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Abstract
Communication cost is a key bottleneck in distributed training of large machine learning models. In
order to reduce the amount of communicated data, quantization and error compensation techniques
have recently been studied. While the error compensated stochastic gradient descent (SGD) with
contraction compressor (e.g., TopK) was proved to have the same convergence rate as vanilla SGD in
the smooth case, it is unknown in the regularized case. In this paper, we study the error compensated
proximal SGD and error compensated regularized dual averaging (RDA) with contraction compressor
for the composite finite-sum optimization problem. Unlike the smooth case, the leading term in the
convergence rate of error compensated proximal SGD is dependent on the contraction compressor
parameter in the composite case, and the dependency can be improved by introducing a reference
point to reduce the compression noise. For error compensated RDA, we can obtain better dependency
of compressor parameter in the convergence rate. Extensive numerical experiments are presented to
validate the theoretical results.

1. Introduction

In order to train modern large scale machine learning systems, one typically collects a large set of
labelled data which is then used to train a supervised statistical model, e.g., logistics regression or a
neural network. In many applications, the size of the data set precludes the possibility to solve the
problem on a single machine, and the data and the training itself needs be distributed among several
machines [28]. In federated learning [13, 14, 16, 18], training occurs on edge devices such as mobile
phones and smart home devices, where the data is originally captured.

In this work, we consider distributed machine learning with regularized convex models, which
can be posed as the optimization problem

min
x∈Rd

P (x) := 1
n

n∑
τ=1

f (τ)(x) + ψ(x), (1)

where f(x) := 1
n

∑
τ f

(τ)(x) is an average of n smooth convex functions f (τ) : Rd → R distributed
over n nodes (devices, computers), and ψ : Rd → R ∪ {+∞} is a proper closed convex function
representing a possibly nonsmooth regularizer. On each node, f (τ)(x) is an average of m smooth
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convex functions
f (τ)(x) = 1

m

m∑
i=1

f
(τ)
i (x),

representing the average loss over the training data stored on node τ . For example, in Lasso regression
(L1-regularized least squares) [26], we have f (τ)i (x) = ((z

(τ)
i )>x − y(τ)i )2, and ψ(x) = λ‖x‖1.

Here (z
(τ)
i , y

(τ)
i ) ∈ Rd × R represents the i-th training sample on node τ .

We assume that problem (1) has at least one optimal solution x∗ and define the variance

σ2τ := 1
m

m∑
i=1
‖∇f (τ)i (x∗)−∇f (τ)(x∗)‖2,

and the average variance σ2 := 1
n

∑n
τ=1 σ

2
τ .

For distributed learning problems of this form, distributed stochastic gradient algorithms are the
preferred methods. In these methods, each node computes the stochastic gradient from a minibatch
sampled from the locally stored training data, and an aggregated stochastic gradient is subsequently
computed by averaging the local stochastic gradients over all machines. In distributed and especially
federated settings, communication is generally much slower than local computation, which makes the
communication overhead become a key bottleneck. There are several ways to tackle this issue, such
as using large mini-batches [8, 32], asynchronous learning [1, 17, 20, 27], and gradient compression
[2, 4, 11, 19, 21, 29].

1.1. Gradient compression

The idea of gradient compression, which is the technique investigated in this paper, is to compress the
stochastic gradients on each node before sending them over the network for aggregation. Although
this approach reduces the communication cost, it introduces errors into the gradients, and thus can
slow down convergence. Moreover, for biased compression, the SGD algorithm may not converge.
This can be shown by the following simple example:

min
x∈R2

1
2 (f1(x) + f2(x)) ,

where f1(x) = x21 and f2(x) = 2x1 + x22. In SGD, the two stochastic gradients are(
2x1
0

)
and

(
2

2x2

)
.

If we use the initial point (1, 0.5)> and run SGD with the Top1 compressor, it is easy to see that the
second coordinate x2 will never be updated.

Two techniques have been invented in the literature to alleviate the slow-down of convergence
due to compression: error compensation [23, 24, 30] and variance reduction [9, 10, 19].

Error compensation. The key idea of error compensation is to remember the accumulated gra-
dient compression error on each node, and use it to compensate the next gradient before this new
gradient gets compressed and transmitted. For unbiased compressors, if we assume the accumulated
compression error is bounded, the convergence rate of error compensated SGD is the same as vanilla
SGD [24]. However, if we only assume bounded stochastic gradient, then in order to guarantee
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the boundedness of the accumulated quantization error, some decaying factor needs to be involved
in general, and error compensated SGD is proved to have some advantages over compressed SGD
for convex quadratic problems [30]. On the other hand, for contraction compressors (e.g., TopK
compressor [3]), error compensated SGD actually has the same convergence rate as Vanilla SGD
[22, 23, 25]. For f is non-smooth, and ψ = 0, the error compensated SGD where the stochastic
subgradient is used was studied in [12] for single node case, and the convergence rate is of order
O
(

1√
δk

)
.

There are two types of stochastic gradient methods for (1) that are commonly used in practice:
proximal SGD [6], and regularized dual averaging (RDA) [31]. In this paper, we investigate the
error compensated proximal SGD and error compensated regularized dual averaging (RDA) with
contraction compressor for solving (1).

Variance reduction. The second technique for fixing the slow down from compression—one that
we do not purse in this paper—is a variance reduction technique tailored to remove the excess
variance introduced by unbiased stochastic compression operators. The main idea of these schemes
is to maintain an estimate on each node of the gradient of the local function at the optimum, and
to use this estimate to perturb the local gradient before compression takes place. The first such
method, called SEGA, was proposed in [9], who focused on the single node (n = 1) case, and linear
compressors, i.e., sketches. However, their theory works for strongly convex objectives and general
convex regularizers. In particular, they prove linear convergence to the solution, and their rates can
be related to the rates of randomized coordinate descent methods. This work was then extended to
the n > 1 case, and the DIANA method was developed [19]. The communication complexity of
DIANA improves upon the rate of SGD without compression and they show that a certain level of
compression, one that depends on problem conditioning and the number of nodes, comes without
any increase in the number of communication rounds. In the nonconvex setting the rate is the same
as for SGD. This technique has not been explored with biased compression operators. Variance
reduction techniques have recently been extended to distributed fixed point methods which compress
iterates instead of gradients [5]. A general framework for studying the convergence of SGD, one also
unifying classical variance reduced methods for finite sum problems and variance reduced techniques
for compression for SGD, was proposed in [7].

1.2. Contributions

(i) For error compensated proximal SGD, under certain conditions, the leading term in the conver-
gence rate is O(1/

√
nδk), where δ is the contraction compressor parameter. To obtain ε-optimal

solution, the iteration complexity is O(1/(nδε2)), which means linear speed up w.r.t. the number of
nodes n.

(ii) For error compensated RDA, under certain conditions, the leading term in the convergence
rate is O(1/

√√
nδk). To obtain ε-optimal solution, the iteration complexity is O(1/(

√
nδε2)),

which has better dependency of δ than error compensated proximal SGD, however, in the meantime,
only has

√
n speed up w.r.t the number of nodes n.

2. Gradient Compression Methods

There are mainly two types of compression operators being used in the literature: contraction
compressor and unbiased compressor. They are defined as follows.
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Q : Rd → Rd is a contraction compressor if there is a 0 < δ ≤ 1 such that

E‖x−Q(x)‖2 ≤ (1− δ)‖x‖2 (2)

for all x ∈ Rd. Q̃ is an unbiased compressor if there is ω ≥ 0 such that

E[Q̃(x)] = x and E‖Q̃(x)‖2 ≤ (ω + 1)‖x‖2 (3)

for all x ∈ Rd.
Some frequently used contraction compressors are TopK compressor and RandK compressor

[23]. In general, given an arbitrary unbiased compressor, we can obtain a contraction compressor via
scaling as follows. For any unbiased compressor Q̃ satisfying (3), 1

ω+1Q̃ is a contraction compressor
satisfying (2) with δ = 1

ω+1 . Indeed,

E‖ 1
ω+1Q̃(x)− x‖2 = 1

(ω+1)2
E‖Q̃(x)‖2 + ‖x‖2 − 2

ω+1E〈Q̃(x), x〉

≤ 1
ω+1‖x‖2 + ‖x‖2 − 2

ω+1‖x‖2 =
(

1− 1
ω+1

)
‖x‖2.

We may use the following assumptions for the contraction compressor in some cases.

Assumption 2.1 E[Q(x)] = δx.

It is easy to verify that RandK compressor satisfies Assumption 2.1 with δ = K
d , and Q̃/(ω + 1),

where Q̃ is any unbiased compressor, also satisfies Assumption 2.1 with δ = 1
ω+1 .

Assumption 2.2 For xτ = η
L1
gkτ + ekτ ∈ Rd (xτ = gkτ + ekτ ), τ = 1, ..., n and k ≥ 0 in Algorithm

1 (Algorithm 2), there exist δ′ > 0 such that E[Q(xτ )] = Q(xτ ), and
∥∥∥∥ n∑
τ=1

(Q(xτ )− xτ )

∥∥∥∥2 ≤
(1− δ′)

∥∥∥∥ n∑
τ=1

xτ

∥∥∥∥2 .
For TopK, we have E[Q(x)] = Q(x) for any x ∈ Rd. If Q(xτ ) is close to xτ , then δ′ could

be larger than K
d . Whenever Assumption 2.2 is needed, if δ > δ′, we could decrease δ such that

δ = min{δ, δ′}. In this way, we have the uniform parameter δ for the contraction compressor.

3. Error Compensated Proximal SGD

Proximal SGD is a standard optimization method for large scale machine learning with composite
objective functions such as L1 regularized sparse learning problems [6, 15]. For distributed learning,
one needs to compute stochastic gradients on each machine, and then aggregate them over multiple
nodes. Gradient compression can be used to reduce the communication cost. In this section, we
present an error compensated proximal SGD algorithm, and analyze its convergence in distributed
training.

