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Abstract
Adaptive gradient methods are workhorses in deep learning. However, the convergence guarantees
of adaptive gradient methods for nonconvex optimization have not been thoroughly studied. In
this paper, we provide a fine-grained convergence analysis for a general class of adaptive gradient
methods including AMSGrad, RMSProp and AdaGrad. For smooth nonconvex functions, we prove
that adaptive gradient methods in expectation converge to a first-order stationary point. Our conver-
gence rate is better than existing results for adaptive gradient methods in terms of dimension, and
is strictly faster than stochastic gradient decent (SGD) when the stochastic gradients are sparse.
To the best of our knowledge, this is the first result showing the advantage of adaptive gradient
methods over SGD in nonconvex setting. In addition, we also prove high probability bounds on the
convergence rates of AMSGrad, RMSProp as well as AdaGrad, which have not been established
before. Our analyses shed light on better understanding the mechanism behind adaptive gradient
methods in optimizing nonconvex objectives.

1. Introduction

Stochastic gradient descent (SGD) [27] and its variants have been widely used in training deep neu-
ral networks. Among those variants, adaptive gradient methods (AdaGrad) [11, 21], which scale
each coordinate of the gradient by a function of past gradients, can achieve better performance than
vanilla SGD in practice when the gradients are sparse. An intuitive explanation for the success
of AdaGrad is that it automatically adjusts the learning rate for each feature based on the partial
gradient, which accelerates the convergence. However, AdaGrad was later found to demonstrate
degraded performance especially in cases where the loss function is nonconvex or the gradient is
dense, due to rapid decay of learning rate. This problem is especially exacerbated in deep learning
due to the huge number of optimization variables. To overcome this issue, RMSProp [29] was pro-
posed to use exponential moving average rather than the arithmetic average to scale the gradient,
which mitigates the rapid decay of the learning rate. Kingma and Ba [16] proposed an adaptive
momentum estimation method (Adam), which incorporates the idea of momentum [24, 28] into
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RMSProp. Other related algorithms include AdaDelta [33] and Nadam [10], which combine the
idea of exponential moving average of the historical gradients, Polyak’s heavy ball [24] and Nes-
terov’s accelerated gradient descent [23]. Recently, by revisiting the original convergence analysis
of Adam, Reddi et al. [26] found that for some handcrafted simple convex optimization problem,
Adam does not even converge to the global minimizer. In order to address this convergence issue
of Adam, Reddi et al. [26] proposed a new variant of the Adam algorithm named AMSGrad, which
has guaranteed convergence in the convex setting. The update rule of AMSGrad is as follows1:

xt+1 = xt − αt
mt√
v̂t + ε

, with v̂t = max(v̂t−1,vt), (1)

where αt > 0 is the step size, ε is a small number to ensure numerical stability, xt ∈ Rd is the
iterate in the t-th iteration, and mt,vt ∈ Rd are the exponential moving averages of the gradient
and the squared gradient at the t-th iteration respectively2:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2
t . (2)

Here β1, β2 ∈ [0, 1] are algorithm hyperparameters, and gt is the stochastic gradient at xt.
Despite the successes of adaptive gradient methods for training deep neural networks, the

convergence guarantees for these algorithms are mostly restricted to online convex optimization
[11, 16, 26]. Therefore, there is a huge gap between existing online convex optimization guarantees
for adaptive gradient methods and the empirical successes of adaptive gradient methods in noncon-
vex optimization. In order to bridge this gap, there are a few recent attempts to prove the nonconvex
optimization guarantees for adaptive gradient methods. More specifically, Basu et al. [5] proved the
convergence rate of RMSProp and Adam when using deterministic gradient rather than stochastic
gradient. Li and Orabona [18] proved the convergence rate of AdaGrad, assuming the gradient is
L-Lipschitz continuous. Ward et al. [30] proved the convergence rate of AdaGrad-Norm where the
moving average of the norms of the gradient vectors is used to adjust the gradient vector in both de-
terministic and stochastic settings for smooth nonconvex functions. Nevertheless, the convergence
guarantees in Basu et al. [5], Ward et al. [30] are still limited to simplified algorithms. Another at-
tempt to obtain the convergence rate under stochastic setting is prompted recently by Zou and Shen
[35], in which they only focus on the condition when the momentum vanishes. Chen et al. [7] stud-
ies the convergence properties of adaptive gradient methods in the nonconvex setting, however, its
convergence rate has a quadratic dependency on the problem dimension d. Défossez et al. [9] proves
the convergence of Adam and Adagrad in nonconvex smooth optimization under the assumption of
almost sure uniform bound on theL∞ norm of the gradients. In this paper, we provide a fine-grained
convergence analysis of the adaptive gradient methods. In particular, we analyze several representa-
tive adaptive gradient methods, i.e., AMSGrad [26], which fixed the non-convergence issue in Adam
and the RMSProp (fixed version via Reddi et al. [26]), and prove its convergence rate for smooth
nonconvex objective functions in the stochastic optimization setting. Moreover, existing theoretical
guarantees for adaptive gradient methods are mostly bounds in expectation over the randomness of
stochastic gradients, and are therefore only on-average convergence guarantees. However, in prac-
tice the optimization algorithm is usually only run once, and therefore the performance cannot be

1. With slight abuse of notation, here we denote by
√
vt the element-wise square root of the vector vt, mt/

√
vt the

element-wise division between mt and
√
vt, and max(v̂t−1,vt) the element-wise maximum between v̂t−1 and vt.

2. Here we denote by g2
t the element-wise square of the vector gt.
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guaranteed by the in-expectation bounds. To deal with this problem, we also provide high probabil-
ity convergence rates for AMSGrad and RMSProp, which can characterize the performance of the
algorithms on single runs.

1.1. Our Contributions

The main contributions of our work are summarized as follows:

• We prove that the convergence rate of AMSGrad to a stationary point for stochastic non-
convex optimization is O(d1/2/T 3/4−s/2 + d/T ) when ‖g1:T,i‖2 ≤ G∞T

s. Here g1:T,i =
[g1,i, g2,i, . . . , gT,i]

> with {gt}Tt=1 being the stochastic gradients satisfying ‖gt‖∞ ≤ G∞,
and s ∈ [0, 1/2] is a parameter that characterizes the growth rate of the cumulative stochastic
gradient g1:T,i. When the stochastic gradients are sparse, i.e., s < 1/2, AMSGrad achieves
strictly faster convergence rate than that of vanilla SGD [13] in terms of iteration number T .

• Our result implies that the worst case (i.e., s = 1/2) convergence rate for AMSGrad is
O(
√
d/T + d/T ), which has a better dependence on the dimension d and T than the conver-

gence rate proved in Chen et al. [7], i.e., O((log T + d2)/
√
T ).

• We also establish high probability bounds for adaptive gradient methods. To the best of our
knowledge, it is the first high probability convergence guarantees for AMSGrad and RM-
SProp in nonconvex stochastic optimization setting.

