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Abstract
We analyze the convergence rate of gradient flow for solving minU∈Rd×d,V ∈Rd×d

1
2‖UV

>−M‖2F
in the case M is full-rank, and U and V are randomly initialized. In contrast to previous work, our
analysis does not require any balancing regularizer or additive isotropic noise. Our key idea is to
couple the trajectory of the gradient flow with an ideal trajectory induced by a symmetric training
process. We believe this technique will have applications in other problems.

1. Introduction

This paper studies the convergence rate of applying gradient descent to solve the asymmetric matrix
factorization

min
U∈Rd×d,V ∈Rd×dV

1

2
‖UV > −M‖2F

The main difficulties are 1) the problem is non-convex and 2) this problem is not smooth with respect
to U and V because the magnitudes of them can be imbalanced. This is a prototypical problem that
has the difficulty in analyzing the convergence of optimization method for homogeneous models,
such as deep neural networks. See [2] for more discussions.

Du et al. [2] showed the global convergence of gradient flow but rate is given, but no rate was
given. Their analysis relies on the geometric result that all saddle points in the objective function is
strict [3], and then invokes the stable manifold theory used in [5]. However, to prove the polynomial
convergence rate, the approach that solely relies on the global geometric will fail because there
exists a counter example [1].

Some previous work, e.g., [4] changed the gradient descent algorithm to noisy gradient descent
by adding additive isotropic noise, which can help escape strict saddle points and bypass the expo-
nential lower bound in [1], and then added an additional regularizer

1

8
‖U>U − V >V ‖2F

to the objective function to ensure balancedness between U and V throughout the training process.
With these two artificial modifications, one can prove a polynomial convergence rate. Another line
of work, e.g., [7], showed one can first uses spectral initialization to find a near-optimal solution,
then starting from there, gradient descent converges to an optimum with a linear rate. However, in
has been found empirically that these modifications are not necessary. Randomly initialized gradient
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descent without any additional regularization or additive noise converges to the global minimum
with a linear rate. See Figure 1 in [2].

To our knowledge, the only result for randomly initialized gradient is by Du et al. [2] who
proved the global convergence rate for the case M has rank 1, and U and V are two vectors. In this
case, one can reduce the problem to the dynamics of 4 variables, which can easily characterized.
Unfortunately, it is very difficult to generalize their analysis to the high rank scenario.

In this paper, we take step to understand the global convergence rate of randomly initialized
gradient descent. We analyze continuous time gradient descent in the case M has full rank. Our
main result is the following.

Theorem 1 There exists universal constants δ and δ′ such that the following statement is true.
Suppose U0 and V0 are two random matrices whose coefficients uij and vij are independent, and
are of Gaussian distribution with mean 0 and variance σde−δκ lnκd. Then with high probability, the
integral curve generated by (1) and (2), called U(·) and V (·), converges at the global optimal point
at rate

f(U(t), V (t)) ≤ ε‖Σ‖2, ∀t ≥ δ′
(
κ

σd
ln(κd) +

ln 1
ε

σd

)
.

To our knowledge, this is the first quantitative global convergence result of gradient descent for
asymmetric factorization. While our result only holds for gradient flow, in the full version of the
paper, we will present result for gradient descent with a constant step size.

2. Problem Setup

Let Σ ∈ Rd×d be a non-singular matrix with singular value σ1 ≥ · · · ≥ σd > 0, and U and V are
two matrices with the same size. We study the objective function

f(U, V ) :=
1

2
‖Σ− UV >‖2F ,

and use gradient descent to optimize U and V . In this paper analyze the convergence rate of con-
tinuous time gradient descent (gradient descent with stepsize → 0), a.k.a., gradient flow. More
precisely, we deal with the ODE

U̇ = − ∂f
∂U = (Σ− UV >)V ; (1)

V̇ = − ∂f
∂V = (Σ− UV >)>U. (2)

Equations (1) and (2) define a smooth vector field of manifoldM := Rd×d × Rd×d. Suppose
θ : D → M is the maximal flow generated by the vector field, where D ⊆ R ×M. Our goal is
to prove the global convergence speed of f ◦ θ(·,M0) for some initial M0 with large probability,
where the probability is induced by the initial distribution.

