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Abstract
Linearly interpolating between initial neural network parameters and converged parameters after
training with SGD typically leads to a monotonic decrease in the training objective. This Monotonic
Linear Interpolation (MLI) property, first observed by Goodfellow et al. [11], persists in spite of the
non-convex objectives and highly non-linear training dynamics of neural networks. Extending on
this work, we show that this property holds under varying network architectures, optimizers, and
learning problems. We evaluate several possible hypotheses for this property that, to our knowledge,
have not yet been explored. Additionally, we show that networks violating this property can be
produced systematically, by forcing the weights to move far from initialization. The MLI property
raises important questions about the loss landscape geometry of neural nets and highlights the need
to further study its global properties.

1. Introduction

A simple and lightweight method to probe neural network loss landscapes is to linearly interpolate
between the parameters at initialization and the parameters found after training. More formally,
consider a neural network with parameters θ ∈ Rd trained with respect to loss function L : Rd → R
on a training dataset D. Let the neural network be initialized with some parameters θ0. Using a
gradient descent optimizer, the network converges to some final parameters θT . A linear path is then
constructed between these two parameters denoted as θα = (1 − α)θ0 + αθT . A surprising phe-
nomenon, first observed by Goodfellow et al. [11], is that the function g(α) = L(θα) monotonically
decreases on the interval α ∈ [0, 1]. We call this effect the Monotonic Linear Interpolation (MLI)
property of neural networks.

Goodfellow et al. [11] conclude their study of the MLI property by stating that “the reason for the
success of SGD on a wide variety of tasks is now clear: these tasks are relatively easy to optimize”.
Since the publication of their research, there has been significant developments both in terms of the
neural network architectures that we train today [13, 32] and our theoretical understanding of them
[1, 4, 5, 7, 17]. Therefore, with a wider lens that addresses these developments, we believe that a
secondary investigation of this phenomenon is necessary.

In this work, we provide an expanded study of the MLI property. In particular, we extend the
original evaluation of Goodfellow et al. [11] by testing the MLI property over a range of network
architectures, optimizers, and training mechanisms (e.g. batch normalization [15]). We demonstrate
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MONOTONIC LINEAR INTERPOLATION

Figure 1: Linear interpolations (green) for neural networks trained on varying dataset sizes (30,
300, 3000 from left-to-right), with loss during training overlaid (blue). Even when the
training dynamics are unstable and highly non-linear, the interpolation produces a smooth
monotonic curve.

that neural networks retain the MLI property even when trained on data with arbitrary amounts of
label corruption, for both under and over-parameterized networks, and in other challenging settings.
However, despite the prevalence of the MLI property, we are able to systematically produce neural
networks that violate it.

We propose one explanation for the absence of the MLI property that we found repeatedly
through our experiments: neural networks that travel far in parameter space during optimization (in
Euclidean distance) do not have the MLI property. Conversely, if the weights remain close to the
initial weights after training, then in all settings that we explored, the MLI property is likely to hold.

Recent theoretical work has shown that training can succeed within a low dimensional affine
subspace of the parameters about initialization [5, 12]. Moreover, the persistence of the MLI property
suggests that in practice, a one-dimensional affine subspace suffices. However, this is not the only
mechanism in which neural network training can succeed — the solutions that violate the MLI
property can have good generalization capability and are found without significant training difficulty.
This hints at a potential disconnect between our existing local theory and practical neural network
training, and suggests the need to further study global geometry of the neural network loss landscape.

1.1. The Monotonic Linear Interpolation Property

The Monotonic Linear Interpolation (MLI) property was first identified by Goodfellow et al. [11].
It states that when a network is randomly initialized and then trained to convergence, the linear
path connecting the initialization and the solution is monotonically decreasing in the training loss.
Specifically, we say that a network has the MLI property if, for all α1, α2 ∈ [0, 1] with α1 < α2,

L(θα1) ≥ L(θα2), where θα = θ0 + α(θT − θ0). (1)

Astonishingly, the MLI property holds for a majority of neural network architectures, optimizers and
learning problems that we observe in practice.

In the remainder of this paper, we seek to answer the question: what causes the MLI property
and when does it fail to hold?

