit) + µ̃ − ∂f(w∗)〉] in
equation 3. Using Lemma 5 we can write

T = E[〈wt −w∗,Ezt [G(wt, zit)]− Ezt [G(w̃, zit)] + µ̃− ∂f(w∗)〉]
= E[〈wt −w∗,Ezt [G(wt, zit)]− ∂f(w∗)〉]
= E[〈wt −w∗, ∂f(wt)− ∂f(w∗)〉]
≥ 0
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Now, E ‖wt+1 −w∗‖2 can be bounded by using above bound and Lemma 6 as below

E ‖wt+1 −w∗‖2 ≤ 1

(1 + ηβ)2
(E[‖wt −w∗‖2] + 128M4η2(E[‖wt −w∗‖2] + E[‖w̃ −w∗‖2]))

≤ 1 + 128M4η2

(1 + ηβ)2
E[‖wt −w∗‖2] +

128M4η2

(1 + ηβ)2
E[‖w̃ −w∗‖2]

Let C = 1+128M4η2

(1+ηβ)2
and D = 128M4η2

(1+ηβ)2
, then after m iterations wt = w̃s and w0 = w̃s−1.

Substituting this in the above inequality, we get

E ‖w̃s −w∗‖2

≤ Cm
(
E ‖w̃s−1 −w∗‖2 +

m−1∑
i=0

D

Ci
E ‖w̃s−1 −w∗‖2

)
≤
(
Cm +

m−1∑
i=0

DCm

Ci
)
E ‖w̃s−1 −w∗‖2

≤
(
Cm +DCm

1− (1/Cm)

1− (1/C)

)
E ‖w̃s−1 −w∗‖2

≤
(
Cm +DC

Cm − 1

C − 1

)
E ‖w̃s−1 −w∗‖2

≤ αE ‖w̃s−1 −w∗‖2

where α = Cm +DC Cm−1
C−1 is the decay parameter, and α < 1 by using Lemma 5. After s steps in

outer loop of Algorithm 1, we get E ‖w̃s −w∗‖2 ≤ αs E ‖w0 −w∗‖2 where α < 1.

Appendix C. Bounding the variance

First we present a lemma what will be necessary to find the bound on the variance of modified
gradient vt = G(wt, zit)−G(w̃, zit) + µ̃

Lemma 6 Consider VRSPAM (Algorithm 1), then E[‖vt − ∂f(w∗)]‖2 is upper bounded as:

E[‖vt−∂f(w∗)]‖2] ≤ 2(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2

Proof Let the variance reduced update be denoted as vt = G(wt, zit) − G(w̃, zit) + µ̃. As we
know E[vt] = ∂f(wt), the variance of vk can be written as below

E[‖G(wt, zit)−G(w̃, zit) + µ̃−∂f(w∗))‖2] ≤ 2E[‖G(wt, zit)−G(w∗, zit)‖2]

+ 2E[‖G(w∗, zit)−G(w̃, zit) + µ̃− ∂f(w∗))‖2]

Also, E[G(w∗, zit) − G(w̃, zit)] = ∂f(w∗) − ∂f(w̃) from Lemma 3 and using the property that
E[(X − E[X])2] ≤ E[X2] we get

E[‖G(wt, zit)−G(w̃, zit) + µ̃− ∂f(w∗))‖2] ≤ 2E[‖G(wt, zit)−G(w∗, zit)‖2]

+ 2E[‖G(w∗, zit)−G(w̃, zit)‖2]

10
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From Lemma 4, we have ‖G(wt, zit) − G(w∗, zit)‖ ≤ 8M2‖wt − w∗‖ and ‖G(w∗, zit) −
G(w̃, zit)‖ ≤ 8M2‖w̃ −w∗‖. Using this, we can upper bound the variance of gradient step as:

E[‖G(wt, zit)−G(w̃, zit) + µ̃− ∂f(w∗))‖2] ≤ 2(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2
(4)

We have the desired result.

We now present a lemma giving the bound on the variance of modified gradient vt.

Lemma 7 Consider VRSPAM (Algorithm 1), then the variance of the vt is upper bounded as:

E[‖vt − ∂f(wt)]‖2]
)
≤ 4(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2

Proof

E[‖vt−∂f(wt)]‖2] ≤ 2E[‖vt − ∂f(w∗)]‖2] + 2E[‖∂f(w∗)− ∂f(wt)]‖2]

≤ 2(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2 + 2E[‖G(wt, zit)−G(w∗, zit)‖2]

≤ 4(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2

where the second inequality uses Lemma 6 and last inequality uses Lemma 4.

Appendix D. Complexity analysis

Corollary 8 Let E = 1

(1+ θβ2

128M4 )
and 0 < θ < 1, if m ≈ 2 log θ

logE then α ≈ 2θE2

Proof Let η = θβ
128M4 where 0 < θ < 1, then

C =
1 + 128M4η2

(1 + ηβ)2
=

1 + θ2β2

128M4

(1 + θβ2

128M4 )2

<
1 + θβ2

128M4

(1 + θβ2

128M4 )2

=
1

(1 + θβ2

128M4 )

= E

therefore D = θ(E−E2) and DC < θE2(1−E), using the above equations we can simplify α as

α = Cm +DC
1− Cm

1− C

< Cm + θE2(1− E)
1− Cm

1− C

< Cm + θE2(1− Cm) ∵
1− E
1− C

< 1

= θE2 + Cm − θE2Cm

In the above equation, only Cm − θE2Cm depends on m, if we choose m to be sufficiently large
then α = θE2. An important thing to note here is that θE < C < E, now if we choose m ≈ 2 log θ

logE

then α ≈ 2θE2 which is independent of m.

11
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N Name Instances Features

1 DIABETES 768 8
2 GERMAN 1000 24
3 SPLICE 3,175 60
4 USPS 9,298 256
5 LETTER 20,000 16

Data Name Instances Features

6 A9A 32,561 123
7 W8A 64,700 300
8 MNIST 60,000 780
9 ACOUSTIC 78,823 50
10 IJCNN1 141,691 22

Table 2: Datasets across which we evaluate our algorithm

Appendix E. Dataset

All datasets are publicly available from Chang and Lin [3] and Frank and Asuncion [7]. Table
2 provides detail about the dataset used in the experiments. Some of the datasets are multiclass,
and we convert them to binary labels by numbering the classes and assigning all the even labels
to one class and all the odd labels to another. The results are the mean AUC score and standard
deviation of 20 runs on each dataset. All the datasets were divided into training and test data with
80% and 20% of the data. The parameters β ∈ 10[−5:5] and β1 ∈ 10[−5:5] for VRSPAM − L2 and
VRSPAM −NET are chosen by 5 fold cross-validation on the training set.

12


	Introduction
	AUC formulation
	Method
	Convergence Analysis
	Complexity analysis

	Experiment
	Conclusion
	Helper lemmas
	Proof of Theorem 1
	Bounding the variance
	Complexity analysis
	Dataset