If Σ is symmetric and U = V , the Section 4 will show that the integral curve converges linearly
to the global optimum. However, proving the analogue result for the asymmetric case is significantly
more difficult.
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2.1. Notations

We use σ1 ≥ · · · ≥ σd to represent the singular values of matrix Σ, where Σ is assumed to be a
diagonal matrix. With a little abuse of notation, we use σi(·) and λi(·) to represent the ith singular
value and eigenvalue of a given matrix. Define κ : σ1σd as the condition number of Σ.

3. Main Difficulty and Technique Overview

Let the singular value decomposition of Σ is Σ = ΦΣ′Ψ> where Σ′ = diag(σ1, · · · , σd). Also, we
suppose U = ΦU ′ and V = ΨV ′. We can rewrite (1) and (2) into

U̇ ′ = (Σ′ − U ′V ′>)V ′;

V̇ ′ = (Σ′ − U ′V ′>)>U ′,

which are exactly the same as the original equations. Hence, we can assume, without loss of gen-
erality, Σ = diag(σ1, · · · , σd). However, we cannot further assume U = V , since Φ and Ψ are
unknown.

The first difficulty is that the smallest singular value of U and V are not monotonically increas-
ing anymore, which deprives us of the ability to analyze the singular value initially.

In our approach, we will study two auxiliary curves A := U+V
2 and B := U−V

2 , we have their
own evolution equations:

Ȧ = (Σ−AA> +BB>)A− (AB> −BA>)B; (3)

Ḃ = −(Σ−AA> +BB>)B + (AB> −BA>)A. (4)

It comes out that the norm of B is monotonically decreasing. However, even if B is extremely
small, we cannot simply apply trivial inequalities on the last terms of (3) and (4), since the algorithm
will diverge if we reverse the sign of the last terms. We finally divide the whole integral curve into
three parts, each of which is carefully analyzed in the corresponding subsections in Section 5.

4. Warm up: symmetric case

First of all, we can give a tight bound on symmetric case, i.e. the case when initial point U0 = V0. In
this case, the symmetry of (1) and (2) implies that U ≡ V during the evolution. Define S := UU>.
Then fortunately, we have

Ṡ = (Σ− S)S + S(Σ− S). (5)

Define Msym := Rd×dsym as the manifold of symmetric matrices in Rd×d. Then we can get a
maximal flow ϑ : D′ →Msym generated by smooth vector field (5), where D′ ⊆ R×Msym.

Here are two useful lemmas.

Lemma 2 Suppose P : (−a, a) → Msym is a smooth matrix curve. Suppose the differential
equation

Ṡ(t) = P (t)S(t) + S(t)P (t)

with “initial” point S(0) � 0 has a solution S. Then ∀t ∈ (−a, a), S(t) � 0. Moreover, if
∀t ∈ (−a, a), P (t) is a positive semi-definite matrix, then the minimal and the maximal singular
values of S is non-decreasing.
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With lemma 2, we know that the matrices S and Σ−S remain positive semi-definite if they are
initially PSD. Hence, they are always bounded by Σ, which implies the domain of ϑ(·, S) is R.

Lemma 3 Suppose S1(0), S2(0) are two matrices in Msym such that S1(0) � S2(0). Define
Si(t) := ϑ(t, Si(0)),∀i ∈ {1, 2}, then ∀t in domain, we have S1(t1) � S2(t1).

Now, given arbitrary positive definite matrix S, we have σd(S)I � S. By applying lemma 3,
we have ∀t ≥ 0, ϑ(t, σd(S)I) � ϑ(t, S). Because I is always commutable with Σ, we can give
analytical expression on them and their eigenvalues. Thus the tight bound for the largest singular
value of Σ− S follows.

Theorem 4 Suppose α1 and αd are the largest and smallest singular value of U0. Then ∀t > 0, we
have

diag

(
1− σi

α2
1

e2σit + σi
α2
1
− 1

)
i∈[d]

� Σ− U(t)U>(t) � diag

(
1− σi

α2
d

e2σit + σi
α2
d
− 1

)
i∈[d]

. (6)

5. Asymmetric case

In this section, we analyze the convergence property of θ by separating the whole process into three
stages.