The error compensated proximal SGD algorithm proposed in this paper is given in Algorithm 1.
The following is a high-level description of this method. All nodes maintain the same copies of xk,
wk, yk, and uk. On each node, an error vector ekτ is maintained, and is updated by the compression
error at last iteration:

ek+1
τ = ekτ + γgkτ −Q(γgkτ + ekτ );
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a scalar ukτ is also maintained, and only uk1 will be updated. The summation of ukτ is uk, and we use
uk to control the update frequency of the reference point wk. At each iteration, each node calculates
a stochastic gradient ∇f (τ)iτk

and subtracts ∇f τ (wk) from it to reduce the noise. Then all nodes

compress the sum of γgkτ and the error vector ekτ , independently of each other, and each sends their
compressed vector ykτ and uk+1

τ to the other nodes. If uk = 1, each node also sends ∇f (τ)(wk)
to the other nodes. After each node accumulates the compressed vectors, the full gradient at the
reference point γ∇f(wk) needs to be added. The proximal step is taken on each node, where we
use the standard proximal operator: proxγψ(x) := arg miny

{
1
2‖x− y‖2 + γψ(y)

}
. The reference

point wk will be updated if uk+1 = 1. It is easy to see that wk will be updated with propobility p at
each iteration.

Algorithm 1: Error compensated proximal SGD
Parameters: stepsize γ > 0; probability p ∈ (0, 1]
Initialization: x0 = w0 ∈ Rd; e0τ = 0 ∈ Rd; u0 = 1 ∈ R
for k = 0, 1, 2, ... do

for τ = 1, ..., n do
Sample iτk uniformly and independently in [m] on each node
gkτ = ∇f (τ)iτk

(xk)−∇f (τ)(wk), ykτ = Q(γgkτ + ekτ ), ek+1
τ = ekτ + γgkτ − ykτ

uk+1
τ = 0 for τ = 2, ..., n, uk+1

1 =

{
1 with propobility p
0 with probability 1− p

Send ykτ and uk+1
τ to the other nodes. Send∇f (τ)(wk) to the other nodes if uk = 1

Receive ykτ and uk+1
τ from the other nodes. Receive∇f (τ)(wk) from the other nodes if

uk = 1
end
yk = 1

n

∑n
τ=1 y

k
τ , uk+1 =

∑n
τ=1 u

k+1
τ , xk+0.5 = xk − (yk + γ∇f(wk))

xk+1 = proxγψ
(
xk+0.5

)
, wk+1 =

{
xk if uk+1 = 1
wk otherwise

end

We introduce some notations to reveal some relations between iteration k and k+1 in Algorithm 1.
Let ek = 1

n

∑n
τ=1 e

k
τ , gk = 1

n

∑n
τ=1 g

k
τ , and x̃k = xk − ek for k ≥ 0. Then

ek+1 = 1
n

n∑
τ=1

(
ekτ + γgkτ − ykτ

)
= ek + γgk − yk,

and

x̃k+1 = xk+1 − ek+1

= xk+0.5 − γ∂ψ(xk+1)− ek+1

= xk − yk − γ∇f(wk)− γ∂ψ(xk+1)− ek − γgk + yk

= x̃k − γ(gk +∇f(wk) + ∂ψ(xk+1))

= x̃k − γ
(

1
n

n∑
τ=1
∇f (τ)iτk

(xk) + ∂ψ(xk+1)

)
.
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The above equality plays a significant role in the convergence analysis. In fact, for uncompressed
distributed proximal SGD (that is, when Q(x) = x for all x), we have the following iteration:

xk+1 = xk − γ
(

1
n

n∑
τ=1
∇f (τ)iτk

(xk) + ∂ψ(xk+1)

)
.

We have the following analogy for the error-compensated compressed distributed proximal SGD
of Algorithm 1. For simplicity, we denote g̃k = 1

n

∑n
τ=1∇f

(τ)
iτk

(xk). Then

x̃k+1 = x̃k − γ(g̃k + ∂ψ(xk+1)),

and Ek[g̃k] = ∇f(xk), where Ek[·] denotes the conditional expectation on xk.
This recursive relationship implies that with error-compensation, the iterate of x̃ is analogous to

that of standard proximal SGD. Therefore the analysis of proximal SGD can be adapted to analyze
Algorithm 1. In order to develop a convergence theory for our method, we need the following
assumption.

Assumption 3.1 f
(τ)
i is L-smooth for 1 ≤ i ≤ m and 1 ≤ τ ≤ n.

The convergence of Algorithm 1 is given by the following theorem. It shows that the leading
term of O(1/

√
k) is reduced to O(1/

√
nk) with n nodes. This implies that under suitable conditions,

linear speed up of convergence can be achieved when we increase the number of nodes.

Theorem 1 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Let x̄k := 1

k

∑k
j=1 x

j . (i) If p = 0, then there exists a constant stepsize γ ≤ δ2

48L such that

E[P (x̄k)− P (x∗)] = O

(
L‖x0−x∗‖2

δ2k
+
‖x0−x∗‖

√
σ2/δ+L(P (w0)−P (x∗))/δ2

√
k

)
.

If p > 0, then there exists a constant stepsize γ ≤ δ2

80L such that

E[P (x̄k)− P (x∗)] = O
(
1
k

(
L‖x0−x∗‖2

δ2 + P (w0)−P (x∗)
p

)
+ σ‖x0−x∗‖√

δk

)
.

(ii) Under Assumption 2.1 or Assumption 2.2, if p = 0, then there exists a constant stepsize
γ ≤ δ2

(64+304/n)L such that

E[P (x̄k)− P (x∗)] = O

(
L‖x0−x∗‖2

δ2k
+
‖x0−x∗‖

√
σ2/(nδ)+L(P (w0)−P (x∗))/δ2

√
k

)
.

If p > 0, then there exists a constant stepsize γ ≤ δ2

(128+592/n)L such that

E[P (x̄k)− P (x∗)] = O
(
1
k

(
L‖x0−x∗‖2

δ2 + P (w0)−P (x∗)
p

)
+ σ‖x0−x∗‖√

nδk

)
.

The following results, with easier to interpret leading terms, are direct consequences of the above
theorem.
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Corollary 2 Under the premise of Theorem 1. Choose the same stepsize as in Theorem 1 in each
case.

(i) If p = 0 and k ≥ O
(

1
δ2

)
, we have

E[P (x̄k)− P (x∗)] = O
(

1
δ
√
k

)
.

If p > 0 and k ≥ O
(

1
δ3 + δ

p2

)
, we have

E[P (x̄k)− P (x∗)] = O
(

1√
δk

)
.

(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0 and k ≥ O
(

1
δ2

)
, we have

E[P (x̄k)− P (x∗)] = O
(

1
δ
√
k

)
.

If p > 0 and k ≥ O
(
n
δ3 + nδ

p2

)
, we have

E[P (x̄k)− P (x∗)] = O
(

1√
nδk

)
.

The above corollary shows that by choosing p > 0, the dependency of the contraction compressor
parameter δ in the leading term of convergence rate can be improved from 1/δ to 1/

√
δ. Furthermore,

under Assumption 2.1 or Assumption 2.2, the convergence rate can be improved to O
(

1/
√
nδk

)
with n nodes. In other words, E[P (x̄k) − P (x∗)] ≤ ε as long as k = O(1/(nδε2)), which gives
linear speed up w.r.t. the number of nodes n.

References

[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. Advances in Neural
Information Processing Systems, pages 873–881, 2011.

[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd
via gradient quantization and encoding. Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

[3] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The
convergence of sparsified gradient methods. Advances in Neural Information Processing
Systems, pages 5973–5983, 2018.

[4] J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anandkumar. Signsgd: Compressed
optimisation for non-convex problems. The 35th International Conference on Machine Learning,
pages 560–569, 2018.
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reduction, sampling, quantization and coordinate descent. In The 23rd International Conference
on Artificial Intelligence and Statistics, 2020.

[8] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv: 1706.2677,
2017.

[9] Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. SEGA: variance reduction via
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[13] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated
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Appendix A. Error Compensated RDA
RDA is a stochastic optimization method for solving large scale machine learning with composite objective functions, and
has advantages over proximal SGD in terms of achieving better sparsity for L1 regularized sparse learning problems [31].
Due to this desirable property, it has received significant attention. Similar to proximal-SGD, gradient compression can be
used to reduce the communication cost in the distributed learning setting.

The proposed algorithm is described in Algorithm 2.

0 10 20 30 40 50 60 70 80 90 100

epoch

10−4

10−3

ob
je

ct
iv

e
ga

p

RCV1-SGD

Full-SGD
Top1
Top10
Rand10

0 3 6 9 12 15 18 21 24 27 30

epoch

1.4

1.5

1.6

1.7

1.8

1.9

2.0

ob
je

ct
iv

e
ga

p
(1

0
−

3
)

RCV1-RDA

Full-RDA
Top1
Top10
Rand10

0 3 6 9 12 15 18 21 24 27 30

epoch

10−2

10−1

ob
je

ct
iv

e
ga

p

Gisette-SGD

Full-SGD
Top1
Top10
Rand10

0 3 6 9 12 15 18 21 24 27 30

epoch

10−2

10−1

ob
je

ct
iv

e
ga

p

Gisette-RDA

Full-RDA
Top1
Top10
Rand10

Figure 1: Error Compensated Proximal and Full SGD/RDA.

Algorithm 2: Error compensated RDA
Parameters: an auxiliary function h(x) that is strongly onvex on dom ψ and also satisfies

arg min
x
h(x) ∈ arg min

x
ψ(x);

a nonegative and nondecreasing sequence {βk}k≥1
Initialization: x1 = w1 = arg minx h(x); ḡ0 = 0 ∈ Rd; e1τ = 0 ∈ Rd; u1 = 1 ∈ R
for k = 1, 2, ... do

for for τ = 1, ..., n do
Sample iτk uniformly and independently in [m] on each node
gkτ = ∇f (τ)iτk

(xk)−∇f (τ)(wk), ykτ = Q(gkτ + ekτ ), ek+1
τ = ekτ + gkτ − ykτ

uk+1
τ = 0 for τ = 2, ..., n , uk+1

1 =

{
1 with propobility p
0 with probability 1− p

Send ykτ and uk+1
τ to the other nodes. Send∇f (τ)(wk) to the other nodes if uk = 1

Receive ykτ and uk+1
τ from the other nodes. Receive∇f (τ)(wk) from the other nodes if

uk = 1
end
yk = 1

n

∑n
τ=1 y

k
τ , uk+1 =

∑n
τ=1 u

k+1
τ , ḡk = k−1

k ḡk−1 + 1
k (yk +∇f(wk))

xk+1 = arg minx{〈ḡk, x〉+ ψ(x) + βk
k h(x)}, wk+1 =

{
xk if uk+1 = 1
wk otherwise

end

At the high level, the way to calculate the search directions and error vectors in Algorithm 2 is the same as that of
Algorithm 1. The difference is that xk is updated by using the average of the gradient estimators in the past.