2. Exploring & Explaining the MLI Property

In this section, we present several hypotheses that may provide explanations for monotonic parameter
interpolation and then conduct a series of experiments to test their validity. In each experiment, we
evaluate MLI only on the training set but note that the same results typically hold on the test set
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Table 1: Proportion of networks trained with Adam [18] that satisfy the MLI property, over increasing
learning rate. While networks trained with higher learning rates break the MLI property
more frequently, but the relationship with test performance is less clear.

LEARNING RATE PROPORTION MONOTONIC (%) TEST ACCURACY (%)

MNIST

0.00001 96.00 95.44
0.0001 89.39 96.97
0.001 62.00 96.64
0.01 50.75 90.19

CIFAR-10

0.00001 100.00 41.29
0.0001 85.25 45.67
0.001 78.57 45.08
0.01 56.00 31.01

as well. Throughout, we discretize the interval [0, 1] using 50 uniform steps to evaluate the MLI
property. Some additional hypotheses and empirical results are presented in Appendix B.

2.1. Problem Difficulty

The hypothesis put forward by Goodfellow et al. [11] to explain monotonic interpolation is that
the learning problem itself is sufficiently easy to optimize. Recent research has shown that over-
parameterized networks learn faster and, in some cases, have more linear learning dynamics [22].
Intuitively, the least well-behaved network regime is the critical parameterization regime, when the
network has just enough parameters to fit the data well.

Our experiments on parameter complexity explored this question on two fronts. First, we used
a fixed network size and varied the number of data points in the dataset. Second, we used a fixed
dataset size and varied the number of hidden units in a network of fixed depth. For the experiments
using varying dataset size, we trained fully-connected networks on the FashionMNIST dataset [34]
using SGD with a learning rate of 0.1. The networks had a single hidden layer with 1000 hidden
units, and we varied the dataset size from 10 up to the full size 60000. Figure 1 shows the linear
interpolation trained on varying dataset sizes. We observed that even when the training dynamics are
unstable and highly non-linear, the interpolation is still monotonically decreasing. We did not find any
trained networks that exhibited non-monotonic interpolations (on the training loss). Similarly, when
varying the size of the hidden layer from 1 unit up to 10000, there were few runs that violated the
MLI property. The non-monotonic interpolations were produced by the larger networks when using
larger learning rates (≥ 1). Overall, we did not find significant evidence that network architecture or
problem difficulty alone affect the MLI property.

2.2. Distance Moved During Optimization

Goodfellow et al. [11] only investigated the MLI property when using standard SGD. Here, we
extend our evaluation to include adaptive optimizers such as RMSProp and Adam [18]. We evaluated
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Table 2: Proportion of networks trained with SGD that satisfy the MLI property, over increasing
learning rate.

LEARNING RATE PROPORTION MONOTONIC (%) TEST ACCURACY (%)

MNIST

0.0001 100.00 95.31
0.001 100.00 96.60
0.01 100.00 97.10
0.1 39.21 96.27

CIFAR-10

0.0001 100.00 45.52
0.001 100.00 44.22
0.01 100.00 45.72

the effects of using adaptive gradient optimizers under different initialization schemes, learning rates,
and depth/width of fully connected networks. The results on the ratio of monotonicity breaks are
presented in Table 1 and Table 2. Throughout the experiments, the MLI property is violated more
frequently when using adaptive optimizers — and particularly at higher learning rates.

Figure 2: We plot distance traveled against mono-
tonicity for SGD (top), and for all op-
timizers (bottom). The MLI property
breaks more frequently when the param-
eters travel further from initialization.

We believe the reason for this is that the
parameters travel a shorter distance from the ini-
tialization when SGD is used in place of adap-
tive methods [1] or when a smaller learning rate
is used. If the Hessian of the network at ini-
tialization is nearly positive semi-definite, an
assumption that can be made rigorous and the-
oretically validated [5, 6], then the interpolation
will be monotonically decreasing as the func-
tion is locally convex about the initialization. In
Figure 2, we show that the distance travelled in
parameter space has a strong positive correlation
with the MLI property.

Moreover, a smaller step size decreases
the variance of the final iterates, an argument
we detail in Appendix D.1. Specifically, we
show that, within a noisy quadratic model, non-
monotonicity occurs half the time with fixed learning rates. Moreover, the severity (and thus ease of
detection) of the non-monotonicty increases with increasing learning rate.

