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Abstract
In this paper, we consider a single hidden layer neural network with threshold activations where
the in-degree of each hidden node is restricted to some positive integer k less than the dimension
of samples, which we call k-SNN. We first analyze the expressivity of k-SNN on finite samples
and show that it can express any labeling of training samples under a mild assumption. Then,
we show that the training problem for k-SNN can be solved in polynomial time for fixed k. We
also show that we can construct a single hidden layer neural network with ReLU activations (R-
SNN) with the same loss as that of the optimized k-SNN, which make it possible to measure
the optimization performance of a widely used stochastic gradient descent (SGD) algorithm by
training the constructed R-SNN using the algorithm. Preliminary computational results show that
SGD cannot converge to a global optimum on small-sized network even though it is sufficiently
large to fit training samples precisely.

1. Introduction
Neural networks and deep learning have shown outstanding empirical performance in many appli-
cations such as image recognition [9, 15, 23], natural language processing [6], speech recognition
[11, 17, 21]. To explain their successes in many practical applications, complexity measures of
hypothesis classes defined by various network architectures and regularization methods have been
studied [12]. However, for an over-parameterized neural networks (OPNN) that have a large number
of hidden nodes compared to the number of training samples, some phenomena unexplained by such
complexity measures have been observed [18, 24]. Specifically, those OPNNs trained with widely
used optimization method, stochastic gradient descent (SGD), show good generalization ability even
without an explicit regularization such as weight decay or drop out. This observation has motivated
studies on the generalization ability associated with SGD [4, 16, 20, 22]. However, analyzing the
optimization performance of SGD is needed first to understand its generalization ability. Some
studies show the global convergence of SGD for large-sized OPNNs with a huge number of hidden
nodes [8, 25]. However, its optimization performance, for smaller networks, is still unknown as far
as we know.

For a fully connected single hidden layer neural network with threshold activations, Bengio et
al. [3] proposed a training algorithm that can find a global optimum. This algorithm iteratively
solves sub-problems that generate hidden nodes improving the objective value based on the column
generation method [7]. They also showed that the trained network has far less hidden nodes than
the number of samples for some toy examples. However, this framework is not scalable since the
sub-problem is strongly NP-hard [2].
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We also consider a single hidden layer neural network with threshold activations. However, in
this paper, we limit the in-degree of each hidden node to some fixed positive integer k ≤ d, where d
is the dimension of training samples, which we call k-SNN. The contents and contributions of our
paper are summarized as follows :

• In section 2, we give the definition of k-SNN and analyze the expressivity of k-SNN on finite
samples. We show that k-SNN can express any labeling of training samples for given k ≤ d
under a mild assumption.

• Then, we present a polynomial time algorithm to optimize k-SNN specifically for classifica-
tion problems in section 3. We also show that the optimized k-SNN can be transformed to a
single hidden layer neural network with ReLU activations (R-SNN) with the same loss. This
transformation gives an upper bound on the optimal loss that can be achieved by R-SNN.

• Based on the results of section 3, we measure the optimization performance of SGD on rela-
tively small-sized network for the first time as far as we know. The computational tests show
quite different results on the optimization performance of SGD from those with large-sized
OPNNs.

2. Finite sample expressivity of k-SNN

In this section, we first define k-SNN which consists of a single hidden layer with τ hidden nodes
with threshold activations and one output node. Formally, a k-SNN is a function f : Rd → R
defined as f(x) =

∑τ
h=1whψ(α

T
hx+ βh) + w0 such that 1 ≤ ‖α‖0 ≤ k for given positive integer

k ≤ d, where αh ∈ Rd, βh ∈ R, wh ∈ R for all h ∈ [τ ] := {1, . . . , τ}, w0 ∈ R, and the threshold
activation function ψ(·) is defined as

ψ(s) =

{
1, s > 0
−1, s ≤ 0

Let S = {(xi, yi)}ni=1 be a set of finite training samples, where xi ∈ Rd and yi ∈ R for all
i ∈ [n] := {1, . . . , n}. The first question is whether or not there exists a k-SNN such that f(xi) = yi

for all i ∈ [n] for given positive integer k. Unfortunately, it does not hold in general. However, the
following theorem shows that, under a mild condition, k-SNN can fit the given set of samples even
for k < d, whose proof is given in Appendix A. Let xK ∈ R|K| be the sub-vector obtained by
deleting xj’s for all j /∈ K from a given x ∈ Rd, where K ⊆ [d] := {1, . . . , d}.

Theorem 1 For given k ≤ d, there exists a k-SNN such that f(xi) = yi for all i ∈ [n] if there
exists K ⊆ [d] such that |K| = k and xiK 6= xjK whenever i 6= j for all i, j ∈ [n].

3. Training k-SNN for classification problems

Since ψ(·) is not continous, optimization algorithms based on the gradient descent cannot be applied
to the training problem for k-SNN. However, the training problem can be convexified [3], i.e., it can
be reformulated as a convex optimization problem.