Same as in the error compensated proximal SGD, we also introduce some notations to show the important connections
between iteration k − 1 and k in Algorithm 2. Let ek = 1

n

∑n
τ=1 e

k
τ , gk = 1

n

∑n
τ=1 g

k
τ , sk = kḡk and s̃k = sk + ek+1

for k ≥ 1. Then we have

ek+1 = 1
n

n∑
τ=1

(
ekτ + gkτ − ykτ

)
= ek + gk − yk,

10
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and

s̃k = kḡk + ek+1

= (k − 1)ḡk−1 + yk +∇f(wk) + ek + gk − yk

= (k − 1)ḡk−1 + ek + gk +∇f(wk)

= (k − 1)ḡk−1 + ek + 1
n

n∑
τ=1

∇f (τ)
iτ
k

(xk)

= s̃k−1 + 1
n

n∑
τ=1

∇f (τ)
iτ
k

(xk).

For simplicity, we denote g̃k = 1
n

∑n
τ=1∇f

(τ)
iτ
k

(xk). Then

s̃k = s̃k−1 + g̃k, (4)

and Ek[g̃k] = ∇f(xk). Since s̃0 = s0 = 0, equality (4) shows that s̃k is the summation of the averaging stochastic
gradient from iteration 1 to k. From s̃k, we can define an auxiliary variable x̃k+1 as follows:

x̃k+1 = arg minx

{〈
s̃k

k
, x

〉
+ ψ(x) +

βk
k
h(x)

}
,

for k ≥ 1, and x̃1 = x1.
The above recursive relationship is again analogous to a similar equation for the standard RDA without compression.

This means that the iterate of x̃ and s̃ from Algorithm 2 behave similarly as those of the standard RDA. Therefore we can
adapt the standard RDA convergence analysis to analyze Algorithm 2.

Next, we will present a convergence analysis of the proposed error compensated RDA method. We need the following
assumptions in our theoretical analysis.

Assumption A.1 f
(τ)
i is L-smooth. h is 1-strongly convex and h(x1) = ψ(x1) = 0.

Assumption A.2 In Algorithm 2, ‖∇f (τ)
iτ
k

(xk)‖2 ≤ G2, ‖∇f (τ)(wk)‖2 ≤ G2, and ‖∂h(xk)‖2 ≤ H2 for k ≥ 1.

h(x∗) ≤ D2.

The convergence of Algorithm 2 is given by the following theorem. It shows that the leading term of O(1/
√
δk) can

be reduced to O(1/
√√

nδk) with n nodes for nδ ≤ 1 and p > 0. It is not surprising that we only get
√
n speed up with

n nodes, since from the convergence analysis of RDA in [31], increasing the minibatch size would not imply linear speed
up of the upper bound of the averaging stochastic gradients.

Theorem 3 Assume the compressor Q in Algorithm 2 is a contraction compressor and Assumptions A.1, A.2 hold. Let
x̄k := 1

k

∑k
j=1 x

j .

(i) If p = 0, then for fixed k ≥ O(1/δ), by choosing βj = 4
√

k
δ

√
G2+L(P (w1)−P (x∗))+δσ2/4

D
for j ≥ 1, we have

E[P (x̄k)− P (x∗)] = O
(

D√
δk

√
G2 + L(P (w1)− P (x∗)) + δσ2 +

(
DG

δ
√
δk

+H2 + G2

δ2

)
ln k
k

)
.

If p > 0, then for fixed k ≥ O(1/δ
5
2 ), by choosing βj = 4

√
k

δ1/4

√
σ2+24G2

D
for j ≥ 1, we have

E[P (x̄k)− P (x∗)] = O

(
D
√
σ2+G2

δ1/4
√
k

+ LD(P (w1)−P (x∗))

k
√
kδ5/4p

√
σ2+G2

+
(

DG√
kδ7/4

+H2 + G2

δ2

)
ln k
k

)
.

(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0, then for fixed k ≥ O(1/δ), by choosing βj = 4
√

k
δ

√
G2+(2+9/n)L(P (w1)−P (x∗))+3δσ2/n

D

for j ≥ 1, we have

E[P (x̄k)− P (x∗)] = O
(

D√
δk

√
G2 + L(P (w1)− P (x∗)) + δσ2/n+

(
DG

δ
√
δk

+H2 + G2

δ2

)
ln k
k

)
.

If p > 0 and nδ ≤ 1, then for fixed k ≥ O(n
3
2 /δ

5
2 ), by choosing βj = 4

√
k

(nδ)1/4

√
6σ2+12G2

D
for j ≥ 1, we have

E[P (x̄k)− P (x∗)] = O

(
D
√
σ2+G2

(nδ)1/4
√
k

+
n3/4LD(P (w1)−P (x∗))
k
√
kδ5/4p

√
σ2+G2

+
(
n1/4DG√
kδ7/4

+H2 + G2

δ2

)
ln k
k

)
.

11
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To interpret the leading terms easily, we show the direct consequences of the above theorem as follows.

Corollary 4 Under the premise of Theorem 3. Choose the same stepsize as Theorem 3 in each case. (i) If p = 0 and
k ≥ O( 1

δ3
(ln 1

δ
)2), we have

E[P (x̄k)− P (x∗)] = O
(

1√
δk

)
.

If p > 0 and k ≥ O( 1
δp

+ 1
δ3.5

(ln 1
δ
)2), we have

E[P (x̄k)− P (x∗)] = O

(
1√√
δk

)
.

(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0 and k ≥ O( 1
δ3

(ln 1
δ
)2), we have

E[P (x̄k)− P (x∗)] = O
(

1√
δk

)
.

If p > 0, nδ ≤ 1, and k ≥ O( n
δp

+ 1
δ3.5

(ln 1
δ
)2√n(lnn)2), then

E[P (x̄k)− P (x∗)] = O

(
1√√
nδk

)
.

The above corollary shows that for both cases: p = 0 or p > 0, the dependence of the convergence rate on the
contraction compressor parameter is better than for error compensated proximal SGD. However, to let the leading terms be
dominant, the dependence of δ in the lower bound of k is worse than for error compensated proximal SGD.

Appendix B. Communication Cost
In error compensated proximal SGD and error compensated RDA, when wk is updated, the uncompressed vector need to
be transmitted. We denote ∆1 as the communication cost of the uncompressed vector x ∈ Rd. Define the compress ratio
r(Q) for the contraction compressor Q as

r(Q) := sup
x∈Rd

{
E
[

communication cost of Q(x)
∆1

]}
.

Denote the expected communication cost for k iterations as Tk. Then if we do not count the communication cost of
∇f (τ)(wk), then Tk is bounded by

Tk ≤ (∆1r(Q) + 1)k, (5)

where 1 bit is needed to communicate ukτ . When p > 0, the expected communication cost at each iteration is bounded by
∆1r(Q) + 1 + p∆1, which indicates

Tk ≤ ∆1 + (∆1r(Q) + 1 + p∆1)k ≤ (∆1r(Q) + 1)

(
1 +

p+
1
k

r(Q)

)
k. (6)

Hence, when p ≤ O(r(Q)) and k ≥ O( 1
r(Q)

), the expected extra communication cost caused by sending the

uncompressed∇f (τ)(wk) can be controlled. Morevoer, since p is not in the dominant term in the convergence rate, the
asymptotic convergence rate will not be affected. Thereofore, for effieiently small ε, from Corollary 2 and Corollary
4, we can get E[P (x̄k) − P (x∗)] ≤ ε for error compensated proximal SGD if Tk = O((∆1r(Q) + 1) 1

δε2
), and

E[P (x̄k) − P (x∗)] ≤ ε for error compensated RDA if Tk = O((∆1r(Q) + 1) 1√
δε2

). For proximal SGD, to obtain

an ε-optimal solution, Tk = O
(
∆1

1
ε2

)
. Hence, for ∆1r(Q) ≥ O(1), if r(Q)

δ
< 1 ( r(Q)√

δ
< 1), then Tk of the error

compensated proximal SGD (RDA) is less than that of proximal SGD. For TopK compressor, r(Q) = K(64+dlog de)
64d

, and
in practice δ can be much larger than K

d
, sometimes even in order O(1).
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Table 1: Dataset statistics

DATASET SPARSE d mn λ1 λ2
RCV1 X 47,236 20,242 10−5 10−4

GISETTE 5,000 6,000 10−2 10−2

Appendix C. Experiments
In this section, we will conduct experiments to validate our theory. In particular, we will (i) investigate the efficiency
of our error compensated proximal SGD/RDA methods; (ii) provide a comparison to demonstrate superior convergence
properties against a quantization-based method; (3) demonstrate the impact on the parameter p.
Dataset: Our experiment involved two datasets, namely, RCV1, Gisette. Note that RCV1 is saved in a sparse format.
Dataset information is provided in Table 1. We also provide additional datasets in the Appendix.

Remark: Conventional QSGD [2] does not provide convergence properties for non-smooth proximal case, so we
choose DIANA1 [10, 19] as our competitor, which support the non-smooth case theoretically. Besides, we refer to k-bit as
the quantization compressor in [2] with level s = 2k.

Table 2: Communication cost (unit: 1× 103 bytes) per iteration.