• In the first stage, the initial matrices are quite small, and we will prove that θ(t,U)+θ(t,V )
2 are

quite close to θ
(
t, U+V

2

)
. If this is true, the smallest singular value of the former matrix can

be relatively big, while the difference between U and V are quite small.

• In the second stage, we will prove that the smallest singular value ofA increases considerably
fast, the function value decreases to a small value, while the difference B keeps being small.

• The third stage is the local linear convergence of the integral curve, by using the continuous
version of PL inequality.

We only present proof sketch here. The full proof is deferred to appendix.

5.1. Initialization

We use Gaussian distribution to generate d×dmatrices U and V element-wisely and independently.
According to Corollary 2.3.5 and Theorem 2.7.5in Topics in random matrix theory[6], we observe
that ∃c1 > 0, with high probability, the smallest singular values of U ,V, U+V2 , U−V2 are larger than

1
c1
√
d

, while the largest singular values of U ,V, U+V2 , U−V2 are smaller than c1
√
d.

We assume the integral curve starts at the point (U0, V0) := (εU , εV) with sufficiently small ε.

5.2. Stage 1

In the first stage, we consider about the center of the original curve (U(t), V (t)), say A(t) =
U(t)+V (t)

2 . In the previous section, we have analyzed the curve (A(t), A(t)) := θ
(
t,
(
U0+V0

2 , U0+V0
2

))
.

If we can prove that the error E(t) := A(t) − A(t) is small, then A will increase almost as fast as
A.
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The intuition of the proof is that the velocity vector at every point of A(·) is extremely close to
that of the symmetric case. Hence, even if the error increases exponentially, it is still quite small
at the first stage. Please see equation (17) in appendix for details. Finally, at the end of stage 1,
the difference B becomes much smaller than its initial value, while the smallest singular value of A
becomes much larger.

5.3. Stage 2

In this section, we would like to prove three things.

• The smallest singular value of A continuously increases to a constant fraction of
√
σd.

• The loss of the function f decreases to a small fraction of σ2d.

• The norm of B remains small.

These three facts are simple derivations of their corresponding inequality (21), (10) and (23).

5.4. Step 3

We will prove linear convergence in this stage.
First of all, because the function value 1

2‖Σ − UV
>‖2 is small, we could prove the smallest

eigenvalues of U and V are small if U and V are close to each other, which in turn implies PL
inequalities, a sufficient condition of linear convergence.

On the other hand, if the function value is small, we will prove the increasing speed of U −V is
small. By combining these two observations together, the proof of linear convergence completed.

6. Conclusion

In this paper we give the first global convergence rate analysis of gradient flow for solving asym-
metric matrix factorization. There are two terms, κ

σd
ln (κd) represents the initial stage and ln(1/ε)

σd
represents the final local convergence stage.

In the full version of this paper, we will further extend the result to the case where one uses a
positive step gradient descent to optimize the objective function. Furthermore, we will also study
the case M is of low rank and U and V are low rank factors. Our analysis our highlight the
importance of using a trajectory-based analysis, which gives a more fine-grained characterization
than the one given by the global geometric approach. We believe that based on our result, one
can also prove global convergence rate of gradient decent for solving asymmetric matrix sensing,
asymmetric matrix completion, and other related problems. Note for these problems, empirically,
randomly initialized (stochastic) gradient decent often gives satisfying outcomes, and no additional
regularization or additive noise is needed.
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Appendix A. Proofs for Section 4

Proof [Proof of Lemma 2] It is well-known that the linear differential equation

Ḣ(t) = P (t)H(t)

with “initial” pointH(0) = I has a solutionH . Consider about the curve S∗(t) := H(t)S(0)H>(t).
We have

Ṡ∗(t) = P (t)S∗(t) + S∗(t)P (t);

S∗(0) = S(0).

By the uniqueness of differential equation, S(t) ≡ S∗(t) � 0.
Moreover, define σsd(t) := σmin(S(t)) and σs1(t) := σmax(S(t)). Define σpd and σp1 similarly.