Recall that a hidden node of k-SNN is specified by some (α, β) ∈ Rd+1 such that 1 ≤ ‖α‖0 ≤ k
which defines a hyperplane {x ∈ Rd : αTx + β = 0}. For given (α, β), let z(α, β) ∈ {−1, 1}n
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be the output vector for given sample S = {(xi, yi)}ni=1 defined as z(α, β)i = ψ(αTxi + β) for
each i ∈ [n]. If z(α, β) 6= (1, . . . , 1) and z(α, β) 6= (−1, . . . ,−1), then (α, β) is nontrivial.
Note that if (α, β) is nontrivial, then the corresponding hyperplane partitions S into two non-empty
subsets. For given K ⊆ [d] and z ∈ {−1, 1}n, z is K-achievable if there exists a nontrivial (α, β)
such that αj = 0 for all j /∈ K and z = z(α, β). For given K-achievable z ∈ {−1, 1}n, there
may be infinitely many (α, β)’s corresponding to z. However, there are only finitely many K-
achievable output vectors. The main idea of the convexification is first enumerating K-achievable
output vectors for each K ⊆ [d], finding (α, β) for each enumerated output vector such that the
corresponding separating hyperplane has a maximum margin, and then finding w0 and wh for all
h ∈ [τ ] that minimize a convex objective function.

For given sample S = {(xi, yi)}ni=1 and k ≤ d, letZK be the set ofK-achievable output vectors
for K ⊆ [d] with |K| = k, and let Z := ∪{K⊆[d]:|K|=k}ZK . For each z ∈ Z , the corresponding
hyperplane with a maximum margin can be obtained by solving max{‖α‖22 : zi(α

Txi + β) ≥
1, ∀i ∈ [n], (α, β) ∈ Rd+1}, whose solution guarantees that |αTxi + β| > 0 for all i ∈ [n] by the
definition of Z . Now, we present a convex optimization problem, specifically a linear program, to
train k-SNN for (binary) classification problems as follows. Here, we assume that yi ∈ {−1, 1} for
all i ∈ [n] for given sample S = {(xi, yi)}ni=1.

(TP) minimize
∑
i∈[n]

ξi + λ
∑
z∈Z

wz (1)

subject to 1− yi(w0 +
∑
z∈Z

wzzi) ≤ ξi, ∀ i ∈ [n] (2)

ξi ≥ 0, ∀ i ∈ [n] (3)

w0 ∈ R, wz ≥ 0, ∀ z ∈ Z (4)

The objective function (1) of TP consists of the hinge loss function and the `1-regularization func-
tion. wz is the parameter between the output node and the hidden node corresponding to z ∈ Z , ξi
is the hinge loss for each sample, and λ ∈ R+ is a given regularization factor. Note that we have
only to consider wz ≥ 0 since z ∈ {−1, 1}n by the definition of ψ(·).

Based on the results of [19], for given k ≤ d and K ⊆ [d] such that |K| = k, we can prove
that |ZK | is at most nk by showing that for each z ∈ ZK , there exist a nontrivial (α, β) with a
set of k affinely independent xi’s, X (z), such that αj = 0 for all j /∈ K, αTxi + β = 0 for all
xi ∈ X (z) and z = z(α, β). Since there are at most dk possibilities to choose K, |Z| is O(nkdk),
which means the number of variables of TP is bounded by a polynomial function in n and d for
fixed k. Therefore, we have the following theorem since a linear program with polynomial number
of variables and constraints can be solved in polynomial time [13].

Theorem 2 TP can be solved in polynomial time for fixed k ≤ d.

By the fundamental theorem of linear programming [5], we can find an optimal extreme point
solution (ξ∗, w∗) which satisfies ‖(ξ∗, w∗)‖0 ≤ n, which means at most n variables of TP can be
non-zero. Therefore, the corresponding k-SNN to (ξ∗, w∗) has at most n hidden nodes.

Now, we show that we can construct a single hidden layer neural network with ReLU activa-
tions (R-SNN) with the same loss as that of k-SNN corresponding to the obtained optimal solution
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(ξ∗, w∗) to TP. Let m = |{w∗z > 0 : z ∈ Z}|. For the sake of simplicity, let us denote the trained k-
SNN as f∗(x) =

∑m
h=1w

∗
hψ(α

∗
h
Tx+β∗h)+w∗0 where w∗h > 0 and |α∗h| ≤ k for all h ∈ {1, ...,m}.

Note that there exists εh such that 0 < εh < mini∈[n]{|α∗h
Txi + β∗h|} since we chose (α∗h, β

∗
h) such

that |α∗h
Txi + β∗h| > 0 for all i ∈ [n].

Formally, an R-SNN is a function defined as g(x) =
∑τ

h=1whR(α
T
hx+βh)+w0, where αh ∈

Rd, βh ∈ R, wh ∈ R for all h ∈ [τ ], w0 ∈ R, and the ReLU activation function R(s) = max{s, 0}.
Then, for given f∗(x), the following equalities hold :

ψ(α∗h
Txi + β∗h) =

1

εh
[R(α∗h

Txi + β∗h + εh)−R(α∗h
Txi + β∗h − εh)]− 1, ∀i ∈ [n].