DATASET FULL K = 1 K = 10 1-BIT 2-BIT

RCV1 0.89 0.01 0.10 0.32 0.33
GISETTE 40 0.01 0.10 0.23 0.40
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Figure 2: Comparison to Quantization and RandK-DIANA

Settings: We implement our algorithm onL1-L2 regularized logistic regression2 (corresponding regularizer coefficient
λ1, λ2). All time-dependent experiments in this work were run on a machine with 2 processors (14-core): Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz. System environment includes: Ubuntu 18.04, Python 3.7.3, numpy, sklearn, and mpi4py.
Initial stepsize is tuned from {10−t, t = −1, 0, · · · , 4}. Step size decay for SGD is based on γ0/(1 + λ1γ0t+ λ2γ0t).
Similarly, β for RDA is chosen by 1 + γ0

√
t. For DIANA, we choose α = 1/(ω + 1). We compute the loss by the

weighted average of all xj as in [22] (This step is mainly to make the plot smoother, and the convergence speed of the
diagram is not much different from the real one).

C.1. Comparison to lossless gradient
First, we study the convergence behavior of our algorithm. Figure 1 suggests that TopK strategy is significantly superior
to RandK, one of the reasons is that the effective features are concentrated in a few coordinates only. In this case, the
TopK algorithm is quite efficient, so that the communication in 10 dimensions can estimate the lossless gradient. However,
as shown in Table 2, the communication cost of K = 10 is only 1/7 for RCV1 (sparse dataset) and 1/300 for Gisette
(non-sparse dataset). This makes the contraction operator very promising in distributed scenarios.

1. We only discuss quantization and RandK compressors. Other variants of DIANA are not included in this work.
2. Although our algorithm supports general convex case, we implement L1-L2 regularization to make comparison with

DIANA. We also have experiments with L1 regularization in the Appendix.
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Figure 3: Distributed Error Compensated Proximal SGD (EC-Prox: Top10) on Gisette (λ1 = λ2 =
10−2)
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Figure 4: Error Compensated Proximal SGD/RDA comparison with different p.

C.2. Comparison to quantization
Most communication-efficient distributed optimization methods construct unbiased gradient estimates for transmission.
One of the most common algorithms is quantization, which reduces the amount of transmitted information by sacrificing
transmission precision. But in practice, it is not the most efficient one. In this part, we use random dithering as the
quantization operation here (s = 21, 22). Slightly different from our algorithm, DIANA encodes the gradient of both f and
L2 regularization to keep it strongly convex. Figure 2 and Table 2 indicate that our error compensated proximal algorithm
based on the TopK operator outperforms the variant of 1-bit quantization-based method in terms of both convergence
speed and communication cost. Error compensation also works well in RandK setting.

C.3. Distributed results: linear speed up
In this subsection, we show the performance of the error compensated proximal SGD algorithm with Top10 compressor
for different number of nodes. From Figure 3, we can see the linear speed up of the error compensated proximal SGD with
respect to the number of nodes.

C.4. Impact of p
In Figure 4, we compare the behaviors under different probabilities p. It shows that although p = 0 also has a good
performance, there is a certain increase in increasing the probability p.

Appendix D. Lemmas 5, 6, and 7
Lemma 5 If γ ≤ 1

4L
, then

E‖x̃k+1 − x∗‖2 ≤ E‖x̃k − x∗‖2 + 2γE(P (x∗)− P (xk+1)) + E‖ek‖2 + E‖ek+1‖2 + 4γ2E‖g̃k −∇f(xk)‖2.

Lemma 6 If f (τ)
i is L-smooth, then we have

E‖g̃k −∇f(xk)‖2 ≤ 4L

n
E[P (xk)− P (x∗)] +

2

n
σ2. (7)
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Lemma 7 (i) If p = 0, we have

k∑
j=0

E[‖ej+1‖2] ≤ 16Lγ2

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
4γ2(k + 1)

δ

(
σ2 +

4L

δ
(P (w0)− P (x∗))

)
.

If p > 0, we have

k∑
j=0

E[‖ej+1‖2] ≤ 32Lγ2

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
16Lγ2

δ2p

(
P (w0)− P (x∗)

)
+

4

δ
σ2γ2(k + 1).

(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0, we have

k∑
j=0

E[‖ej+1‖2] ≤ 16Lγ2

δ2
(2 + 9

n
)

k∑
j=0

(
E[P (xj)− P (x∗)]

)
+ 16γ2(k+1)

δ

(
3σ2

n
+ (2+9/n)L

δ
(P (w0)− P (x∗))

)
.

If p > 0, we have

k∑
j=0

E[‖ej+1‖2] ≤ 32Lγ2(2+
9
n

)

δ2

k∑
j=0

(
E[P (xj)− P (x∗)]

)
+

16Lγ2(2+
9
n

)

δ2p

(
P (w0)− P (x∗)

)
+ 48

nδ
σ2γ2(k + 1).

Appendix E. Proofs of Lemmas 5, 6, and 7

E.1. Proof of Lemma 5
Since x̃k+1 = x̃k − γ(g̃k + ∂ψ(xk+1)), we have

〈γg̃k, x∗ − xk+1〉 = 〈x̃k − x̃k+1 − γ∂ψ(xk+1), x∗ − xk+1〉
= 〈x̃k − xk+1, x∗ − xk+1〉+ 〈xk+1 − x̃k+1, x∗ − xk+1〉 − γ〈∂ψ(xk+1), x∗ − xk+1〉

≥ 1

2

(
−‖x̃k − x∗‖2 + ‖x̃k − xk+1‖2 + ‖xk+1 − x∗‖2

)
+

1

2

(
‖x̃k+1 − x∗‖2

−‖xk+1 − x̃k+1‖2 − ‖xk+1 − x∗‖2
)

+ γ
(
ψ(xk+1)− ψ(x∗)

)
=

1

2
‖x̃k+1 − x∗‖2 − 1

2
‖x̃k − x∗‖2 +

1

2
‖x̃k − xk+1‖2 − 1

2
‖x̃k+1 − xk+1‖2

+γ
(
ψ(xk+1)− ψ(x∗)

)
.

From ‖x̃k − xk+1‖2 ≥ 1
2
‖xk+1 − xk‖2 −‖x̃k − xk‖2, and ‖xk+1 − x∗‖2 ≥ 1

2
‖x̃k+1 − x∗‖2 −‖x̃k+1 − xk+1‖2,

we arrive at

〈γg̃k, x∗ − xk+1〉 ≥ 1

2
‖x̃k+1 − x∗‖2 − 1

2
‖x̃k − x∗‖2 +

1

4
‖xk+1 − xk‖2 − 1

2
‖x̃k − xk‖2

−1

2
‖x̃k+1 − xk+1‖2 + γ(ψ(xk+1)− ψ(x∗)). (8)

Since f is convex and Ek[g̃k] = ∇f(xk), we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉
= f(xk) + Ek[〈g̃k, x∗ − xk+1 + xk+1 − xk〉]
= f(xk) + Ek[〈g̃k, x∗ − xk+1〉] + Ek[〈g̃k −∇f(xk), xk+1 − xk〉]

+Ek[〈∇f(xk), xk+1 − xk〉]

≥ Ek[f(xk+1)]− L

2
Ek[‖xk+1 − xk‖2] + Ek[〈g̃k, x∗ − xk+1〉]

+Ek[〈g̃k −∇f(xk), xk+1 − xk〉]

≥ Ek[f(xk+1)]− L

2
Ek[‖xk+1 − xk‖2] + Ek[〈g̃k, x∗ − xk+1〉]

− 1

2β
Ek[‖g̃k −∇f(xk)‖2]− β

2
Ek[xk+1 − xk‖2],
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where the second inequality comes from that f is L-smooth and the last inequality comes from Young’s inequality.
By choosing β = 1

4γ
, we can obtain

f(x∗) ≥ Ek[f(xk+1)]−
(
L

2
+

1

8γ

)
Ek‖xk+1 − xk‖2 + Ek[〈g̃k, x∗ − xk+1〉]− 2γEk‖g̃k −∇f(xk)‖2

(8)

≥ Ek[f(xk+1)] +

(
1

4γ
− L

2
− 1

8γ

)
Ek[‖xk+1 − xk‖2] +

1

2γ
Ek‖x̃k+1 − x∗‖2 − 1

2γ
‖x̃k − x∗‖2

− 1

2γ
‖x̃k − xk‖2 − 1

2γ
Ek‖x̃k+1 − xk+1‖2 + Ek[ψ(xk+1)]− ψ(x∗)− 2γEk‖g̃k −∇f(xk)‖2.

Noticing that 1
4γ
− L

2
− 1

8γ
≥ 0 if γ ≤ 1

4L
, we can get the result after rearrangement.

E.2. Proof of Lemma 6
Since fi is L-smooth, we have

‖∇fi(x)−∇fi(y)‖2 ≤ 2L(fi(x)− fi(y)− 〈∇fi(y), x− y〉),

for any x, y ∈ Rd. Moreover, Ek[∇f (τ)
iτ
k

(xk)] = ∇fτ (xk), and iτk is sampled independently for τ = 1, ..., n. Therefore,

E‖g̃k −∇f(xk)‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

∇f (τ)
iτ
k

(xk)− 1

n

n∑
τ=1

∇f (τ)(xk)

∥∥∥∥∥
2

=
1

n2

n∑
τ=1

E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2.

For E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2, we have

E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2

= E‖∇f (τ)
iτ
k

(xk)−∇f (τ)
iτ
k

(x∗) +∇f (τ)
iτ
k

(x∗)−∇f (τ)(x∗) +∇f (τ)(x∗)−∇f (τ)(xk)‖2

≤ 2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)
iτ
k

(x∗)− (∇f (τ)(xk)−∇f (τ)(x∗))‖2 + 2

n∑
τ=1

E‖∇f (τ)
iτ
k

(x∗)−∇f (τ)(x∗)‖2

≤ 2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)
iτ
k

(x∗)‖2 + 2σ2
τ

≤ 4LE[f (τ)(xk)− f (τ)(x∗)− 〈∇f (τ)(x∗), xk − x∗〉] + 2σ2
τ . (9)

Hence,

E‖g̃k −∇f(xk)‖2 ≤ 4L

n2

n∑
τ=1

E[f (τ)(xk)− f (τ)(x∗)− 〈∇f (τ)(x∗), xk − x∗〉] +
2

n2

n∑
τ=1

σ2
τ

≤ 4L

n
E[f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉] +

2

n
σ2.