Then ∀t0 ∈ (−a, a), S(t0+ε) = S(t0)+εP (t0)S(t0)+εS(t0)P (t0)+o(ε) = (I+εP (t0))S(t0)(I+
εP (t0)) + o(ε), which comes out immediately

(1 + εσpd(t0))
2σsd(t0) + o(ε) ≤ σsd(t0 + ε) ≤ (1 + εσp1(t0))

2σsd(t0) + o(ε);

(1 + εσpd(t0))
2σs1(t0) + o(ε) ≤ σs1(t0 + ε) ≤ (1 + εσp1(t0))

2σs1(t0) + o(ε).

In other words,

2σpd(t0)σ
s
d(t0) ≤ lim inf

ε→0

σsd(t0 + ε)− σsd(t0)
ε

≤ 2σp1(t0)σ
s
d(t0);

2σpd(t0)σ
s
1(t0) ≤ lim sup

ε→0

σs1(t0 + ε)− σs1(t0)

ε
≤ 2σp1(t0)σ

s
1(t0).

Proof follows by writing it into integral form.

Proof [Proof of Lemma 3] Define curve T (t) := S2(t)− S1(t). Then

Ṫ = (Σ− S2)S2 − S2(Σ− S2)− (Σ− S1)S1 − S1(Σ− S1)
= Σ(S2 − S1) + (S2 − S1)Σ + 2S1S1 − 2S2S2.

= (Σ− S1 − S2)(S2 − S1) + (S2 − S1)(Σ− S1 − S2).

By applying lemma 2 on T , the proof follows.

Appendix B. Proofs for Section 4

B.1. Stage 1

The first stage is the interval t ∈ [0, t1], where t1 is a parameter we will define later.
First of all, define A(t) := θ

(
t,
(
U0+V0

2 , U0+V0
2

))
. By applying lemma 3, we could give bound

on singular values of A.

Lemma 5 If we assume A(0)A>(0) � σdI , we have√√√√ σde2σdt

e2σdt +
c21dσd
ε2
− 1
≤ σd(A) ≤ σ1(A) ≤

√
σ1e2σ1t

e2σ1t + σ1
ε2c21d

− 1
. (7)
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Proof We first compute the analytical formula for singular values of Ad(t) := θ
(
t, ε
c1
√
d
I
)

and

A1(t) := θ
(
t, εc1

√
dI
)

. According to lemma 3, we have AdA>d � AA
> � A1A

>
1 . Take Ad as

an example. Because Ad is commutable with Σ, we can assume Ad and Σ are initially diagonal.
Then, for every singular value σi of Σ, it corresponds to a singular value of Ad(0)A>d (0), say aid(0),
which is exactly ε2

c21d
. Because in this case, every element on the diagonal is independent with each

other, we can simply solve the ODE and obtain

aid(t) =
σie

2σit

e2σit +
c21dσi
ε2
− 1

. (8)

By viewing it as function of σi, we have a1d(t) ≤ a2d(t) ≤ · · · ≤ add(t). Actually, define

g(σ) := σe2σt

e2σt+
c21dσ

ε2
−1

, we have g′(σ) =
e4σt−e2σt+2tσe2tσ

(
c21dσ

ε2
−1
)

(
e2σit+

c21dσi

ε2
−1
)2 , which is larger than 0, since

t > 0 and A(0)A>(0) � σdI .
Hence a1dI � AA

>. The upper bound comes out similarly.

Remark 6 To satisfy the assumption in lemma 5, we only need to choose small ε. More precisely,
ε2 ≤ σd

c21d
.

Suppose α ∈ (1, 0) is a parameter we will define later, the first stage is defined to be {t ≥
0|a11(t) ≤ ασd}, i.e. t ∈ [0, t1] where

t1 :=
ln
(

σ1
ε2c21d

− 1
)

+ ln κ−α
κ

2σ1
, (9)

where κ := σ1
σd

. We will prove later that σd(A) is of order ε1−
1
κ .