2.3. Modern Architectures and Training Techniques

Finally, we present experiments on larger-scale neural network architectures. We trained VGG19 [31]
(without batch normalization) and ResNet-32 [13] (with batch normalization) on SGD with initial
learning rate of 0.1 and Adam with learning rate of 0.01 followed by the decay with factor of 2 every
60 epochs.
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Figure 3: A linearly interpolated path between ini-
tialization and final checkpoints with
larger scale architectures and different
optimizers.

The initialization-solution interpolations are
shown in Figure 3. The results show that the
MLI property may not persist on modern archi-
tectures. We hypothesize that these violations
may be due to the fact that (1) parameters may
travel far in larger-scale architectures, especially
those trained with adaptive optimizers, and (2)
ambiguity in how modern training techniques
affect the interpolation between initial and fi-
nal checkpoints (see next paragraph). However,
even when the MLI property breaks, the net-
works performs well on both training and test-
ing datasets, and it is unclear how the monotonic
interpolated path relates to the ease of training.
These results suggest that the original conclu-
sion in Goodfellow et al. [11], that the MLI prop-
erty is due to ease of training, may not be sufficient. Further study is necessary to understand the loss
landscape geometry globally.

Figure 4: A comparison of interpolations
(left) without batch normalization
and (right) with batch normaliza-
tion.

Batch normalization [15] standardizes the acti-
vation of the layer, making the network invariant to
the scale of the weights [2]. Batch normalization is
now considered a standard technique in training mod-
ern neural networks, but was invented after the work
of Goodfellow et al. [11]. We empirically analyzed
the effect of batch normalization under different ini-
tialization schemes, learning rates, and depth/width
of the fully connected networks on the MNIST [21]
and CIFAR-10 [19] datasets. We found that the MLI

property breaks more frequently when batch normalization is used; 83% and 58% of the time with and
without batch normalization (respectively), averaged over all other settings. We show the comparison
of the interpolations on a network with 8 hidden layers in Figure 4 with differing learning rates.

3. Conclusion

The MLI property, when the linear path connecting initial and final parameters after training decreases
monotonically, holds surprisingly often. In this paper, we extended previous studies of MLI by
exploring variations in datasets, architecture, and optimization. While the MLI property generally
persisted across these settings, we observed that final parameters that are far from initialization
systematically lead to violations of the MLI property. This observation points to exciting connections
with analysis of the loss landscape geometry of neural networks.
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Appendix A. Related Work

Monotonic linear interpolation. Our work follows up on the initial observation made by Good-
fellow et al. [11]. In their original study, a variety of architectures, activation functions, and training
objectives were evaluated. In addition to analyzing the phenomena empirically, Goodfellow et al.
[11] provide a qualitative analysis of MLI in a 1D deep linear model. They show that MLI property
will typically hold, despite negative curvature about initialization and disconnected manifolds of
global optima.

Linear connectivity. This work is inspired by empirical and theoretical advancements in under-
standing the loss landscape of neural networks. Much of this recent work has involved characterizing
mode connectivity of neural networks. In general, linear paths between modes cross regions of
high loss [11]. However, Draxler et al. [4], Garipov et al. [10] show that local minima found by
stochastic gradient descent (SGD) can be connected via piecewise linear paths. Frankle et al. [8]
further show that linearly connected solutions may be found if networks share the same initialization.
Kuditipudi et al. [20] posit dropout stability as one possible explanation for this phenomena. A
solution is dropout stable if the network can maintain a low loss, in spite of half the neurons in
each layer being removed (intuitively, using half its capacity). They show that local minima that
are dropout stable are piecewise linearly connected. They also construct an example where there is
no mode connectivity, demonstrating that the behavior is not a general property of neural networks.
Shevchenko and Mondelli [30] extend this result and show the loss landscape becomes increasingly
connected and more dropout stable with the increased depth of the network. Finally, Nguyen [26]
shows that every sublevel set of an overparameterized network is connected, implying that all global
minima are connected.

Note that the MLI property is distinct from these mode connectivity properties, where paths are
drawn between different final solutions instead of initialization-solution pairs. So far as we are aware,
no prior work has explored connections between the MLI property and mode connectivity.

Lottery tickets. The Lottery Ticket Hypothesis [7] states that a dense randomly initialized network
contains a sub-network that can match the test error of the full network when trained in isolation.
Frankle et al. [8] showed connections between the lottery ticket hypothesis and linear mode connec-
tivity used to measure stability to SGD noise. Follow-up works have improved stability of the lottery
ticket hypothesis for large networks [9] and proved that the lottery ticket hypothesis holds for large
networks even without training the subnetwork [25].