Since x∗ is an optimal solution, we have −∇f(x∗) ∈ ∂ψ(x∗), which implies that

f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉 ≤ P (xk)− P (x∗). (10)

Thus,

E‖g̃k −∇f(xk)‖2 ≤ 4L

n
E[P (xk)− P (x∗)] +

2

n
σ2.
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E.3. Proof of Lemma 7
(i) First, we have

E[‖ek+1‖2]

= E

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

≤ 1

n

n∑
τ=1

E‖ek+1
τ ‖2

≤ 1

n

n∑
τ=1

(1− δ)E‖ekτ + γgkτ ‖2

=
1− δ
n

n∑
τ=1

E‖ekτ + γ(∇f (τ)(xk)−∇f (τ)(wk)) + γ(∇f (τ)
iτ
k

(xk)−∇f (τ)(xk))‖2

=
1− δ
n

n∑
τ=1

E‖ekτ + γ(∇f (τ)(xk)−∇f (τ)(wk))‖2 +
1− δ
n

n∑
τ=1

γ2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2

≤ 1

n
(1− δ)(1 + β)

n∑
τ=1

E‖ekτ‖2 +
1

n
(1− δ)(1 +

1

β
)γ2

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2

+
1

n
γ2

n∑
τ=1

E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2

≤ 1

n
(1− δ

2
)

n∑
τ=1

E‖ekτ‖2 +
2(1− δ)
nδ

γ2
n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 +
1

n
γ2

n∑
τ=1

E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2,

where we choose β = δ
2(1−δ) .

For E‖∇f(xk)−∇f(wk)‖2, we have

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 = E‖∇f (τ)(xk)−∇f (τ)(x∗) +∇f (τ)(x∗)−∇f (τ)(wk)‖2

≤ 2E‖∇f (τ)(xk)−∇f (τ)(x∗)‖2 + 2E‖∇f (τ)(wk)−∇f (τ)(x∗)‖2

≤ 4LE[f (τ)(xk)− f (τ)(x∗)− 〈∇f (τ)(x∗), xk − x∗〉]
+4LE[f (τ)(wk)− f (τ)(x∗)− 〈∇f (τ)(x∗), wk − x∗〉]. (11)

Thus, combining (9), we can obtain

E[‖ek+1‖2] ≤ 1

n

n∑
τ=1

E‖ek+1
τ ‖2

≤
(

2

δ
− 2

)
γ2
(

4LE[f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉] + 4LE[f(wk)− f(x∗)− 〈∇f(x∗), wk − x∗〉]
)

+
1

n
(1− δ

2
)

n∑
τ=1

E‖ek‖2 + 4Lγ2E[f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉] + 2γ2σ2

(10)

≤ (1− δ

2
) · 1

n

n∑
τ=1

E‖ekτ‖2 +
8Lγ2

δ

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+ 2γ2σ2 (12)

≤ 8L

δ

k∑
i=0

(1− δ

2
)k−iγ2

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+ 2σ2

k∑
i=0

(1− δ

2
)k−iγ2

≤ 8Lγ2

δ

k∑
i=0

(1− δ

2
)k−i

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+

4

δ
σ2γ2,

17
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which implies that

k∑
j=0

E[‖ej+1‖2]

≤ 8Lγ2

δ

k∑
j=0

j∑
i=0

(1− δ

2
)j−i

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+

4

δ
σ2γ2(k + 1)

≤ 8Lγ2

δ

k∑
j=0

(
E[P (xj)− P (x∗)] + E[P (wj)− P (x∗)]

) +∞∑
i=0

(1− δ

2
)i +

4

δ
σ2γ2(k + 1)

≤ 16Lγ2

δ2

k∑
j=0

(
E[P (xj)− P (x∗)] + E[P (wj)− P (x∗)]

)
+

4

δ
σ2γ2(k + 1). (13)

If p = 0, then wj = w0 for j ≥ 0. Hence,

k∑
j=0

E[‖ej+1‖2]

≤ 16Lγ2

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
4γ2(k + 1)

δ

(
σ2 +

4L

δ
(P (w0)− P (x∗))

)
.

If p > 0, then

E[P (wk+1)− P (x∗)] = pE[P (xk)− P (x∗)] + (1− p)E[P (wk)− P (x∗)],

which indicates that

k∑
j=0

E[P (wj+1)− P (x∗)] = p

k∑
j=0

E[P (xj)− P (x∗)] + (1− p)
k∑
j=0

E[P (wj)− P (x∗)].

On the other hand,

k∑
j=0

E[P (wj+1)− P (x∗)] =

k∑
j=0

E[P (wj)− P (x∗)] + E[P (wk+1)− P (x∗)]−
(
P (w0)− P (x∗)

)
≥

k∑
j=0

E[P (wj)− P (x∗)]−
(
P (w0)− P (x∗)

)
.

Thus, we arrive at

k∑
j=0

E[P (wj)− P (x∗)] ≤
k∑
j=0

E[P (xj)− P (x∗)] +
1

p

(
P (w0)− P (x∗)

)
. (14)

Combining (13) and (14), we have

k∑
j=0

E[‖ej+1‖2]

≤ 32Lγ2

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
16Lγ2

δ2p

(
P (w0)− P (x∗)

)
+

4

δ
σ2γ2(k + 1).

18
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(ii) Under Assumption 2.1, we have E[Q(x)] = δx, and

E‖ek+1‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

=
1

n2

∑
i,j

E〈ek+1
i , ek+1

j 〉

=
1

n2

n∑
τ=1

E‖ek+1
τ ‖2 +

1

n2

∑
i 6=j

E〈ek+1
i , ek+1

j 〉

≤ 1− δ
n2

n∑
τ=1

E‖ekτ + γgkτ ‖2 +
(1− δ)2

n2

∑
i 6=j

E〈eki + γgki , e
k
j + gkj 〉

=
(1− δ)2

n2
E

∥∥∥∥∥
n∑
τ=1

(ekτ + γgkτ )

∥∥∥∥∥
2

+
(1− δ)δ
n2

n∑
τ=1

E‖ekτ + γgkτ ‖2

≤ (1− δ)E‖ek + γgk‖2 +
(1− δ)δ
n2

n∑
τ=1

E‖ekτ + γgkτ ‖2.

Under Assumption 2.2, we have

E‖ek+1‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
τ=1

(
ekτ + γgkτ −Q(γgkτ + ekτ )

)∥∥∥∥∥
2

Assumption2.2

≤ (1− δ′)E‖ek + γgk‖2

≤ (1− δ)E‖ek + γgk‖2.

Overall, under Assumption 2.1 or Assumption 2.2, we have

E‖ek+1‖2 ≤ (1− δ)E‖ek + γgk‖2 +
(1− δ)δ
n2

n∑
τ=1

E‖ekτ + γgkτ ‖2.

For
∑n
τ=1 E‖e

k
τ + γgkτ ‖2, we have

n∑
τ=1

E‖ekτ + γgkτ ‖2

=

n∑
τ=1

E‖ekτ + γ(∇f (τ)(xk)−∇f (τ)(wk)) + γ(∇f (τ)
iτ
k

(xk)−∇f (τ)(xk))‖2

=

n∑
τ=1

E‖ekτ + γ(∇f (τ)(xk)−∇f (τ)(wk))‖2 +

n∑
τ=1

γ2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2

≤ (1 + δ)
n∑
τ=1

E‖ekτ‖2 + (1 +
1

δ
)γ2

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 +

n∑
τ=1

γ2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)(xk)‖2

≤ (1 + δ)

n∑
τ=1

E‖ekτ‖2 + 4nL(1 +
1

δ
)γ2
(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+4nLγ2E[P (xk)− P (x∗)] + 2nγ2σ2,

where the last inequality comes from (9), (10), and (11).
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For (1− δ)E‖ek + γgk‖2, we have

(1− δ)E‖ek + γgk‖2

= (1− δ)E‖ek + γg̃k − γ∇f(wk)‖2

= (1− δ)E‖ek + γ∇f(xk)− γ∇f(wk) + γg̃k − γ∇f(xk)‖2

= (1− δ)E‖ek + γ∇f(xk)− γ∇f(wk)‖2 + γ2E‖g̃k −∇f(xk)‖2

≤ (1− δ)(1 +
δ

2(1− δ) )E‖ek‖2 + (1− δ)(1 +
2(1− δ)

δ
)γ2E‖∇f(xk)−∇f(wk)‖2 + γ2E‖g̃k −∇f(xk)‖2

(7)

≤ (1− δ

2
)E‖ek‖2 + (

2

δ
− 2)γ2E‖∇f(xk)−∇f(wk)‖2 +

4L

n
γ2E[P (xk)− P (x∗)] +

2

n
γ2σ2

(10)

≤ (1− δ

2
)E‖ek‖2 + (

2

δ
− 2)4γ2L

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+

4L

n
γ2E[P (xk)− P (x∗)] +

2

n
γ2σ2

≤ (1− δ

2
)E‖ek‖2 +

8Lγ2

δ

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+

2

n
γ2σ2.

Thus, we arrive at

E‖ek+1‖2 ≤ (1− δ

2
)E‖ek‖2 +

8Lγ2

δ

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+

2

n
γ2σ2

+
δ

n2

n∑
τ=1

E‖ekτ‖2 +
4L

n
(1− δ)2γ2

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+

4L

n
(1− δ)δγ2E[P (xk)− P (x∗)] +

2(1− δ)δ
n

γ2σ2

≤ (1− δ

2
)E‖ek‖2 +

δ

n2

n∑
τ=1

E‖ekτ‖2 +
4

n
γ2σ2

+

(
8Lγ2

δ
+

4Lγ2

n

)(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
.

From (12), we have

1

n

n∑
τ=1

E‖ek+1
τ ‖2 ≤ (1− δ

2
) · 1

n

n∑
τ=1

E‖ekτ‖2 +
8Lγ2

δ

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+ 2γ2σ2.