B.1.1. BOUND ON DIFFERENCE

We have observed that σd(A) has increased from O(ε) to Θ(ε1−
1
κ ), if we can prove the error

E := A − A is small, we could prove that σd(A) is also Θ(ε1−
1
κ ). Before analyzing the error E,

we have to bound another quantity B for preparation. According to equation (4), we have

˙‖B‖2 =
〈
Ḃ, B

〉
+
〈
B, Ḃ

〉
= −2

〈
B, (Σ−AA> +BB>)B − (AB> −BA>)A

〉
≤ −2

〈
B, (Σ−AA> +BB>)B

〉
, (10)

where the last inequality come from the simple fact that ∀R ∈ Rd×d, Tr(RR> −RR) =
∑
i,j

(ri,j −

rj,i)
2 ≥ 0.
Now, we assume that AA> � α′σdI in the first stage, where α′ ∈ (α, 1) is a parameter we will

define later. Then Σ−AA>+BB> � (1−α′)σdI , which implies that ˙‖B‖2 ≤ −2(1−α′)σd‖B‖2.
By solving the differential equation, we have

‖B(t)‖2 ≤ e−2(1−α′)σdt‖B(0)‖2. (11)

8
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B.1.2. BOUND ON ERROR

To analyze the curve of A, we define another curve φ as following.

φ(0,M) = M ; (12)

φ(t, φ(s,M)) = φ(t+ s,M); (13)
∂φ

∂t

∣∣∣∣
(t0,M)

= F (φ(t0,M)), (14)

where F (M) := (Σ −MM>)M . By taking derivative of s = 0 in equation (13), we obtain an
equation we will use later:

∂φ

∂M

∣∣∣∣
(t,M0)

◦ F (M0) = F (φ(t,M0)). (15)

Then, define a function γt(s) := φ(t− s,A(s)), where t is a constant here.
Now we have

A(t)−A(t) = γt(t)− γt(0)

=

∫ t

0
γ̇t(s)ds

=

∫ t

0
−F (φ(t− s,A(s))) +

∂φ

∂M

∣∣∣∣
(t−s,A(s))

◦ Ȧ(s)ds

=

∫ t

0

∂φ

∂M

∣∣∣∣
(t−s,A(s))

◦
(
Ȧ(s)− F (A(s))

)
ds (16)

=

∫ t

0

∂φ

∂M

∣∣∣∣
(t−s,A(s))

◦
(
BB>A−AB>B +BA>B

)
(s)ds. (17)

Here (16) comes from (15), and (17) comes from (3) and (14). The following lemma gives a
bound for the largest singular value of ∂φ

∂M

∣∣∣
(t−s,A(s))

.

Lemma 7 If ∀t ∈ [0, t1], φ(t,M0)φ(t,M0)
> � σd

√
2

2 I , then ∀D ∈ Rd×d, t ∈ [0, t1],∥∥∥∥∥ ∂φ

∂M

∣∣∣∣
(t,M0)

◦D

∥∥∥∥∥ ≤ eσ1t‖D‖.
Proof Because φ is the flow generated by gradient field F , it is natural to consider the smoothness
of the function fsym(U) := 1

2f(U,U), whose gradient field is exactly F .
SupposeH is the Hessian operator of fsym, then ∀∆ ∈ Rd×d, we have

H(U) ◦ (∆,∆) = −
〈

Σ− UU>,∆∆>
〉

+
1

2

∥∥∥U∆> + ∆U>
∥∥∥2 , (18)

which is upper bounded by σ1‖∆‖2 and lower bounded by −σ1‖∆‖2 if 0 � UU> � σd
√
2

2 I � Σ.
This exactly implies σ1-smoothness of this function.

9
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Then

∂φ

∂M

∣∣∣∣
(t0,M0)

=

∫ t0

0

∂2φ

∂M∂t

∣∣∣∣
(s,M0)

ds

=

∫ t0

0
H(φ(s,M0)) ◦

∂φ

∂M

∣∣∣∣
(s,M0)

ds.