2. Convergence of Adaptive Gradient Methods in Nonconvex Optimization

In this section we present our main theoretical results on the convergence of AMSGrad, RMSProp
as well as AdaGrad. We study the following stochastic nonconvex optimization problem

min
x∈Rd

f(x) := Eξ
[
f(x; ξ)

]
,

where ξ is a random variable satisfying certain distribution, f(x; ξ) : Rd → R is a L-smooth
nonconvex function. In the stochastic setting, one cannot directly access the full gradient of f(x).
Instead, one can only get unbiased estimators of the gradient of f(x), which is ∇f(x; ξ). This
setting has been studied in Ghadimi and Lan [12, 13].

Assumption 1 (Bounded Gradient) f(x) = Eξf(x; ξ) has G∞-bounded stochastic gradient.
That is, for any ξ, we assume that ‖∇f(x; ξ)‖∞ ≤ G∞.

It is worth mentioning that Assumption 1 is slightly weaker than the `2-boundedness assumption
‖∇f(x; ξ)‖2 ≤ G2 used in [7, 25]. Since ‖∇f(x; ξ)‖∞ ≤ ‖∇f(x; ξ)‖2 ≤

√
d‖∇f(x; ξ)‖∞, the

`2-boundedness assumption implies Assumption 1 with G∞ = G2. Meanwhile, G∞ will be tighter
than G2 by a factor of

√
d when each coordinate of∇f(x; ξ) almost equals to each other.

Assumption 2 (L-smooth) f(x) = Eξf(x; ξ) is L-smooth: for any x,y ∈ Rd, we have

∣∣f(x)− f(y)− 〈∇f(y),x− y〉
∣∣ ≤ L

2
‖x− y‖22.
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Assumption 2 is a standard assumption in the analysis of gradient-based algorithms. It is equivalent
to the L-gradient Lipschitz condition, which is often written as ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

We are now ready to present our main result.

Theorem 3 (AMSGrad) Suppose β1 < β
1/2
2 , αt = α and ‖g1:T,i‖2 ≤ G∞T s for t = 1, . . . , T, 0 ≤

s ≤ 1/2. Then under Assumptions 1 and 2, the iterates xt of AMSGrad satisfy that

1

T − 1

T∑
t=2

E
[
‖∇f(xt)‖22

]
≤ M1

Tα
+
M2d

T
+
αM3d

T 1/2−s , (3)

where {Mi}3i=1 are defined as follows:

M1 = 2G∞∆,M2 =
2G3
∞ε
−1/2

1− β1
+ 2G2

∞,M3 =
2LG2

∞

ε1/2(1− β2)1/2(1− β1/β1/22 )

(
1 +

2β21
1− β1

)
,

and ∆ = f(x1)− infx f(x).

Remark 4 Note that in Theorem 3 we have a condition that ‖g1:T,i‖2 ≤ G∞T
s. Here s char-

acterizes the growth rate condition [20] of g1:T,i, i.e., the cumulative stochastic gradient. In the
worse case where the stochastic gradients are not sparse at all, s = 1/2, while in practice when the
stochastic gradients are sparse, we have s < 1/2.

Remark 5 If we choose α = Θ
(
d1/2T 1/4+s/2

)−1
, then (3) implies that AMSGrad achieves an

O(d1/2/T 3/4−s/2 + d/T ) convergence rate. In cases where the stochastic gradients are sparse,
i.e., s < 1/2, we can see that the convergence rate of AMSGrad is strictly better than that of
nonconvex SGD [13], i.e., O(

√
d/T + d/T ). In the worst case when s = 1/2, this result matches

the convergence rate of nonconvex SGD [13]. Note that Chen et al. [7] also provided similar bound
for AMSGrad that

1

T − 1

T∑
t=2

E
[
‖∇f(xt)‖22

]
= O

(
log T + d2√

T

)
.

It can be seen that the dependence of d in their bound is quadratic, which is worse than the lin-
ear dependence implied by (3). A very recent work [9] discussed the convergence issue of Adam
by showing that the bound consists of a constant term and does not converge to zero. In com-
parison, our result for AMSGrad does not have such a constant term and converges to zero in a
rate O(d1/2T 3/4−s/2). This demonstrates that the convergence issue of Adam is indeed fixed in
AMSGrad.

Corollary 6 (corrected version of RMSProp) Under the same conditions of Theorem 3, if αt =
α and ‖g1:T,i‖2 ≤ G∞T

s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then the the iterates xt of RMSProp
satisfy that

1

T − 1

T∑
t=2

E
[
‖∇f(xt)‖22

]
≤ M1

Tα
+
M2d

T
+
αM3d

T 1/2−s ,

where {Mi}3i=1 are defined as follows:

M1 = 2G∞∆f, M2 = 2G3
∞ε
−1/2 + 2G2

∞, M3 =
6LG2

∞
ε1/2(1− β)1/2

,
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Corollary 7 (AdaGrad) Under the same conditions of Theorem 3, if αt = α and ‖g1:T,i‖2 ≤
G∞T

s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then the the iterates xt of AdaGrad satisfy that

1

T − 1

T∑
t=2

E
[
‖∇f(xt)‖22

]
≤ M1

Tα
+
M2d

T
+
αM3d

T 1/2−s ,

where {Mi}3i=1 are defined as follows:

M1 = 2G∞∆f, M2 = 2G3
∞ε
−1/2 + 2G2

∞, M3 = 6LG2
∞ε
−1/2,

Remark 8 Corollaries 6, 7 imply that RMSProp and AdaGrad algorithm achieve the same rate
of convergence as AMSGrad. In worst case where s = 1/2, both algorithms again, achieves
O(
√
d/T + d/T ) convergence rate, which matches the convergences rate of nonconvex SGD given

by Ghadimi and Lan [13].

Remark 9 Défossez et al. [9] gave a bound O(α−1T−1/2 + (1 + α)dT−1/2) for Adagrad, which
gives the an O(1/

√
T + d/

√
T ) rate with optimal α. For the ease of comparison, we calculate

the iteration complexity of both results. To converge to a εtarget-approximate first order stationary
point, the result of Défossez et al. [9] suggests that AdaGrad requires Ω(ε−2targetd

2) iterations. In
sharp contrast, our result suggests that AdaGrad only requires Ω(ε−2targetd) iterations. Evidently, our
iteration complexity is better than theirs by a factor of d.

2.1. High Probability Bounds

Theorem 3, Corollaries 6 and 7 bound the expectation of full gradients over the randomness of
stochastic gradients. In other words, these bounds can only guarantee the average performance of a
large number of trials of the algorithm, but cannot rule out extremely bad solutions. What’s more,
for practical applications such as training deep neural networks, usually we only perform one single
run of the algorithm since the training time can be fairly large. Hence, it is essential to get high
probability bounds which guarantee the performance of the algorithm on single runs. To overcome
this limitation, in this section, we further establish high probability bounds of the convergence rate
for AMSGrad and RMSProp as well as AdaGrad. We make the following additional assumption.

Assumption 10 The stochastic gradients are sub-Gaussian random vectors [14]:

Eξ[exp(〈v,∇f(x)−∇f(x, ξ)〉)] ≤ exp(‖v‖22σ2/2)

for all v ∈ Rd and all x.

Remark 11 Sub-Gaussian gradient assumptions are commonly considered when studying high
probability bounds [19]. Note that our Assumption 10 is weaker than Assumption B2 in Li and
Orabona [19]: for the case when ∇f(x) − ∇f(x, ξ) is a standard Gaussian vector, σ2 defined in
Li and Orabona [19] is of order O(d), while σ2 = O(1) in our definition.