Thereofore, we have

E‖ek+1‖2 +
4

n2

n∑
τ=1

E‖ek+1
τ ‖2

≤ (1− δ

2
)E‖ek‖2 +

(
δ

n2
+ (1− δ

2
)

4

n2

) n∑
τ=1

E‖ekτ‖2 +
12

n
γ2σ2

+
Lγ2

δ
(8 +

36

n
)
(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
≤ (1− δ

4
)

(
E‖ek‖2 +

4

n2

n∑
τ=1

E‖ekτ‖2
)

+
Lγ2

δ
(8 +

36

n
)
(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+

12

n
γ2σ2

≤ Lγ2

δ
(8 +

36

n
)

k∑
i=0

(1− δ

4
)k−i

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+

12σ2

n

k∑
i=0

(1− δ

4
)k−iγ2

≤ Lγ2

δ
(8 +

36

n
)

k∑
i=0

(1− δ

4
)k−i

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+

48

nδ
σ2γ2,
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which implies that

k∑
j=0

E‖ej+1‖2

≤ Lγ2

δ
(8 +

36

n
)

k∑
j=0

j∑
i=0

(1− δ

4
)j−i

(
E[P (xi)− P (x∗)] + E[P (wi)− P (x∗)]

)
+

48

nδ
σ2γ2(k + 1)

≤ Lγ2

δ
(8 +

36

n
)

k∑
j=0

(
E[P (xj)− P (x∗)] + E[P (wj)− P (x∗)]

) +∞∑
i=0

(1− δ

4
)i +

48

nδ
σ2γ2(k + 1)

≤ 4Lγ2

δ2
(8 +

36

n
)

k∑
j=0

(
E[P (xj)− P (x∗)] + E[P (wj)− P (x∗)]

)
+

48

nδ
σ2γ2(k + 1).

If p = 0, then wj = w0 for j ≥ 0, which implies that

k∑
j=0

E[‖ej+1‖2]

≤ 16Lγ2

δ2
(2 +

9

n
)

k∑
j=0

(
E[P (xj)− P (x∗)]

)
+

16γ2(k + 1)

δ

(
3σ2

n
+ (2 +

9

n
)
L

δ
(P (w0)− P (x∗))

)
If p > 0, then combining (14), we can obtain

k∑
j=0

E[‖ej+1‖2]

≤ 32Lγ2

δ2
(2 +

9

n
)

k∑
j=0

(
E[P (xj)− P (x∗)]

)
+

16Lγ2

δ2p
(2 +

9

n
)
(
P (w0)− P (x∗)

)
+

48

nδ
σ2γ2(k + 1).

Appendix F. Proof of Theorem 1
From the convexity of P , we have

E[P (x̄k)− P (x∗)] ≤ 1

k

k∑
j=1

E[P (xj)− P (x∗)],

for x̄k = 1
k

∑k
j=1 x

j . Hence, we only need to estimate 1
k

∑k
j=1 E[P (xj)− P (x∗)].

(i) From Lemma 5, we have

2

k∑
j=0

E[P (xj+1)− P (x∗)] ≤
k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ

)
+ 2

k∑
j=0

E‖ej+1‖2

γ

+4γ
k∑
j=0

E‖∇fij (x
j)−∇f(xj)‖2

(7)

≤
k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ

)
+ 2

k∑
j=0

E‖ej+1‖2

γ

+
16Lγ

n

k∑
j=0

E[P (xj)− P (x∗)] +
8σ2

n
γ(k + 1). (15)
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If p = 0, then from Lemma 7, we can obtain

2

k∑
j=0

E‖ej+1‖2

γ
+

16Lγ

n

k∑
j=0

E[P (xj)− P (x∗)] +
8σ2

n
γ(k + 1)

≤ (
32

δ2
+

16

n
)Lγ

k∑
j=0

E[P (xj)− P (x∗)] +
8γ(k + 1)

δ

(
σ2 +

σ2δ

n
+

4L

δ
(P (w0)− P (x∗))

)

≤ 48Lγ

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
16γ(k + 1)

δ

(
σ2 +

2L

δ
(P (w0)− P (x∗))

)

≤ 48Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
16γ(k + 1)

δ

(
σ2 +

(2 + 3/(k + 1))L

δ
(P (w0)− P (x∗))

)

≤ 48Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
16γ(k + 1)

δ

(
σ2 +

5L

δ
(P (w0)− P (x∗))

)
.

Thus, from (15), if γ ≤ δ2

48L
, we have

1

k + 1

k∑
j=0

E[P (xj+1)− P (x∗)]

≤ 1

k + 1

k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ
+

16γ

δ

(
σ2 +

5L

δ
(P (w0)− P (x∗))

))
Therefore, from Lemma 13 in [22], there exists a constant stepsize γ ≤ δ2

48L
such that

1

k + 1

k+1∑
j=1

E[P (xj)− P (x∗)] ≤ 48L‖x0 − x∗‖2

δ2(k + 1)
+

2‖x0 − x∗‖
√

16σ2/δ + 80L(P (w0)− P (x∗))/δ2

√
k + 1

.

If p > 0, then from Lemma 7, we have

2

k∑
j=0

E‖ej+1‖2

γ
+

16Lγ

n

k∑
j=0

E[P (xj)− P (x∗)] +
8σ2

n
γ(k + 1)

≤ (
64

δ2
+

16

n
)Lγ

k∑
j=0

E[P (xj)− P (x∗)] +
32Lγ

δ2p
(P (w0)− P (x∗)) + (

1

n
+

1

δ
)8σ2γ(k + 1)

≤ 80Lγ

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
32Lγ

δ2p
(P (w0)− P (x∗)) +

16

δ
σ2γ(k + 1)

≤ 80Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
112Lγ

δ2p
(P (w0)− P (x∗)) +

16

δ
σ2γ(k + 1).

Hence, from (15), if γ ≤ δ2

80L
, we have

1

k + 1

k∑
j=0

E[P (xj+1)− P (x∗)]

≤ 1

k + 1

k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ
+

16σ2γ

δ

)
+

2(P (w0)− P (x∗))/p

k + 1
.

Therefore, from Lemma 13 in [22], there exists a constant stepsize γ ≤ δ2

80L
such that

1

k + 1

k+1∑
j=1

E[P (xj)− P (x∗)] ≤ 1

k + 1

(
80L‖x0 − x∗‖2

δ2
+

2(P (w0)− P (x∗))

p

)
+

8σ‖x0 − x∗‖√
δ(k + 1)

.
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(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0, then from Lemma 7 (ii), we can obtain

2

k∑
j=0

E‖ej+1‖2

γ
+

16Lγ

n

k∑
j=0

E[P (xj)− P (x∗)] +
8σ2

n
γ(k + 1)

≤ (
64

δ2
+

288

δ2n
+

16

n
)Lγ

k∑
j=0

E[P (xj)− P (x∗)] +
8γ(k + 1)

δ

(
12σ2

n
+
σ2δ

n
+
L

δ
(8 +

36

n
)(P (w0)− P (x∗))

)

≤ (64 + 304/n)Lγ

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
8γ(k + 1)

δ

(
13σ2

n
+
L

δ
(8 +

36

n
)(P (w0)− P (x∗))

)

≤ (64 + 304/n)Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
8γ(k + 1)

δ

(
13σ2

n
+
L

δ
(8 +

36

n
+

8 + 38/n

k + 1
)(P (w0)− P (x∗))

)

≤ (64 + 304/n)Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
8γ(k + 1)

δ

(
13σ2

n
+

4L

δ
(4 +

19

n
)(P (w0)− P (x∗))

)
.

Thus, from (15), if γ ≤ δ2

(64+304/n)L
, we have

1

k + 1

k∑
j=0

E[P (xj+1)− P (x∗)]

≤ 1

k + 1

k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ
+

8γ

δ

(
13σ2

n
+

4L

δ
(4 +

19

n
)(P (w0)− P (x∗))

))
Therefore, from Lemma 13 in [22], there exists a constant stepsize γ ≤ δ2

(64+304/n)L
such that

1

k + 1

k+1∑
j=1

E[P (xj)− P (x∗)] ≤ O

(
L‖x0 − x∗‖2

δ2(k + 1)
+
‖x0 − x∗‖

√
σ2/(nδ) + L(P (w0)− P (x∗))/δ2

√
k + 1

)
.

If p > 0, then from Lemma 7 (ii), we have

2

k∑
j=0

E‖ej+1‖2

γ
+

16Lγ

n

k∑
j=0

E[P (xj)− P (x∗)] +
8σ2

n
γ(k + 1)

≤ (
128

δ2
+

576

δ2n
+

16

n
)Lγ

k∑
j=0

E[P (xj)− P (x∗)] +
Lγ

δ2p
(64 +

288

n
)(P (w0)− P (x∗)) + (

1

n
+

12

nδ
)8σ2γ(k + 1)

≤ (128 + 592/n)Lγ

δ2

k∑
j=0

E[P (xj)− P (x∗)] +
Lγ

δ2p
(64 +

288

n
)(P (w0)− P (x∗)) +

13

nδ
σ2γ(k + 1)

≤ (128 + 592/n)Lγ

δ2

k∑
j=0

E[P (xj+1)− P (x∗)] +
Lγ

δ2p
(192 +

880

n
)(P (w0)− P (x∗)) +

104

nδ
σ2γ(k + 1).

Hence, from (15), if γ ≤ δ2

(128+592/n)L
, we have

1

k + 1

k∑
j=0

E[P (xj+1)− P (x∗)]

≤ 1

k + 1

k∑
j=0

(
E‖x̃j − x∗‖2

γ
− E‖x̃j+1 − x∗‖2

γ
+

104σ2γ

nδ

)
+

2(P (w0)− P (x∗))/p

k + 1
.

Therefore, from Lemma 13 in [22], there exists a constant stepsize γ ≤ δ2

(128+592/n)L
such that

1

k + 1

k+1∑
j=1

E[P (xj)− P (x∗)] ≤ O

(
1

k + 1

(
L‖x0 − x∗‖2

δ2
+

(P (w0)− P (x∗))

p

)
+
σ‖x0 − x∗‖√
nδ(k + 1)

)
.
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Appendix G. Lemmas 8, 9, and 10
Noticing that the iteration in the error compensated RDA starts from k = 1, let β0 = β1 and x0 = x1. We also define two
conjugate-type functions as in [31] for k ≥ 0 :

Uk(s) = max
x∈FD

{〈s, x− x0〉 − kψ(x)},

Vk(s) = max
x
{〈s, x− x0〉 − kψ(x)− βkh(x)},

where FD = {x | h(x) ≤ D2}.