Take the norm and we have∥∥∥∥∥ ∂φ

∂M

∣∣∣∣
(t0,M0)

◦D

∥∥∥∥∥ ≤
∫ t0

0
σ1

∥∥∥∥∥ ∂φ

∂M

∣∣∣∣
(s,M0)

◦D

∥∥∥∥∥ ds.

Because ∂φ
∂M

∣∣∣
(0,M0)

◦D = D, the proof follows by simply solving the ODE above.

Now, choose α′ ≤
√
2
2 and we can bound equation (17) by

‖A(t)−A(t)‖ ≤
∫ t

0
eσ1(t−s) · 3

√
α′σde

−2(1−α′)σds‖B(0)‖2ds

≤ eσ1t
3
√
α′

κ
√
σd
ε2c21d

2.

Because eσ1t ≤ eσ1t1 =

√(
σ1

ε2c21d
− 1
)
κ−α
κ ≤ 1

εc1

√
σ1
d , we have

‖A(t)−A(t)‖ ≤ 3
√
α′√
κ
εc1d

1.5. (19)

B.1.3. SUMMARY FOR THE STAGE 1

Stage 1 is defined to be t ∈ [0, t1], where t1 :=
ln

(
σ1

ε2c21d
−1
)
+ln κ−α

κ

2σ1
by (9). According to the

definition, in this stage, σmax(A) ≤ √ασd.
By choosing ε = 1

ξ

√
σd
c21d

for some ξ > 2 and 0 < α < α′ ≤
√
2
2 , we can lower bound eσ1t1 by

C1

√
σ1

ε2c21dκ
for some universal constant C1 ∈ (0, 1) (independent of ξ). Furthermore, there exists

universal constant C2 > 0 such that σmin(A(t1)) ≥ C2

√
σdξ

1
κ−1

c21d
.

Recall that ‖A(t) − A(t)‖ ≤ 3
√
α′√
κ
εc1d

1.5 = 1
ξ ·

3
√
α′σd√
κ

d. To make σmax(A) ≤
√
α′σd, we

only need to choose large ξ such that
√
α+ 1

ξ
3d
√
α′√
κ
≤
√
α′ by triangle inequality. Hence, choosing

ξ ≥
√
α√

α′−
√
α

3d√
κ

is appropriate.

Finally, we would like to give a lower bound of σmin(A(t1)). Triangle inequality implies that
σmin(A(t1)) ≥ 1

ξ

(
C2ξ

1
κ

√
σd
c21d
− 3
√
α′σd√
κ

d
)

. Then, there exists universal constant C3, C4 > 0, such

that ∀ζ > C3, choosing ξ = ζ
(
3
√
α′d2c21
C1
√
κ

)κ
makes σmin(A(t1)) ≥ C4ξ

1
κ
−1
√
σd
c21d

.

10
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Proposition 8 ∀0 < α < α′ ≤
√
2
2 , if we choose ε = 1

ξ

√
σd
c21d

, where

ξ ≥ max

{
2,

√
α√

α′ −
√
α

3d√
κ
,C3

(
3
√
α′d2c21
C1
√
κ

)κ}
,

we have σmin(A(t1)) ≥ C4ξ
1
κ
−1
√
σd
c21d

.

B.2. Stage 2

Stage 2 is defined to be t ∈ [t1, t2], where t2 is a parameter we will define later. In this stage, we
hope to prove 1) the smallest eigenvalue of AA> becomes a constant multiple of σd, 2) the loss
function will be smaller than σ2

d
9 , 3) ‖B‖ is still pretty small. The intuition is that if we define

S := AA>, we have

Ṡ = PS + SP −QBA> +AB>Q, (20)

where P := Σ− AA> +BB> and Q := AB> −BA>. Define s as the smallest eigenvalue of S,
then

ṡ ≥ 2σds− 2s2 − 4σmax(S)‖B‖2. (21)

If we can prove σmax(S) cannot be greatly larger than 2σ1 and ‖B‖2 is extremely small, we can
observe that s becomes a constant fraction of σd at a fast speed.