Loss landscape geometry. Recent analysis argues that there exists a small subspace at initialization
in which the network converges [5, 12]. Li et al. [24] showed that some of these spaces can be
identified by learning in a random affine subspace. Fort and Scherlis [6] showed that the success
of these random spaces related to the Goldilocks zone that depends on the Hessian at initialization.
In a loose sense, the MLI can be considered a special case of these results, wherein a 1D space is
sufficient for training to succeed.

It has long been argued that flatter minima lead to better generalization [14] with some caveats [3].
Recent work has shown that (full-batch) gradient descent with large learning rates is able to find
flatter minima, by overcoming regions of initial high curvature [23]. Intuitively, gradient descent
breaks out of one locally convex region of the space and into another — suggesting that a barrier in
the loss landscape should have been surpassed. However, in this paper, we show that such barriers do
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not typically appear when interpolating between initialization and the final solution, unless the new
parameters are sufficiently far from initialization.

Optimization algorithms. There has been empirical success in applying weights averaging and
linear interpolation during training. While Polyak and Juditsky [27], Ruppert [28] investigated
averaging weights in convex optimization, these techniques have empirically proven useful in the
training of deep neural networks [16, 36]. Stochastic Weight Averaging [16] performs tail averaging
at the end of the final epochs. Similarly, the Lookahead optimizer [36] applies interpolation in
weight space throughout training. In the case of Lookahead optimizer, it was shown that the linear
interpolation stabilizes the optimization process and the interpolated checkpoints are typically linearly
connected throughout optimization. Amari et al. [1] recently showed that for linear regression, natural
gradient descent travels more in parameter space, as measured by Euclidian distance, compared to
gradient descent. This agrees with our hypothesis that networks which move far violate MLI.

Appendix B. Additional Explanations and Experiments

In our exploration of the MLI property we performed many additional experiments. Generally, we
found that turning common knobs of neural network training did not have a significant effect on the
likelihood of a network satisfying the MLI property. For example, varying activation functions, loss
functions, batch size, regularization, and different forms of initialization had no significant effect on
the MLI property. In this section, we present a few of the more interesting additional experiments
that we performed.

B.1. ∆-Monotonicity

Goodfellow et al. [11] provided primarily qualitative evidence of MLI, by plotting L(θα) with
discretizations of [0, 1] using varying resolutions. While we define MLI as a continuous property, we
would like quantitatively define the notion of monotonicity. We propose a simple metric by which to
measure monotonicity of initialization-solution interpolations.

Definition 1 (∆-monotonicity) Consider a linear parameter interpolation parameterized byα,θ1,θ2,
with corresponding (differentiable) loss function L. The path is ∆-monotonic if for all pairs of points
α1 < α2 ∈ (0, 1) with ∂L

∂α1
> 0 and L(α2) = L(α1) and L(α′) > L(α1) for all α′ ∈ (α1, α2), then

maxα′∈(α1,α2) L(α′) < ∆.

Intuitively, the above definition states that any concave bump in the loss over the interpolation
path should have a height upper-bounded by ∆. This metric is useful as we can approximate it
well numerically by stepping along the interpolation path in fixed intervals to find α1 and α2. We
are typically interested in the largest ∆ ≥ 0 for which the initialization-solution interpolation is
∆-monotonic.

In Figure 5 we display the distance from initialization against the largest ∆ achieving ∆-
monotonicity. Each point represents a neural network that achieved a minimum training loss of
at most 0.01, with varying architectures, optimizers, datasize, and learning rate. All points with
max ∆ > 0 are coloured in orange, and max ∆ = 0 are blue.

B.2. Problem Difficulty
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Figure 6: A heatmap of max ∆ as a function of the learning rate and hidden size.

(a) Learning rate: 0.1,
Hidden size: 3

(b) Learning rate: 0.3,
Hidden size: 10000

(b) Learning rate: 1.0,
Hidden size: 10000

Figure 7: The three models which violate the MLI property in the varying data size experiments.
Two of the models (a and c) fail to converge to a local minima. The final model (b) has a
large learning rate with 10000 hidden units.
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Figure 5: The maximum ∆-monotonicity
achieved against distance from
initialization.