If we define g∗(x) as

g∗(x) =
m∑
h=1

w∗h
εh

[R(α∗h
Tx+ β∗h + εh)−R(α∗h

Tx+ β∗h − εh)]−
m∑
h=1

w∗h + w∗0.

Then, g∗(x) is a sparsely connected R-SNN with 2m hidden nodes. This network has maximum
2m(k+ 1) + 2m+ 1 parameters (the number of variables of the associated optimization problem).
Moreover, it is clear that g∗(x) has the same loss as that of f∗(x) since f∗(xi) = g∗(xi) for all
i ∈ [n]. Therefore, the optimal objective value of TP obtained with λ = 0 gives an upper bound
on the optimal hinge loss that can be achieved by the R-SNN with 2m hidden nodes. That is, if
SGD can find a global optimal solution to the associated training problem with the hinge loss and
no regularization for the R-SNN, the corresponding optimal loss should not exceed the optimal
objective value of TP with no regularization. Based on this result, we can measure the optimization
performance of SGD.

4. The optimization performance of SGD for small-sized networks

To measure the optimization performance of SGD based on the previous results, computational tests
on randomly generated dataset are performed. For each n ∈ {250, 500, 1000, 2000} and d (from 4
up to 20), we generate 30 instances with xi ∈ [0, 1]d and yi ∈ {−1, 1} for all i ∈ [n]. The average
results are reported for each n and d. We tested k-SNN for k = 1 and λ = 0, and we used a generic
optimization solver Xpress [10] to solve TP. For every instance, the optimal objective value of TP
was 0, that is, the loss is 0 and the training accuracy is 100%. Figure 1 shows the average number
of used hidden nodes (m). For the tested instances, m is around 25% of the number of samples
on average and it is more dependent on n than d. For each instance, we constructed a sparsely
connected R-SNN with 2m hidden nodes. The average numbers of parameters of of R-SNNs are
presented as multiples of n in Figure 2(a). Each of constructed R-SNNs has around 0.5n hidden
nodes and 1.5n parameters. Then, R-SNNs were trained using SGD up to 50, 000 epochs with the
hinge loss and no regularization. The batch size was set to 32. We used Tensorflow [1] and the
Adam optimizer [14] with its default setting. The results in terms of training accuracy are given in
Figure 2.

The results given in Figure 2 show that SGD cannot find a global optimum on relatively small
network even though the sizes of R-SNNs are sufficiently large to fit training samples precisely.
Also, regardless of number of parameters, the optimization performance of SGD gets better as
the dimension increases in each number of samples, and it gets worse as the number of samples
increases in each dimension. This implies that its performance depends on the density of samples.
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Figure 1: The number of hidden nodes of optimized 1-SNN
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Figure 2: Training results for R-SNN with SGD

5. Conclusion

We consider a single hidden layer neural network with threshold activations, k-SNN. Even though
the in-degree of each hidden node is restricted, k-SNN can fit any given finite samples under a mild
assumption. A linear program with a polynomial number of variables and constraints to optimize
k-SNN for binary classification problems were presented. We also showed that the optimized k-
SNN can be transformed to a single hidden layer neural network with ReLU activations with the
same loss. Based on the results, the optimization performance of SGD was computationally tested
on randomly generated instances. The results show that SGD hardly converge to global optimum
on small-sized network even though it is sufficiently large to fit training samples precisely. Also it
depends on the density of training samples. We conjecture that these properties of SGD may affect
its generalization performance. That is, limited optimization performance under certain condition
may lead to good generalization by preventing overfitting. To prove this conjecture, more elaborate
experiments or theoretical anaysis should be conducted further.
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Appendix A. Proof for Theorem 1

Note that by the assumption on {xi}ni=1, there exists α̂ ∈ Rd such that α̂j = 0 for all j /∈ K and
si 6= sj for all i, j ∈ [n] where si = α̂Txi. For the sake of simplicity, let s1 < s2 < · · · < sn.
Then there exists −βi ∈ R, ∀i ∈ [n] such that −β1 < s1 < −β2 < s2 < · · · < −βn < sn.
Consider k-SNN with τ = n hidden nodes and suppose that each hidden node h represents a
function ψ

(
α̂Tx+ βh

)
, i.e., f(x) =

∑n
h=1whψ(α̂

Tx + βh). Let A be a n × n matrix where
Aij = ψ(α̂Txi + βj) for all i, j ∈ [n]. From the relationship between si’s,

A =


1 −1 −1 −1 · · · −1
1 1 −1 −1 · · · −1
1 1 1 −1 · · · −1

...
1 1 1 1 · · · 1

 .

Then the equality system, yi = f(xi) for all i ∈ [n], can be represented as y = Aw where y =
[y1, ..., yn] and w = [w1, ..., wn]. Since A has full rank, there always exists w such that y = Aw for
arbitrary y ∈ Rn.
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