Theorem 12 (AMSGrad) Suppose β1 < β
1/2
2 , αt = α ≤ 1/2 and ‖g1:T,i‖2 ≤ G∞T

s for
t = 1, . . . , T, 0 ≤ s ≤ 1/2. Then for any δ > 0, under Assumptions 1, 2 and 10, with probability at
least 1− δ, the iterates xt of AMSGrad satisfy that

1

T − 1

T∑
t=2

‖∇f(xt)‖22 ≤
M1

Tα
+
M2d

T
+
αM3d

T 1/2−s , (4)
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where {Mi}3i=1 are defined as follows:

M1 = 4G∞∆f + C ′G∞ε
−1σ2G∞ log(2/δ),M2 =

4G3
∞ε
−1/2

1− β1
+ 4G2

∞,

M3 =
4LG2

∞

ε1/2(1− β2)1/2(1− β1/β1/22 )

(
1 +

2β21
1− β1

)
,

and ∆f = f(x1)− infx f(x).

Remark 13 Similar to the discussion in Remark 5, we can choose α = Θ
(
d1/2T 1/4+s/2

)−1
, to

achieve an O(d1/2/T 3/4−s/2 + d/T ) convergence rate. When s < 1/2, this rate of AMSGrad is
strictly better than that of nonconvex SGD [13].

We also have the following corollaries characterizing the high probability bounds for RMSProp
and AdaGrad.

Corollary 14 (corrected version of RMSProp) Under the same conditions of Theorem 12, ifαt =
α ≤ 1/2 and ‖g1:T,i‖2 ≤ G∞T s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then for any δ > 0, with probabil-
ity at least 1− δ, the iterates xt of RMSProf satisfy that

1

T − 1

T∑
t=2

‖∇f(xt)‖22 ≤
M1

Tα
+
M2d

T
+
αM3d

T 1/2−s , (5)

where {Mi}3i=1 are defined as follows:

M1 = 4G∞∆ + C ′G∞ε
−1σ2G∞ log(2/δ),M2 = 4G3

∞ε
−1/2 + 4G2

∞, M3 =
4LG2

∞
ε1/2(1− β)1/2

,

and ∆ = f(x1)− infx f(x).

Corollary 15 (AdaGrad) Under the same conditions of Theorem 12, if αt = α ≤ 1/2 and
‖g1:T,i‖2 ≤ G∞T

s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then for any δ > 0, with probability at
least 1− δ, the iterates xt of AdaGrad satisfy that

1

T − 1

T∑
t=2

‖∇f(xt)‖22 ≤
M1

Tα
+
M2d

T
+
αM3d

T 1/2−s , (6)

where {Mi}3i=1 are defined as follows:

M1 = 4G∞∆ + C ′G∞ε
−1σ2G∞ log(2/δ),M2 = 4G3

∞ε
−1/2 + 4G2

∞, M3 =
4LG2

∞
ε1/2

,

and ∆ = f(x1)− infx f(x).

3. Conclusions

In this paper, we provided a fine-grained analysis of a general class of adaptive gradient methods,
and proved their convergence rates for smooth nonconvex optimization. Our results provide faster
convergence rates of AMSGrad and the corrected version of RMSProp as well as AdaGrad for
smooth nonconvex optimization compared with previous works. In addition, we also prove high
probability bounds on the convergence rates of AMSGrad and RMSProp as well as AdaGrad, which
have not been established before.
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Appendix A. Additional Related Work

Here we briefly review other related work that is not covered before. Mukkamala and Hein [22]
proposed SC-Adagrad / SC-RMSprop, which derives logarithmic regret bounds for strongly convex
functions. Chen et al. [8] proposed SADAGRAD for solving stochastic strongly convex optimiza-
tion and more generally stochastic convex optimization that satisfies the second order growth con-
dition. Zaheer et al. [32] studied the effect of adaptive denominator constant ε and minibatch size in
the convergence of adaptive gradient methods. Chen et al. [6] proposed a partially adaptive gradient
method for closing the generalization gap between SGD and adaptive gradient method and proved
its convergence in nonconvex settings.

We also review other related work on nonconvex stochastic optimization. Ghadimi and Lan [12]
proposed a randomized stochastic gradient (RSG) method, and proved its O(1/

√
T ) convergence

rate to a stationary point. Ghadimi and Lan [13] proposed an randomized stochastic accelerated
gradient (RSAG) method, which achieves O(1/T + σ2/

√
T ) convergence rate, where σ2 is an

upper bound on the variance of the stochastic gradient. Motivated by the success of stochastic mo-
mentum methods in deep learning [28], Yang et al. [31] provided a unified convergence analysis
for both stochastic heavy-ball method and the stochastic variant of Nesterov’s accelerated gradient
method, and proved O(1/

√
T ) convergence rate to a stationary point for smooth nonconvex func-

tions. Allen-Zhu and Hazan [4], Reddi et al. [25] proposed variants of stochastic variance-reduced
gradient (SVRG) method [15] that is provably faster than gradient descent in the nonconvex finite-
sum setting. Lei et al. [17] proposed a stochastically controlled stochastic gradient (SCSG), which
further improves convergence rate of SVRG for finite-sum smooth nonconvex optimization. Re-
cently, Zhou et al. [34] proposed a new algorithm called stochastic nested variance-reduced gradi-
ent (SNVRG), which achieves strictly better gradient complexity than both SVRG and SCSG for
finite-sum and stochastic smooth nonconvex optimization.

There is another line of research in stochastic smooth nonconvex optimization, which makes use
of the λ-nonconvexity of a nonconvex function f (i.e., ∇2f � −λI). More specifically, Natasha
1 [1] and Natasha 1.5 [2] have been proposed, which solve a modified regularized problem and
achieve faster convergence rate to first-order stationary points than SVRG and SCSG in the finite-
sum and stochastic settings respectively. In addition, Allen-Zhu [3] proposed an SGD4 algorithm,
which optimizes a series of regularized problems, and is able to achieve a faster convergence rate
than SGD.

Appendix B. Notation

Scalars are denoted by lower case letters, vectors by lower case bold face letters, and matrices by
upper case bold face letters. For a vector x = [xi] ∈ Rd, we denote the `p norm (p ≥ 1) of x by
‖x‖p =

(∑d
i=1 |xi|p

)1/p, the `∞ norm of x by ‖x‖∞ = maxdi=1 |xi|. For a sequence of vectors
{gj}tj=1, we denote by gj,i the i-th element in gj . We also denote g1:t,i = [g1,i, g2,i, . . . , gt,i]

>.
With slightly abuse of notation, for any two vectors a and b, we denote a2 as the element-wise
square, ap as the element-wise power operation, a/b as the element-wise division and max(a,b)
as the element-wise maximum. For a matrix A = [Aij ] ∈ Rd×d, we define ‖A‖1,1 =

∑d
i,j=1 |Aij |.

Given two sequences {an} and {bn}, we write an = O(bn) if there exists a constant 0 < C < +∞
such that an ≤ C bn. We use notation Õ(·) to hide logarithmic factors.

10
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Appendix C. Algorithms

We mainly consider the following three algorithms: AMSGrad [26], a corrected version of RM-
SProp [26, 29], and AdaGrad [11].