Lemma 8 For each k ≥ 1, we have

Vk(−s̃k) + ψ(xk+1) ≤ Vk−1(−s̃k) + 〈ḡk +
βk
k
∂h(xk+1), x̃k+1 − xk+1〉. (16)

Lemma 9 For j ≥ 1 and any α > 0, we have

〈g̃j , xj − x0〉+ ψ(xj+1)

≤ Vj−1(−s̃j−1)− Vj(−s̃j) +
α‖g̃j‖2

2βj−1
+
‖g̃j‖2

2βj−1
+

1

2αβj−1
‖ej‖2

+
α‖s̃j/j‖2

2βj
+

1

2αβj
‖ej+1‖2 +

‖ej+1‖2

jβj
+

1

2j
‖∂h(xj+1)‖2 +

1

2j
‖ej+1‖2. (17)

Lemma 10 (i)For k ≥ 1, we have

E‖ek‖2 ≤ 16

δ2
G2. (18)

(ii) If p = 0, we have

k∑
j=1

E[‖ej+1‖2] ≤ 16L

δ2

k∑
j=1

E[P (xj)− P (x∗)] +
4k

δ

(
σ2 +

4L

δ
(P (w1)− P (x∗))

)
.

If p > 0, we have

k∑
j=1

E[‖ej+1‖2] ≤ 32L

δ2

k∑
j=1

E[P (xj)− P (x∗)] +
16L

δ2p

(
P (w1)− P (x∗)

)
+

4

δ
σ2γ2k.

(iii) Under Assumption 2.1 or Assumption 2.2. If p = 0, we have

k∑
j=1

E[‖ej+1‖2] ≤ 16L
δ2

(2 + 9
n

)

k∑
j=1

(
E[P (xj)− P (x∗)]

)
+ 16k

δ

(
3σ2

n
+ (2+9/n)L

δ
(P (w1)− P (x∗))

)
.

If p > 0, we have

k∑
j=1

E[‖ej+1‖2] ≤ 32L(2+
9
n

)

δ2

k∑
j=1

(
E[P (xj)− P (x∗)]

)
+

16L(2+
9
n

)

δ2p

(
P (w1)− P (x∗)

)
+ 48

nδ
σ2k.

Appendix H. Proofs of Lemmas 8, 9, and 10

H.1. Proof of Lemma 8
From Lemma 11 in [31], we have

Vk(−s̃k) + ψ(x̃k+1) ≤ Vk−1(−s̃k) + (βk−1 − βk)h(x̃k+1).

Since β0 = β1, we know {βk}k≥0 is a nondecreasing sequence. Hence, by assumption h(x) ≥ 0, we have

Vk(−s̃k) + ψ(x̃k+1) ≤ Vk−1(−s̃k). (19)
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From the convexity of ψ, we have

ψ(x̃k+1) ≥ ψ(xk+1) + 〈∂ψ(xk+1), x̃k+1 − xk+1〉. (20)

From the definition of xk+1, we have

∂ψ(xk+1) = −ḡk − βk
k
∂h(xk+1). (21)

Combining (20) and (21), we can obtain

ψ(xk+1) ≤ ψ(x̃k+1) + 〈ḡk +
βk
k
∂h(xk+1), x̃k+1 − xk+1〉. (22)

From (19) and (22), we can get the result.

H.2. Proof of Lemma 9
From (16) in Lemma 8, for any j ≥ 1, we can obtain

Vj(−s̃j) + ψ(xj+1)

≤ Vj−1(−s̃j) + 〈ḡj +
βj
j
∂h(xj+1), x̃j+1 − xj+1〉

≤ Vj−1(−s̃j−1) + 〈−g̃j ,∇Vj−1(−s̃j−1) +
‖g̃j‖2

2βj−1

+〈ḡj +
βj
j
∂h(xj+1), x̃j+1 − xj+1〉

= Vj−1(−s̃j−1) + 〈−g̃j , xj − x0〉 − 〈g̃j ,∇Vj−1(−s̃j−1)−∇Vj−1(−sj−1)〉+
‖g̃j‖2

2βj−1

+〈ḡj +
βj
j
∂h(xj+1), x̃j+1 − xj+1〉

= Vj−1(−s̃j−1) + 〈−g̃j , xj − x0〉 − 〈g̃j , x̃j − xj〉+
‖g̃j‖2

2βj−1

+〈ḡj +
βj
j
∂h(xj+1), x̃j+1 − xj+1〉, (23)

where the second inequality comes from (48) in [31] and (4), the last equality comes from (47) in [31]. From Lemma 10 in
[31], we have

‖x̃k − xk‖2 = ‖∇Vk−1(−s̃k−1)−∇Vk−1(−sk−1)‖2 ≤ 1

β2
k−1

‖ek‖2,

for k ≥ 2. Moreover, x̃1 = x1 and e1 = 0. Hence

‖x̃k − xk‖2 ≤ 1

β2
k−1

‖ek‖2, (24)

for k ≥ 1. Then we can get

〈−g̃j , x̃j − xj〉+ 〈ḡj +
βj
j
∂h(xj+1), x̃j+1 − xj+1〉

≤ α‖g̃j‖2

2βj−1
+
βj−1

2α
‖x̃j − xj‖2 + 〈 s̃

j − ej+1

j
+
βj
j
∂h(xj+1), x̃j+1 − xj+1〉

≤ α‖g̃j‖2

2βj−1
+
βj−1

2α
‖x̃j − xj‖2 +

α‖s̃j/j‖2

2βj
+
βj
2α
‖x̃j+1 − xj+1‖2

+
‖ej+1‖2

2jβj
+
βj
2j
‖x̃j+1 − xj+1‖2 +

1

2j
‖∂h(xj+1)‖2 +

β2
j

2j
‖x̃j+1 − xj+1‖2

(24)

≤ α‖g̃j‖2

2βj−1
+

1

2αβj−1
‖ej‖2 +

α‖s̃j/j‖2

2βj
+

1

2αβj
‖ej+1‖2

+
‖ej+1‖2

jβj
+

1

2j
‖∂h(xj+1)‖2 +

1

2j
‖ej+1‖2.
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Combining the above inequality and (23), we can obtain

〈g̃j , xj − x0〉+ ψ(xj+1)

≤ Vj−1(−s̃j−1)− Vj(−s̃j) +
α‖g̃j‖2

2βj−1
+
‖g̃j‖2

2βj−1
+

1

2αβj−1
‖ej‖2

+
α‖s̃j/j‖2

2βj
+

1

2αβj
‖ej+1‖2 +

‖ej+1‖2

jβj
+

1

2j
‖∂h(xj+1)‖2 +

1

2j
‖ej+1‖2.

H.3. Proof of Lemma 10
Since e1 = 0, (18) holds for k = 1. For k ≥ 2, we have

E‖ek‖2 ≤ 1

n

n∑
τ=1

E‖ekτ‖2

=
1

n

n∑
τ=1

E‖ek−1
τ + gk−1

τ − yk−1
τ ‖2

≤ 1− δ
n

n∑
τ=1

E‖ek−1
τ + gk−1

τ ‖2

≤ (1− δ)
n

n∑
τ=1

(1 + β)E‖ek−1
τ ‖2 +

(1− δ)
n

(1 +
1

β
)

n∑
τ=1

E‖gk−1
τ ‖2

≤ (1− δ

2
)

1

n

n∑
τ=1

E‖ek−1
τ ‖2 +

2

δ
· 1

n

n∑
τ=1

E‖gk−1
τ ‖2,

where we choose β = δ
2(1−δ) . For E‖gk−1

τ ‖2, we have

E‖gk−1
τ ‖2 = E‖∇f (τ)

iτ
k−1

(xk−1)−∇f (τ)(wk−1)‖2 ≤ 4G2.

Therefore,

E‖ek‖2 ≤ 1

n

n∑
τ=1

E‖ekτ‖2

≤ (1− δ

2
)

1

n

n∑
τ=1

E‖ek−1
τ ‖2 +

8

δ
G2

≤ 8

δ

k−1∑
j=0

(1− δ

2
)k−1−jG2

≤ 16

δ2
G2.

For the rest results, the proof is the same as that of Lemma 7.

Appendix I. Proof of Theorem 3
From the convexity of P , we have

E[P (x̄k)− P (x∗)] ≤ 1

k

k∑
j=1

E[P (xj)− P (x∗)],

for x̄k = 1
k

∑k
j=1 x

j . Hence, we only need to estimate 1
k

∑k
j=1 E[P (xj)− P (x∗)].

First, we define the regret Rk(x) similar to that in [31] :

Rk(x) =

k∑
j=1

n∑
τ=1

1

n

(
f

(τ)
iτj

(xj) + ψ(xj)
)
−

k∑
j=1

n∑
τ=1

1

n

(
f

(τ)
iτj

(x) + ψ(x)
)
.
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From (4) and s̃0 = 0, we have s̃k =
∑k
j=1 g̃

j =
∑k
j=1

∑n
τ=1

1
n
∇f (τ)

iτj
(xj). Then similar to (53), (54) and (55) in

[31], we have

Rk(x) ≤
k∑
j=1

(
〈g̃j , xj − x0〉+ ψ(xj)

)
+ Vk(−s̃k) + βkD

2. (25)

Summing the inequality (17) for j = 1, ..., k, and noting V0(−s̃0) = V0(0) = 0, we arrive at

k∑
j=1

(
〈g̃j , xj − x0〉+ ψ(xj+1)

)
+ Vk(−s̃k)

≤
k∑
j=1

(
α‖g̃j‖2

2βj−1
+
‖g̃j‖2

2βj−1
+
α‖s̃j/j‖2

2βj
+

1

2αβj−1
‖ej‖2 +

1

2αβj
‖ej+1‖2

)

+

k∑
j=1

(
‖ej+1‖2

jβj
+

1

2j
‖∂h(xj+1)‖2 +

1

2j
‖ej+1‖2

)
(18)

≤
k∑
j=1

(
(α+ 1)G2

2βj−1
+
αG2

2βj
+

1

2αβj−1
‖ej‖2 +

1

2αβj
‖ej+1‖2

)

+

k∑
j=1

(
16G2

δ2jβj
+

1

2j
H2 +

8

δ2j
G2

)
.