Additional results on varying data size
Here we include some additional figures sum-
marizing the results on varying data size. In
Figure 6 we display a heatmap of max ∆ as a
function of the learning rate and hidden size of
fully-connected neural networks trained on Fash-
ionMNIST. There are only three models which
violate the MLI property, these are detailed fur-
ther in Figure 7.

MLI vs. label corruption. When the dataset
is sufficiently simple, the learning problem is
easy and SGD consistently finds solutions with
the MLI property. To explore this hypothesis,
we trained neural networks with label corruption.
We trained a neural network with two hidden layers each with 1024 units. We used SGD with a
learning rate of 0.1 and momentum of 0.9. The labels were corrupted by uniformly sampling labels
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for some proportion of the data points. We varied the label corruption from 0% to 100% in 2.5%
intervals. We varied the proportion of label corruption from 0% up to 100%. At all levels of label
corruption, the MLI property persisted. One possible explanation for this result, follows from the
fact that logit gradients cluster together by logit index — even for inputs belonging to different true
classes [5]. This provides an explanation for gradient descent exploring a low dimensional subspace
relative to the parameter space. Therefore, corrupting the label will not disrupt this clustering at
initialization and, as empirically verified, is unlikely to prevent the MLI property from holding.

B.3. Learning Dynamics

Breakouts break MLI property. Lewkowycz et al. [23] observed a region of critical large learning
rates wherein gradient descent breaks out of high-curvature regions at initialization, and explores
regions of high-loss before settling in a low-loss region with lower curvature. We might expect that
such trajectories lead to initialization-solution pairs that do not satisfy the MLI property. However, in
Figure 1, we observed several runs where SGD overcame large barriers but the MLI property holds.
We consider our findings here to be inconclusive in general, and hope to explore this further in future
work.

Appendix C. Experiment Details

Throughout, we evaluated interpolations using 50 equally spaced steps along the line connecting
initialization and final solution.

Problem difficulty experiments. For the experiments evaluating problem difficulty (parameter
complexity and label corruption), we trained fully-connected networks on the FashionMNIST dataset.
In all cases, the networks used ReLU activations and were trained with batch sizes of at most 512
(depending on dataset size), and for 200 epochs. Learning rates were fixed throughout training.

When varying the dataset size, we trained models on random subsets of FashionMNIST with
sizes in the set {10, 30, 100, 300, 1000, 3000, 10000, 30000, 60000}. We also evaluated over learn-
ing rates in the set {0.03, 0.1, 0.3, 1.0}. When varying the number of hidden units, we evalu-
ated networks with sizes in {10000, 3000, 1000, 300, 100, 30, 10, 3, 1} and learning rates in the set
{0.03, 0.1, 0.3, 1.0, 3.0}. For experiments with varying levels of label corruption. We trained a
fully-connected network with 2 hidden-layers each of width 1024.

Distance moved experiments. We conducted our MNIST & CIFAR-10 experiments with fully
connected networks that had {1, 4, 8, 16} hidden layers with {128, 1024, 4096} hidden units in each
layer. We used the activation function of ReLU, tanh, and sigmoid. We further tried both with batch
normalization (with batch sizes of 128 datapoints) and without batch normalization. We used Xavier
and Kaiming initializations with 3 random seeds. We trained all neural networks for 100 epochs.

Appendix D. Infinitely Wide Networks

Limit of infinite width We can lean on prior analysis from Lee et al. [22] to show that infinitely
wide fully-connected networks have the MLI property. In this setting, we assume that the fully-
connected network has the following layer sizes d→ n→ . . . n→ k, with n→∞. We also assume
that the loss function is given by L(x,y;θ) = 0.5‖fθ(x)− y‖2.
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First, we have the following result, first proved in Lee et al. [22], [some additional assumptions
are needed which are excluded here for now],

Lemma 2 (INFORMAL - Theorem G.1 [22]) For all δ > 0, there exists T ∈ N (and some other
constants, C(δ)), such that with probability at least 1− δ,

‖θ0 − θt‖2 ≤ C(δ)n−1/2,

for all t > T , and learning rate O(1/n).

From this, we can show that in the limit of infinite width, gradient descent with a suitably small
learning rate finds a solution which is linearly connected to the initialization.