The AMSGrad algorithm is originally proposed by Reddi et al. [26] to fix the non-convergence
issue in the original Adam optimizer [16]. Specifically, in Algorithm 1, the effective learning rate
of AMSGrad is αtV̂

−1/2
t where V̂t = diag(v̂t), while in original Adam, the effective learning

rate is αtV
−1/2
t where Vt = diag(vt). This choice of effective learning rate guarantees that it is

non-increasing and thus fix the possible convergence issue. In Algorithm 2 we present the corrected
version of RMSProp [29] where the effective learning rate is also set as αtV̂

−1/2
t .

In Algorithm 3 we further present the AdaGrad algorithm [11], which adopts the summation
of past stochastic gradient squares instead of the running average of them to compute the effective
learning rate.

Algorithm 1 AMSGrad [26]
Input: initial point x1, step size {αt}Tt=1, β1, β2, ε.

1: m0 ← 0, v̂0 ← 0, v0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: mt = β1mt−1 + (1− β1)gt
5: vt = β2vt−1 + (1− β2)g2

t

6: v̂t = max(v̂t−1,vt)

7: xt+1 = xt − αtV̂−1/2t mt with V̂t = diag(v̂t + ε)
8: end for

Output: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/
∑T−1

i=1 αi.

Algorithm 2 RMSProp [29] (corrected version by Reddi et al. [26])
Input: initial point x1, step size {αt}Tt=1, β, ε.

1: v̂0 ← 0, v0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: vt = βvt−1 + (1− β)g2

t

5: v̂t = max(v̂t−1,vt)

6: xt+1 = xt − αtV̂−1/2t gt with V̂t = diag(v̂t + ε)
7: end for

Output: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/
∑T−1

i=1 αi.

Appendix D. Detailed Proof of the Main Theory

Here we provide the detailed proof of the main theorem.

11
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Algorithm 3 AdaGrad [11]
Input: initial point x1, step size {αt}Tt=1, ε.

1: v̂0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: v̂t = v̂t−1 + g2

t

5: xt+1 = xt − αtV̂−1/2t gt with V̂t = diag(v̂t + ε)
6: end for

Output: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/
∑T−1

i=1 αi.

D.1. Proof of Theorem 3

Let x0 = x1. To prove Theorem 3, we need the following lemmas:

Lemma 16 Let v̂t and mt be as defined in Algorithm 1. Then under Assumption 1, we have
‖∇f(x)‖∞ ≤ G∞, ‖v̂t‖∞ ≤ G2

∞ and ‖mt‖∞ ≤ G∞.

Lemma 17 Let β1, β2, β′1, β
′
2 be the weight parameters such that

mt = β1mt−1 + (1− β′1)gt,
vt = β2vt−1 + (1− β′2)g2

t ,

αt, t = 1, . . . , T be the step sizes. We denote γ = β1/β
1/2
2 . Suppose that αt = α and γ ≤ 1, then

under Assumption 1, we have the following two results:

T∑
t=1

α2
t

∥∥V̂−1/2t mt

∥∥2
2
≤ T 1/2α2

t (1− β′1)
2ε1/2(1− β′2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2,

and

T∑
t=1

α2
t

∥∥V̂−1/2t gt
∥∥2
2
≤ T 1/2α2

t

2ε1/2(1− β′2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2.

Note that Lemma 17 is general and applicable to various algorithms. Specifically, set β′1 = β1 and
β′2 = β2, we recover the case in Algorithm 1. Further set β1 = 0 we recover the case in Algorithm
2. Set β′1 = β1 = 0 and β2 = 1, β′2 = 0 we recover the case in Algorithm 3.

To deal with stochastic momentum mt and stochastic weight V̂−1/2t , following Yang et al. [31],
we define an auxiliary sequence zt as follows: let x0 = x1, and for each t ≥ 1,

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1
1− β1

xt−1. (7)

Lemma 18 shows that zt+1 − zt can be represented in two different ways.

12
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Lemma 18 Let zt be defined in (7). For t ≥ 2, we have

zt+1 − zt =
β1

1− β1

[
I−

(
αtV̂

−1/2
t

)(
αt−1V̂

−1/2
t−1

)−1]
(xt−1 − xt)− αtV̂−1/2t gt. (8)

and

zt+1 − zt =
β1

1− β1
(
αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t

)
mt−1 − αtV̂−1/2t gt. (9)

For t = 1, we have

z2 − z1 = −α1V̂
−1/2
1 g1. (10)

By Lemma 18, we connect zt+1 − zt with xt+1 − xt and αtV̂
−1/2
t gt

The following two lemmas give bounds on ‖zt+1− zt‖2 and ‖∇f(zt)−∇f(xt)‖2, which play
important roles in our proof.

Lemma 19 Let zt be defined in (7). For t ≥ 2, we have

‖zt+1 − zt‖2 ≤
∥∥αV̂−1/2t gt

∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2.

Lemma 20 Let zt be defined in (7). For t ≥ 2, we have

‖∇f(zt)−∇f(xt)‖2 ≤ L
( β1

1− β1

)
· ‖xt − xt−1‖2.

Now we are ready to prove Theorem 3.
Proof [Proof of Theorem 3] Since f is L-smooth, we have:

f(zt+1) ≤ f(zt) +∇f(zt)
>(zt+1 − zt) +

L

2
‖zt+1 − zt‖22

= f(zt) +∇f(xt)
>(zt+1 − zt)︸ ︷︷ ︸
I1

+ (∇f(zt)−∇f(xt))
>(zt+1 − zt)︸ ︷︷ ︸

I2

+
L

2
‖zt+1 − zt‖22︸ ︷︷ ︸

I3

(11)

In the following, we bound I1, I2 and I3 separately.
Bounding term I1: When t = 1, we have

∇f(x1)
>(z2 − z1) = −∇f(x1)

>α1V̂
−1/2
t g1. (12)

For t ≥ 2, we have

∇f(xt)
>(zt+1 − zt)

= ∇f(xt)
>
[

β1
1− β1

(
αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t

)
mt−1 − αtV̂−1/2t gt

]
=

β1
1− β1

∇f(xt)
>(αt−1V̂−1/2t−1 − αtV̂

−1/2
t

)
mt−1 −∇f(xt)

>αtV̂
−1/2
t gt, (13)

13
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where the first equality holds due to (9) in Lemma 18. For∇f(xt)
>(αt−1V̂

−1/2
t−1 −αtV̂

−1/2
t )mt−1

in (13), we have

∇f(xt)
>(αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t )mt−1 ≤ ‖∇f(xt)‖∞ ·

∥∥αt−1V̂−1/2t−1 − αtV̂
−1/2
t

∥∥
1,1
· ‖mt−1‖∞

≤ G2
∞

[∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

]
. (14)

The first inequality holds because for a positive diagonal matrix A, we have x>Ay ≤ ‖x‖∞ ·
‖A‖1,1 · ‖y‖∞. The second inequality holds due to αt−1V̂

−1/2
t−1 � αtV̂

−1/2
t � 0. Next we bound

−∇f(xt)
>αtV̂

−1/2
t gt. We have

−∇f(xt)
>αtV̂

−1/2
t gt

= −∇f(xt)
>αt−1V̂

−1/2
t−1 gt −∇f(xt)

>(αtV̂−1/2t − αt−1V̂−1/2t−1
)
gt

≤ −∇f(xt)
>αt−1V̂

−1/2
t−1 gt + ‖∇f(xt)‖∞ ·

∥∥αtV̂−1/2t − αt−1V̂−1/2t−1
∥∥
1,1
· ‖gt‖∞

≤ −∇f(xt)
>αt−1V̂

−1/2
t−1 gt +G2

∞

(∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

)
. (15)

The first inequality holds because for a positive diagonal matrix A, we have x>Ay ≤ ‖x‖∞ ·
‖A‖1,1 · ‖y‖∞. The second inequality holds due to αt−1V̂

−1/2
t−1 � αtV̂

−1/2
t � 0. Substituting (14)

and (15) into (13), we have

∇f(xt)
>(zt+1 − zt) ≤ −∇f(xt)

>αt−1V̂
−1/2
t−1 gt +

1

1− β1
G2
∞

(∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

)
.