By adding the nonpositive quantity ψ(x1)− ψ(xk+1) to the left-hand side of the above inequality and combining
(25), we can obtain

Rk(x) ≤ βkD
2 +

k∑
j=1

(
αG2

2βj−1
+

G2

2βj−1
+
αG2

2βj
+

1

2αβj−1
‖ej‖2 +

1

2αβj
‖ej+1‖2

)

+

k∑
j=1

(
16G2

δ2jβj
+

1

2j
H2 +

8

δ2j
G2

)
.

By choosing x = x∗, βj = β, and taking expectation in the above inequality, we can get

k∑
j=1

E[P (xj)− P (x∗)]

≤ βD2 +

k∑
j=1

(
αG2

2β
+
G2

2β
+
αG2

2β
+

1

2αβ
E‖ej‖2 +

1

2αβ
E‖ej+1‖2

)
+

k∑
j=1

(
16G2

δ2jβ
+

1

2j
H2 +

8

δ2j
G2

)

≤ βD2 +
(2α+ 1)k

2β
G2 +

1

αβ

k∑
j=1

E‖ej+1‖2 +

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k. (26)

(i) If p = 0, from Lemma 10 and (26), and letting α = 4
δ

, we have(
1− 4L

βδ

) k∑
j=1

E[P (xj)− P (x∗)]

≤ βD2 +
(2α+ 1)k

2β
G2 +

4k

αβδ

(
σ2 +

4L

δ
(P (w1)− P (x∗))

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k

≤ βD2 +
5k

βδ

(
G2 + L(P (w1)− P (x∗)) + δσ2/4

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k.

Let β = 4
√

k
δ

√
G2+L(P (w1)−P (x∗))+δσ2/4

D
. Then we have 4L

βδ
≤ 1

2
, if

k ≥ 4L2D2

δ(G2 + L(P (w1)− P (x∗)) + δσ2/4)
.
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Thus

1

k

k∑
j=1

E[P (xj)− P (x∗)] ≤ 12D√
δk

√
G2 + L(P (w1)− P (x∗)) + δσ2/4 +

(
8DG

δ
√
δk

+H2 +
16G2

δ2

)
ln k

k
.

If p > 0, from Lemma 10 and (26), and letting α = 8√
δ

, we have(
1− 4L

βδ
3
2

)
k∑
j=1

E[P (xj)− P (x∗)]

≤ βD2 +
(2α+ 1)k

2β
G2 +

16L

αβδ2p

(
P (w1)− P (x∗)

)
+

4σ2k

αβδ
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k

≤ βD2 +
k

2β
√
δ

(
σ2 + 24G2)+

2L

βδ
3
2 p

(
P (w1)− P (x∗)

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k.

Let β = 4
√
k

δ
1
4

√
σ2+24G2

D
. Then we have 4L

βδ
3
2
≤ 1

2
, if

k ≥ 4L2D2

δ
5
2 (σ2 + 24G2)

.

Thus

1

k

k∑
j=1

E[P (xj)− P (x∗)] ≤ 10D

δ
1
4

√
k

√
σ2 + 24G2 +

LD

k
√
kδ

5
4 p
√
σ2 + 16G2

(
P (w1)− P (x∗)

)
+

(
2DG
√
kδ

7
4

+H2 +
16G2

δ2

)
ln k

k
.

(ii) Under Assumption 2.1 or Assumption 2.2. If p = 0, from Lemma 10 and (26), and letting α = 4
δ

, we have(
1− 4L(2 + 9/n)

βδ

) k∑
j=1

E[P (xj)− P (x∗)]

≤ βD2 +
(2α+ 1)k

2β
G2 +

16k

αβδ

(
3σ2

n
+

(2 + 9/n)L

δ
(P (w1)− P (x∗))

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k

≤ βD2 +
5k

βδ

(
G2 + (2 +

9

n
)L(P (w1)− P (x∗)) + 3δσ2/n

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k.

Let β = 4
√

k
δ

√
G2+(2+9/n)L(P (w1)−P (x∗))+3δσ2/n

D
. Then we have 4L(2+9/n)

βδ
≤ 1

2
, if

k ≥ 4(2 + 9/n)2L2D2

δ(G2 + (2 + 9/n)L(P (w1)− P (x∗)) + 3δσ2/n)
.

Thus

1

k

k∑
j=1

E[P (xj)− P (x∗)] ≤ O
(

D√
δk

√
G2 + L(P (w1)− P (x∗)) + δσ2/n+

(
DG

δ
√
δk

+H2 +
G2

δ2

)
ln k

k

)
.

If p > 0, from Lemma 10 and (26), and letting α = 8√
nδ

, we have(
1− 4

√
nL(2 + 9/n)

βδ
3
2

)
k∑
j=1

E[P (xj)− P (x∗)]

≤ βD2 +
(2α+ 1)k

2β
G2 +

16L(2 + 9/n)

αβδ2p

(
P (w1)− P (x∗)

)
+

48σ2k

nαβδ
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k

≤ βD2 +
k

β
√
nδ

(
6σ2 + 12G2)+

2
√
nL(2 + 9/n)

βδ
3
2 p

(
P (w1)− P (x∗)

)
+

(
16G2

βδ2
+
H2

2
+

8G2

δ2

)
ln k,
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where in the last inequality, we use nδ ≤ 1. Let β = 4
√
k

(nδ)
1
4

√
6σ2+12G2

D
. Then we have 4

√
nL(2+9/n)

βδ
3
2

≤ 1
2

, if

k ≥ 4L2D2n
3
2 (2 + 9/n)2

δ
5
2 (6σ2 + 12G2)

.

Thus

1

k
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Appendix J. Other Datasets in Appendix
In the appendix, we add some experiments to supplement the effectiveness of our algorithm. Due to the consideration of
computing power and dataset characteristics, we will add additional datasets here and have attached information about
several datasets that will be used in the appendix. It should be noted that syn-128 and syn-256 are linear regression
problems we obtain from the normal distribution sampling, so each dimension is equivalent.

Table 3: Dataset statistics

DATASET SPARSE FORMAT TASK d n DENSITY

A5A X LOGISTIC REGRESSION 122 6,414 13%
MUSHROOMS LOGISTIC REGRESSION 119 8,124 19%

SYN-k LASSO REGRESSION k 10,000 100%

Appendix K. General Convex Case Experiment (L1 regularization)
Due to the need to compare with DIANA in the main part, we adopted the penalty of L1-L2. In fact, our algorithm supports
all convex problems, so we did a logistic regression experiment with L1 penalty here. The performance of the EC-Prox
algorithm is not much different from the L1-L2 penalty.
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Figure 5: Error Compesated Proximal and full gradient SGD/RDA (General Convex)

Appendix L. Dense Dataset
We also verified the performance of EC-Prox with full dense dataset (linear regression, L1 regularizer). As shown in
Figure 6, TopK is still much more efficient than RandK. Moreover, even under such datasets, our algorithm can achieve a
compression ratio of 20-200 times. Such potential is difficult to reach by quantization-based algorithms.
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Figure 6: Error Compesated Proximal and full gradient SGD/RDA (Dense data, λ1 = 0.1)
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Appendix M. Further Comparison with DIANA
In the body part, we emphasize that EC-Prox shows a large advantage over quantization-based/RandK DIANA. On the
other hand, the gap between DIANA and EC-Prox is slight in theory, so we hope to explore this difference further regardless
of compressors. To make the variance of the gradient smaller, we use GD instead of SGD here for more stable results. In
particular, for each node, we compute the gradient of coresponding objective rather than stochastic gradient.

We perform our algorithm on mushrooms dataset (λ1 = λ2 = 10−3). Figure 7 shows that the EC-Prox algorithm with
p > δ2 is slightly better than DIANA and even very close to non-compressed GD. Note that we only update wk 6 times,
which means the communication cost changes very little. In this setting, the EC-Prox with p = 0 and compressed-GD
would not converge linearly, but EC-Prox is still better. From (c) and (d), unless too large, we notice that the α of DIANA
is not sensitive, so we choose the theoretical optimal in other experiments.
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Figure 7: Error Compesated and DIANA Gradient Descent on mushrooms dataset (λ1 = λ2 = 10−3)

In this problem, the optimal learning rate of GD – 1/L is about 0.4. In Figure 8, we compare DIANA and EC-Prox
with large learning rate. As the learning rate increases, we can find that EC-Prox goes down harder with significant noise.
In such a circumstance, we have to increase p to make the convergence of EC-Prox faster. In contrast, DIANA shows its
strengths that makes the loss function converge smoothly with large learning rate. In fact, since δ is very small, theoretical
learning rate of EC-Prox in our analysis is much smaller than 1/L, this is also consistent with the instability of EC-Prox
under large lr from the side. However, practically, we may not find the best learning rate of DIANA efficiently and larger p
can easily improve the performance of EC-Prox. As a result, Figure 7 might be more common in real world.
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Figure 8: Error Compesated and DIANA Gradient Descent on mushrooms dataset (large lr)
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Appendix N. Comparison of EC-Prox/DIANA for different regularizer weights
In this part, we compare our algorithm and DIANA for different regularizer weights. Specifically, we implement L1 − L2

regularized logistic regression on a5a and mushrooms datasets. From Figure 9, we can find that our algorithm outperforms
DIANA significantly in most cases. In particular, when the regularizer weight is relative small, the gap is wider. In addition,
when the regularizer is too large, the convergence of RDA will be very fast. This was also observed in our previous gistette
experiment.
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Figure 9: Error Compesated Proximal SGD/RDA and DIANA with different regularizers
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Appendix O. Additional Distributed Experiments
Due to space limitations in the main part, we will show more results of distributed experiments here. As mentioned earlier,
the RDA algorithm’s initial convergence speed is too fast under large regularities, which is not convenient for us to observe
the acceleration ratio. Thus, we choose λ1 = λ2 = 10−3 here. The result is similar to EC-Prox SGD, which performs
well in the multi-core scenario.
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Figure 10: Distributed Error Compesated Proximal RDA (Top10) on Gisette (λ1 = λ2 = 10−3)
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