Intuitively, this result holds as in a region near a minimum the objective is locally convex. As the
width of the network grows, the minimum found by gradient descent becomes arbitrarily close to
initialization and thus the linear interpolation is acting over a convex function.

More formally, writing ∆θ = θt − θ0, we have,

d

dα
L(x,y; θ0 + α(θt − θ0)) = 0.5

d

dα
[‖f(x; θ0) + αJ(x;θ0)∆θ − y +O(‖∆θ‖2)‖],

= α∆θTJ(x;θ0)(f(x; θ0)− y) +O(‖∆θ‖2),
= α∆θT [J(x;θ0)(f(x; θ0)− y) +O(‖∆θ‖2),

= α∆θT
∂

∂θ
L(x,y;θ0) +O(‖∆θ‖2),

where J(θ) denotes the Jacobian matrix of the network (with respect to the weights). If ∆θ is
anti-aligned with initial gradient of the loss, then this term is negative for all α and sufficiently small
∆θ (equivalently, large n).

Now, consider the Taylor expansion,

L(x,y;θ0) = L(x,y;θ∗) + 0.5∆θ>∇2L∆θ +O(‖∆θ‖3)

As n → ∞, θ∗ → θ0 by Lemma 2, and thus as θ∗ is a minimum the function is convex locally.
Therefore, d

dαL(x,y; θ0 + α(θt − θ0)) < 0, using the convexity definition.

D.1. A Noisy Quadratic Model

The noisy quadratic model (NQM) [29, 33, 35] serves as a useful guide for understanding the effects
of stochasticity in asymptotic neural network training. Indeed, Zhang et al. [35] demonstrate that the
NQM makes predictions that are aligned with experimental results on deep neural networks. Using
this model, we can provide an explanation for one possible cause of non-monotonicity: an inflection
point of the interpolation curve with positive second derivative close to α = 1. Let our loss function
be as follows:

L(θ) =
1

2
θ>Kθ, (2)

where θ ∈ Rd and K ∈ Rd×d. The optimization algorithm receives stochastic gradients Kθ + c,
where c ∼ N (0,K). Consider the iterates {θi}Ti=0 from the gradient descent. With a sufficiently
small learning rate, the expected value of the iterate converges i.e. limt→∞ E[L(θt)] = 0.
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MONOTONIC LINEAR INTERPOLATION

Figure 8: For smaller learning rates, the standard deviation of the distribution goes down. Hence
the probability that P ((c2 − c1)

>Kc2) < ε for some small ε goes up (indicating non-
monotonicity that is hard to detect.

Also consider interpolating between arbitrary c1 and c2. The loss along the interpolation direction
is L(c1 + α(c2 − c1)). We compute the derivative with respect to α:

∂L
∂α

(c1 + α(c2 − c1)) =
∂

∂α

[
1

2
(c1 + α(c2 − c1))

>K(c1 + α(c2 − c1))

]
(3)

= (c2 − c1)
>K(c1 + α(c2 − c1)) (4)

Hence, the loss is monotonically decreasing if, for all α ∈ [0, 1],

(c2 − c1)
>K(c1 + α(c2 − c1)) < 0 (5)

In the one dimension case, this equation is saying that interpolation is non-monotonic when c1 and
c2 are on the opposite side of the minima. More generally, note that because ∂L

∂α is linear in α, the
interpolation is monotonically decreasing if and only if both of these conditions at the endpoints are
satisfied:

(c2 − c1)>Kc1 < 0 (6)

(c2 − c1)>Kc2 < 0 (7)

These two conditions correspond to a negative derivative with respect to α at c1 and c2. Since
we choose a learning rate so that the loss decreases in expectation (and hence the derivative is
anti-aligned with c2 − c1 at initialization), it suffices to check just the second condition:

(c2 − c1)>Kc2 < 0 (8)

As in Zhang et al. [35], we use c1 = θ0 ∼ N (0, I). As t → ∞, the point c2 ∼ N (0, ηK), where
η is the final learning rate and the random variable comes from the noise in the gradient. This
is almost a symmetric distribution about 0, so the probability we have monotonic interpolation is
roughly 1

2 . This is empirically verified in Figure 8. A smaller learning rate means that the distribution
of (c2 − c1)>Kc2 has less variance. Because we discretize α when we check for MLI, we have
P ((c2 − c1)>Kc2) < ε increase as the learning rate decreases for some small ε.
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