(16)

Bounding term I2: For t ≥ 1, we have(
∇f(zt)−∇f(xt)

)>
(zt+1 − zt)

≤
∥∥∇f(zt)−∇f(xt)

∥∥
2
· ‖zt+1 − zt‖2

≤
(∥∥αtV̂−1/2t gt

∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2

)
· β1

1− β1
· L‖xt − xt−1‖2

= L
β1

1− β1
∥∥αtV̂−1/2t gt

∥∥
2
· ‖xt − xt−1‖2 + L

(
β1

1− β1

)2

‖xt − xt−1‖22

≤ L
∥∥αtV̂−1/2t gt

∥∥2
2

+ 2L

(
β1

1− β1

)2

‖xt − xt−1‖22, (17)

where the second inequality holds because of Lemma 18 and Lemma 19, the last inequality holds
due to Young’s inequality.
Bounding term I3: For t ≥ 1, we have

L

2
‖zt+1 − zt‖22 ≤

L

2

[∥∥αtV̂−1/2t gt
∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2

]2
≤ L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 2L

(
β1

1− β1

)2

‖xt−1 − xt‖22. (18)

14
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The first inequality is obtained by introducing Lemma 18.
For t = 1, substituting (12), (17) and (18) into (11), taking expectation and rearranging terms,

we have

E[f(z2)− f(z1)]

≤ E
[
−∇f(x1)

>α1V̂
−1/2
1 g1 + 2L

∥∥α1V̂
−1/2
1 g1

∥∥2
2

+ 4L

(
β1

1− β1

)2

‖x1 − x0‖22
]

= E[−∇f(x1)
>α1V̂

−1/2
1 g1 + 2L

∥∥α1V̂
−1/2
1 g1

∥∥2
2
]

≤ E[dα1G∞ + 2L
∥∥α1V̂

−1/2
1 g1

∥∥2
2
], (19)

where the last inequality holds because

−∇f(x1)
>V̂
−1/2
1 g1 ≤ d · ‖∇f(x1)‖∞ · ‖V̂−1/21 g1‖∞ ≤ dG∞.

For t ≥ 2, substituting (16), (17) and (18) into (11), taking expectation and rearranging terms, we
have

E
[
f(zt+1) +

G2
∞
∥∥αtV̂−1/2t

∥∥
1,1

1− β1
−
(
f(zt) +

G2
∞
∥∥αt−1V̂−1/2t−1

∥∥
1,1

1− β1

)]
≤ E

[
−∇f(xt)

>αt−1V̂
−1/2
t−1 gt + 2L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2

‖xt − xt−1‖22
]

= E
[
−∇f(xt)

>αt−1V̂
−1/2
t−1 ∇f(xt) + 2L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2t−1 mt−1
∥∥2
2

]
≤ E

[
− αt−1

∥∥∇f(xt)
∥∥2
2
G−1∞ + 2L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2t−1 mt−1
∥∥2
2

]
,

(20)

where the equality holds because E[gt] = ∇f(xt) conditioned on ∇f(xt) and V̂
−1/2
t−1 , the second

inequality holds because of Lemma 16. Telescoping (20) for t = 2 to T and adding with (19), we
have

G−1∞

T∑
t=2

αt−1E
∥∥∇f(xt)

∥∥2
2

≤ E
[
f(z1) +

G2
∞
∥∥α1V̂

−1/2
1

∥∥
1,1

1− β1
+ dα1G∞ −

(
f(zT+1) +

G2
∞
∥∥αT v̂−1/2T

∥∥
1

1− β1

)]
+ 2L

T∑
t=1

E
∥∥αtV̂−1/2t gt

∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=2

E
[∥∥αt−1V̂−1/2t−1 mt−1

∥∥2
2

]
≤ E

[
∆f +

G2
∞α1ε

−1/2d

1− β1
+ dα1G∞

]
+ 2L

T∑
t=1

E
∥∥αtV̂−1/2t gt

∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=1

E
[∥∥αtV̂−1/2t mt

∥∥2
2

]
. (21)
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By Lemma 17, we have

T∑
t=1

α2
tE
[
‖V̂−1/2t mt‖22

]
≤ T 1/2α2

t (1− β1)
2ε1/2(1− β2)1/2(1− γ)

E
( d∑
i=1

‖g1:T,i‖2
)
, (22)

where γ = β1/β
1/2
2 . We also have

T∑
t=1

α2
tE
[
‖V̂−1/2t gt‖22

]
≤ T 1/2α2

t

2ε1/2(1− β2)1/2(1− γ)
E
( d∑
i=1

‖g1:T,i‖2
)
. (23)

Substituting (22) and (23) into (21), and rearranging (21), we have

E‖∇f(xout)‖22

=
1∑T

t=2 αt−1

T∑
t=2

αt−1E
∥∥∇f(xt)

∥∥2
2

≤ G∞∑T
t=2 αt−1

E
[
∆f +

G2
∞α1ε

−1/2d

1− β1
+ dα1G∞

]

+
2LG∞∑T
t=2 αt−1

· T 1/2α2
t

2ε1/2(1− β2)1/2(1− γ)
E
( d∑
i=1

‖g1:T,i‖2
)1−q

+
4LG∞∑T
t=2 αt−1

(
β1

1− β1

)2 T 1/2α2
t (1− β1)

2ε1/2(1− β2)1/2(1− γ)
E
( d∑
i=1

‖g1:T,i‖2
)1−q

≤ 1

Tα
2G∞∆f +

2

T

(
G3
∞ε
−1/2d

1− β1
+ dG2

∞

)
+

2G∞Lα

T 1/2ε1/2(1− γ)(1− β2)1/2
E
( d∑
i=1

‖g1:T,i‖2
)(

1 + 2(1− β1)
(

β1
1− β1

)2)
, (24)

where the second inequality holds because αt = α. Rearranging (24), and note that in the theorem
condition we have ‖g1:T,i‖2 ≤ G∞T s, we obtain

E‖∇f(xout)‖22 ≤
M1

Tα
+
M2d

T
+
αM3d

T 1/2−s ,

where {Mi}3i=1 are defined in Theorem 3. This completes the proof.

D.2. Proof of Corollary 6

Proof [Proof of Corollary 6] Following the proof for Theorem 3, setting β′1 = β1 = 0 and β′2 =
β2 = β in Lemma 17 we get the conclusion.

D.3. Proof of Corollary 7

Proof [Proof of Corollary 7] Following the proof for Theorem 3, setting β′1 = β1 = 0, β2 = 1 and
β′2 = 0 in Lemma 17 we get the conclusion.
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D.4. Proof of Theorem 12

Proof [Proof of Theorem 12] Since f is L-smooth, we have:

f(zt+1) ≤ f(zt) +∇f(zt)
>(zt+1 − zt) +

L

2
‖zt+1 − zt‖22

= f(zt) +∇f(xt)
>(zt+1 − zt)︸ ︷︷ ︸
I1

+ (∇f(zt)−∇f(xt))
>(zt+1 − zt)︸ ︷︷ ︸

I2

+
L

2
‖zt+1 − zt‖22︸ ︷︷ ︸

I3

(25)

In the following, we bound I1, I2 and I3 separately.
Bounding term I1: When t = 1, we have

∇f(x1)
>(z2 − z1) = −∇f(x1)

>α1V̂
−1/2
t g1. (26)

For t ≥ 2, we have

∇f(xt)
>(zt+1 − zt)

= ∇f(xt)
>
[

β1
1− β1

(
αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t

)
mt−1 − αtV̂−1/2t gt

]
=

β1
1− β1

∇f(xt)
>(αt−1V̂−1/2t−1 − αtV̂

−1/2
t

)
mt−1 −∇f(xt)

>αtV̂
−1/2
t gt, (27)

where the first equality holds due to (9) in Lemma 18. For∇f(xt)
>(αt−1V̂

−1/2
t−1 −αtV̂

−1/2
t )mt−1

in (27), we have

∇f(xt)
>(αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t )mt−1 ≤ ‖∇f(xt)‖∞ ·

∥∥αt−1V̂−1/2t−1 − αtV̂
−1/2
t

∥∥
1,1
· ‖mt−1‖∞

≤ G2
∞

[∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

]
. (28)

The first inequality holds because for a positive diagonal matrix A, we have x>Ay ≤ ‖x‖∞ ·
‖A‖1,1 · ‖y‖∞. The second inequality holds due to αt−1V̂

−1/2
t−1 � αtV̂

−1/2
t � 0. Next we bound

−∇f(xt)
>αtV̂

−1/2
t gt. We have

−∇f(xt)
>αtV̂

−1/2
t gt

= −∇f(xt)
>αt−1V̂

−1/2
t−1 gt −∇f(xt)

>(αtV̂−1/2t − αt−1V̂−1/2t−1
)
gt

≤ −∇f(xt)
>αt−1V̂

−1/2
t−1 gt + ‖∇f(xt)‖∞ ·

∥∥αtV̂−1/2t − αt−1V̂−1/2t−1
∥∥
1,1
· ‖gt‖∞

≤ −∇f(xt)
>αt−1V̂

−1/2
t−1 gt +G2

∞

(∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

)
. (29)

The first inequality holds because for a positive diagonal matrix A, we have x>Ay ≤ ‖x‖∞ ·
‖A‖1,1 · ‖y‖∞. The second inequality holds due to αt−1V̂

−1/2
t−1 � αtV̂

−1/2
t � 0. Substituting (28)

and (29) into (27), we have

∇f(xt)
>(zt+1 − zt) ≤ −∇f(xt)

>αt−1V̂
−1/2
t−1 gt +

1

1− β1
G2
∞

(∥∥αt−1V̂−1/2t−1
∥∥
1,1
−
∥∥αtV̂−1/2t

∥∥
1,1

)
.

(30)
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Bounding term I2: For t ≥ 1, we have(
∇f(zt)−∇f(xt)

)>
(zt+1 − zt)

≤
∥∥∇f(zt)−∇f(xt)

∥∥
2
· ‖zt+1 − zt‖2

≤
(∥∥αtV̂−1/2t gt

∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2

)
· β1

1− β1
· L‖xt − xt−1‖2

= L
β1

1− β1
∥∥αtV̂−1/2t gt

∥∥
2
· ‖xt − xt−1‖2 + L

(
β1

1− β1

)2

‖xt − xt−1‖22

≤ L
∥∥αtV̂−1/2t gt

∥∥2
2

+ 2L

(
β1

1− β1

)2

‖xt − xt−1‖22, (31)

where the second inequality holds because of Lemma 18 and Lemma 19, the last inequality holds
due to Young’s inequality.
Bounding term I3: For t ≥ 1, we have

L

2
‖zt+1 − zt‖22 ≤

L

2

[∥∥αtV̂−1/2t gt
∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2

]2
≤ L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 2L

(
β1

1− β1

)2

‖xt−1 − xt‖22. (32)

The first inequality is obtained by introducing Lemma 18.
For t = 1, substituting (26), (31) and (32) into (25) and rearranging terms, we have

f(z2)− f(z1) ≤ −∇f(x1)
>α1V̂

−1/2
1 g1 + 2L

∥∥α1V̂
−1/2
1 g1

∥∥2
2

+ 4L

(
β1

1− β1

)2

‖x1 − x0‖22

= −∇f(x1)
>α1V̂

−1/2
1 g1 + 2L

∥∥α1V̂
−1/2
1 g1

∥∥2
2

≤ dα1G∞ + 2L
∥∥α1V̂

−1/2
1 g1

∥∥2
2
, (33)

where the last inequality holds because

−∇f(x1)
>V̂
−1/2
1 g1 ≤ d · ‖∇f(x1)‖∞ · ‖V̂−1/21 g1‖∞ ≤ dG∞.

For t ≥ 2, substituting (30), (31) and (32) into (25) and rearranging terms, we have

f(zt+1) +
G2
∞
∥∥αtV̂−1/2t

∥∥
1,1

1− β1
−
(
f(zt) +

G2
∞
∥∥αt−1V̂−1/2t−1

∥∥
1,1

1− β1

)
≤ −∇f(xt)

>αt−1V̂
−1/2
t−1 gt + 2L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2

‖xt − xt−1‖22

= −∇f(xt)
>αt−1V̂

−1/2
t−1 gt + 2L

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2t−1 mt−1
∥∥2
2
. (34)
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Telescoping (34) for t = 2 to T and adding (33), we have

T∑
t=2

αt−1∇f(xt)
>V̂
−1/2
t−1 gt ≤ f(z1) +

G2
∞
∥∥α1V̂

−1/2
1

∥∥
1,1

1− β1
+ dα1G∞ −

(
f(zT+1) +

G2
∞
∥∥αT v̂−1/2T

∥∥
1

1− β1

)

+ 2L
T∑
t=1

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=2

∥∥αt−1V̂−1/2t−1 mt−1
∥∥2
2

≤ ∆f +
G2
∞α1ε

−1/2d

1− β1
+ dα1G∞ + 2L

T∑
t=1

∥∥αtV̂−1/2t gt
∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=1

∥∥αtV̂−1/2t mt

∥∥2
2
. (35)

By Lemma 17, we have

T∑
t=1

α2
t [‖V̂

−1/2
t mt‖22 ≤

T 1/2α2
t (1− β1)

2ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2, (36)

where γ = β1/β
1/2
2 . We also have

T∑
t=1

α2
t ‖V̂

−1/2
t gt‖22 ≤

T 1/2α2
t

2ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2. (37)

Moreover, consider the filtrationFt = σ(ξ1, . . . , ξt). Since xt and V̂
−1/2
t−1 only depend on ξ1, . . . , ξt−1.

For any τ, λ > 0, by Assumption 10 with v = λ · αt−1V̂−1/2t−1 ∇f(xt), we have

E
{

exp
[
λαt−1∇f(xt)

>V̂
−1/2
t−1 (gt −∇f(xt))

]∣∣∣Ft−1} ≤ exp(σ2α2
t−1λ

2‖V̂−1/2t−1 ∇f(xt)‖22/2).

Denote Zt = αt−1∇f(xt)
>V̂
−1/2
t−1 (gt −∇f(xt)). Then we have

P(Zt ≥ τ |Ft−1) = P[exp(λZt) ≥ exp(λτ)|Ft−1]
= E[1{exp(−λτ + λZt) ≥ 1}|Ft−1]
≤ exp(−λτ) · E[exp(λZt)|Ft−1]

≤ exp(−λτ) · exp(σ2α2
t−1λ

2‖V̂−1/2t−1 ∇f(xt)‖22/2)

= exp(−λτ + σ2α2
t−1λ

2‖V̂−1/2t−1 ∇f(xt)‖22/2).

With exactly the same proof, we also have

P(Zt ≤ −τ |Ft−1) ≤ exp(−λτ + σ2α2
t−1λ

2‖V̂−1/2t−1 ∇f(xt)‖22/2),

and therefore

P(|Zt| ≥ τ |Ft−1) ≤ 2 exp(−λτ + σ2α2
t−1λ

2‖V̂−1/2t−1 ∇f(xt)‖22/2).
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Choosing λ = [σ2α2
t−1‖V̂

−1/2
t−1 ∇f(xt)‖22]−1τ , we finally obtain

P(|Zt| ≥ τ |Ft−1) ≤ 2 exp(−τ2/(2σ2t )) (38)

for all τ > 0, where σt = σαt−1‖V̂−1/2t−1 ∇f(xt)‖2. The tail bound (38) enables the application of
Lemma 6 in Jin et al. [14], which gives that with probability at least 1− δ,∣∣∣∣∣

T∑
t=2

Zt

∣∣∣∣∣ ≤ (εσ−2G−1∞ ) ·
T∑
t=2

σ2t + C(εσ−2G−1∞ )−1 · log(2/ε),

where C is an absolute constant. Plugging in the definitions of Zt and σt, we obtain∣∣∣∣∣
T∑
t=2

αt−1∇f(xt)
>V̂
−1/2
t−1 gt −

T∑
t=2

αt−1∇f(xt)
>V̂
−1/2
t−1 ∇f(xt)

∣∣∣∣∣
≤ (εσ−2G−1∞ ) ·

T∑
t=2

σ2α2
t−1‖V̂

−1/2
t−1 ∇f(xt)‖22 + C(εσ−2G−1∞ )−1 log(2/δ)

≤ G−1∞
T∑
t=2

α2
t−1‖∇f(xt)‖22 + Cε−1σ2G∞ log(2/δ), (39)

where the second inequality is by the fact that the diagonal entries of V̂t−1 are all loewr bounded
by ε. Substituting (36), (37) and (39) into (35), we have

T∑
t=2

αt−1∇f(xt)
>V̂
−1/2
t−1 ∇f(xt)

≤ ∆f +
G2
∞α1ε

−1/2d

1− β1
+ dα1G∞ +

LT 1/2α2
t

ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2

+

(
β1

1− β1

)2 2LT 1/2α2
t (1− β1)

ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2 +G−1∞

T∑
t=2

α2
t−1‖∇f(xt)‖22

+ Cε−1σ2G∞ log(2/δ).

Moreover, by Lemma 16, we have ∇f(xt)
>V̂
−1/2
t−1 ∇f(xt) ≥ G−1∞ ‖∇f(xt)‖22, and therefore by

choosing αt = α and rearranging terms, we have

G−1∞

T∑
t=2

α(1− α)‖∇f(xt)‖22 ≤ ∆f +
G2
∞αε

−1/2d

1− β1
+ dαG∞ +

LT 1/2α2

ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2

+

(
β1

1− β1

)2 2LT 1/2α2(1− β1)
ε1/2(1− β2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2

+ Cε−1σ2G∞ log(2/δ).
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Therefore when α < 1/2, we have

1

T − 1

T∑
t=2

‖∇f(xt)‖22 ≤
4G∞
Tα

·∆f +
4G3
∞ε
−1/2

1− β1
· d
T

+ 4G2
∞ ·

d

T

+
4G∞Lα

ε1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1

‖g1:T,i‖2

+

(
β1

1− β1

)2 8G∞Lα(1− β1)
ε1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1

‖g1:T,i‖2

+
C ′G∞ε

−1σ2G∞ log(2/δ)

Tα
,

where C ′ is an absolute constant.
Now by the theorem condition ‖g1:T,i‖2 ≤ G∞T s, we have

1

T − 1

T∑
t=2

‖∇f(xt)‖22 ≤
M1

Tα
+
M2d

T
+
αM3d

T 1/2−s ,

where

M1 = 4G∞∆f + C ′G∞ε
−1σ2G∞ log(2/δ),

M2 =
4G3
∞ε
−1/2

1− β1
+ 4G2

∞,

M3 =
4LG2

∞

ε1/2(1− β2)1/2(1− β1/β1/22 )

(
1 +

2β21
1− β1

)
where {Mi}3i=1 are defined in Theorem 12. This completes the proof.

D.5. Proof of Corollary 14

Proof [Proof of Corollary 14] Following the proof for Theorem 12, setting β′1 = β1 = 0 and
β′2 = β2 = β in Lemma 17 we get the conclusion.

D.6. Proof of Corollary 15

Proof [Proof of Corollary 15] Following the proof for Theorem 12, setting β′1 = β1 = 0, β2 = 1
and β′2 = 0 in Lemma 17 we get the conclusion.
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Appendix E. Proof of Technical Lemmas

E.1. Proof of Lemma 16

Proof [Proof of Lemma 16] Since f hasG∞-bounded stochastic gradient, for any x and ξ, ‖∇f(x; ξ)‖∞ ≤
G∞. Thus, we have

‖∇f(x)‖∞ = ‖Eξ∇f(x; ξ)‖∞ ≤ Eξ‖∇f(x; ξ)‖∞ ≤ G∞.

Next we bound ‖mt‖∞. We have ‖m0‖∞ = 0 ≤ G∞. Suppose that ‖mt‖∞ ≤ G∞, then for
mt+1, we have

‖mt+1‖∞ = ‖β1mt + (1− β1)gt+1‖∞
≤ β1‖mt‖∞ + (1− β1)‖gt+1‖∞
≤ β1G∞ + (1− β1)G∞
= G∞.

Thus, for any t ≥ 0, we have ‖mt‖∞ ≤ G∞. Finally we bound ‖v̂t‖∞. First we have ‖v0‖∞ =
‖v̂0‖∞ = 0 ≤ G2

∞. Suppose that ‖v̂t‖∞ ≤ G2
∞ and ‖vt‖∞ ≤ G2

∞. Note that we have

‖vt+1‖∞ = ‖β2vt + (1− β2)g2
t+1‖∞

≤ β2‖vt‖∞ + (1− β2)‖g2
t+1‖∞

≤ β2G2
∞ + (1− β2)G2

∞

= G2
∞,

and by definition, we have ‖v̂t+1‖∞ = max{‖v̂t‖∞, ‖vt+1‖∞} ≤ G2
∞. Thus, for any t ≥ 0, we

have ‖v̂t‖∞ ≤ G2
∞.

E.2. Proof of Lemma 17

Proof Recall that v̂t,j ,mt,j , gt,j denote the j-th coordinate of v̂t,mt and gt. We have

α2
t ‖V̂

−1/2
t mt‖22 = α2

t

d∑
i=1

m2
t,i

v̂
1/2
t,i

·
v̂
1/2
t,i

v̂t,i + ε

≤ α2
t

d∑
i=1

m2
t,i

v̂
1/2
t,i

·
v̂
1/2
t,i

2v̂
1/2
t,i ε

1/2

≤ α2
t

2ε1/2

d∑
i=1

m2
t,i

v
1/2
t,i

=
α2
t

2ε1/2

d∑
i=1

(
∑t

j=1(1− β′1)β
t−j
1 gj,i)

2

(
∑t

j=1(1− β′2)β
t−j
2 g2j,i)

1/2
, (40)
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where the first inequality holds since a + b ≥ 2
√
ab and the second inequality holds because

v̂t,i ≥ vt,i. Next we have

α2
t

2ε1/2

d∑
i=1

(
∑t

j=1(1− β′1)β
t−j
1 gj,i)

2

(
∑t

j=1(1− β′2)β
t−j
2 g2j,i)

1/2
≤ α2

t (1− β′1)2

2ε1/2(1− β′2)1/2
d∑
i=1

(
∑t

j=1 β
t−j
1 )(

∑t
j=1 β

t−j
1 |gj,i|2)

(
∑t

j=1 β
t−j
2 g2j,i)

1/2

≤ α2
t (1− β′1)

2ε1/2(1− β′2)1/2
d∑
i=1

∑t
j=1 β

t−j
1 |gj,i|2

(
∑t

j=1 β
t−j
2 g2j,i)

1/2
, (41)

where the first inequality holds due to Cauchy inequality, and the last inequality holds because∑t
j=1 β

t−j
1 ≤ (1− β1)−1. Note that

d∑
i=1

∑t
j=1 β

t−j
1 |gj,i|2

(
∑t

j=1 β
t−j
2 g2j,i)

1/2
≤

d∑
i=1

t∑
j=1

βt−j1 |gj,i|2

(βt−j2 g2j,i)
1/2

=

d∑
i=1

t∑
j=1

γt−j |gj,i|, (42)

where the equality holds due to the definition of γ. Substituting (41) and (42) into (40), we have

α2
t ‖V̂

−1/2
t mt‖22 ≤

α2
t (1− β′1)

2ε1/2(1− β′2)1/2
d∑
i=1

t∑
j=1

γt−j |gj,i|. (43)

Telescoping (43) for t = 1 to T , we have

T∑
t=1

α2
t ‖V̂

−1/2
t mt‖22 ≤

α2
t (1− β′1)

2ε1/2(1− β′2)1/2
T∑
t=1

d∑
i=1

t∑
j=1

γt−j |gj,i|

=
α2
t (1− β′1)

2ε1/2(1− β′2)1/2
d∑
i=1

T∑
j=1

|gj,i|
T∑
t=j

γt−j

≤ α2
t (1− β′1)

2ε1/2(1− β′2)1/2(1− γ)

d∑
i=1

T∑
j=1

|gj,i|. (44)

Finally, we have

d∑
i=1

T∑
j=1

|gj,i| ≤
d∑
i=1

( T∑
j=1

g2j,i

)1/2
· T 1/2 = T 1/2

d∑
i=1

‖g1:T,i‖2, (45)

where the inequality holds due to Hölder’s inequality. Substituting (45) into (44), we have

T∑
t=1

α2
t ‖V̂

−1/2
t mt‖22 ≤

T 1/2α2
t (1− β′1)

2ε1/2(1− β′2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2.

Specifically, taking β1 = 0, we have mt = gt, then

T∑
t=1

α2
t ‖V̂

−1/2
t gt‖22 ≤

T 1/2α2
t

2ε1/2(1− β′2)1/2(1− γ)

d∑
i=1

‖g1:T,i‖2.
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E.3. Proof of Lemma 18

Proof By definition, we have

zt+1 = xt+1 +
β1

1− β1
(xt+1 − xt) =

1

1− β1
xt+1 −

β1
1− β1

xt.

Then we have

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

=
1

1− β1
(
− αtV̂−1/2t mt

)
+

β1
1− β1

αt−1V̂
−1/2
t−1 mt−1.

The equities above are based on definition. Then we have

zt+1 − zt =
−αtV̂−1/2t

1− β1

[
β1mt−1 + (1− β1)gt

]
+

β1
1− β1

αt−1V̂
−1/2
t−1 mt−1

=
β1

1− β1
mt−1

(
αt−1V̂

−1/2
t−1 − αtV̂

−1/2
t

)
− αtV̂−1/2t gt

=
β1

1− β1
αt−1V̂

−1/2
t−1 mt−1

[
I−

(
αtV̂

−1/2
t

)(
αt−1V̂

−1/2
t−1

)−1]− αtV̂−1/2t gt

=
β1

1− β1

[
I−

(
αtV̂

−1/2
t

)(
αt−1V̂

−1/2
t−1

)−1]
(xt−1 − xt)− αtV̂−1/2t gt.

The equalities above follow by combining the like terms.

E.4. Proof of Lemma 19

Proof By Lemma 18, we have

‖zt+1 − zt‖2 =

∥∥∥∥ β1
1− β1

[
I− (αtV̂

−1/2
t )(αt−1V̂

−1/2
t−1 )−1

]
(xt−1 − xt)− αtV̂−1/2t gt

∥∥∥∥
2

≤ β1
1− β1

∥∥∥I− (αtV̂
−1/2
t )(αt−1V̂

−1/2
t−1 )−1

∥∥∥
∞,∞

· ‖xt−1 − xt‖2 +
∥∥αV̂−1/2t gt

∥∥
2
,

where the inequality holds because the term β1/(1−β1) is positive, and triangle inequality. Consid-
ering that αtv̂

−1/2
t,j ≤ αt−1v̂−1/2t−1,j , when p > 0, we have

∥∥∥I−(αtV̂
−1/2
t )(αt−1V̂

−1/2
t−1 )−1

∥∥∥
∞,∞

≤ 1.

With that fact, the term above can be bound as:

‖zt+1 − zt‖2 ≤
∥∥αV̂−1/2t gt

∥∥
2

+
β1

1− β1
‖xt−1 − xt‖2.

This completes the proof.
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E.5. Proof of Lemma 20

Proof For term ‖∇f(zt)−∇f(xt)‖2, we have:

‖∇f(zt)−∇f(xt)‖2 ≤ L‖zt − xt‖2

≤ L
∥∥∥ β1

1− β1
(xt − xt−1)

∥∥∥
2

≤ L
( β1

1− β1

)
· ‖xt − xt−1‖2,

where the last inequality holds because the term β1/(1− β1) is positive.
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