Now, at the beginning of the second stage, s(t1) ≥ C2
4ξ
−2+ 2

κ
σd
c41d

2 , while

‖B(t1)‖2 ≤
(
e−2σdt1

)(1−α′)
ε2c21d

2

≤ C
− 2(1−α′)

κ
1 ξ−2−

2(1−α′)
κ dσd

≤ 1

C2
1

· ξ−2−
2(1−α′)

κ dσd, (22)

which is much smaller than s(t1).
To give an upper bound for ‖B‖2 in the second stage, we also need to lower bound the smallest

eigenvalue of P according to inequality (10). For convenience, we call P the complementary matrix.
Then

Ṗ = −(AA> +BB>)P − P (AA> +BB>)

−(AB> +BA>)Q+Q(AB> +BA>). (23)

The first line implies something like shrinking, while the second line is extremely small. All
these observations suggest that the minimal eigenvalue of P cannot be a huge negative number.

With all preparation above, we can prove a fast convergence speed at stage 2. Please see the
subsections for details.

11
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B.2.1. BOUND WITH ASSUMPTIONS

We first make two assumptions, and we will verify these two assumptions later.

• s(t) ≥ s(t1) in the second stage. Also, AA> � 2σ1I .

• There exists C5 > 0, such that during the second stage, ‖B‖2 ≤ C5ξ
−2dσd.

Denote p as the smallest eigenvalue of P . Then, once p ≤ 0, we have the following bound:

ṗ ≥ −2C2
4ξ
−2+ 2

κ
σd
c41d

2
p− 16σ1‖B‖2

≥ −2C2
4ξ
−2+ 2

κ
σd
c41d

2
p− 16σ1C5ξ

−2dσd.

Notice that initially p(t1) > 0. Solving the ODE and we have ∃C6 > 0, p ≥ −C6ξ
− 2
κd3σ1.

Now (21) implies ṡ ≥ −2s2 + 2σds − 8C5ξ
−2− 2(1−α′)

κ dσ1σd. Suppose x1 ≥ x2 are two roots

of quadratic function x2 − σdx+ 4C5ξ
−2− 2(1−α′)

κ dσ1σd. Then ∀α′′ ∈ (0, 1), we could choose ξ =

ξ1 := O((poly(κ, d))
κ
2 ) such that 0 < x2 ≤ 4C5ξ

−2− 2(1−α′)
κ dσ1 < α′′s(t1), thus σd − α′′s(t1) ≤

x1 ≤ σd. Solving the ODE and we have s(t1 + t) ≥ x1 − x1−x2
eσdt+c+1

where c = ln s(t1)−x2
x1−s(t1) =

O
(

ln
(
ξ−2+

2
κ

1
d2

))
= −O(κ lnκd). By choosing t′ = O

(
κ lnκd
σd

)
, we can make sure ∀t ≥ t′ in

the second stage, s(t1 + t) ≥ σd
2 .

Finally, based on the lower bound of the eigenvalue of AA>, we can give an upper bound of
maximal eigenvalue of P , say pmax, when t ≥ t1 + t′:

ṗmax ≤ −σdpmax + 16C5ξ
−2dσ1σd. (24)

This implies that by choosing t = t1 + t′ + t′′ = O
(
κ lnκd
σd

)
, pmax(t) ≤ σd

4
√
d

. Then we can

easily bound ‖f‖2 by ‖P‖2 + ‖Q‖2 ≤ σ2
d

16 + 4‖A‖2‖B‖2 ≤ σ2
d
9 . We define t2 := t1 + t′ + t′′ as the

end of the second stage.

B.2.2. VERIFY THE ASSUMPTIONS

The assumption on A is straightforward, as we have verified the right hand side of (21) is always
non-negative once s(t) ≤ s(t1) by simply choosing ξ ≥ ξ1. The upper bound of AA> simply
comes from the lower bound of P and the upper bound of B.

The assumption on B is based on the fact that we have ḃ ≤ −2pb, where b := ‖B‖2, according

to (10). Hence b(t1 + t) ≤ eC6ξ
− 2
κ d3σ1t 1

C2
1
· ξ−2−

2(1−α′)
κ dσd. Because t2 = O

(
κ lnκd
σd

)
, we can

choose ξ = (poly (κ, d))κ to ensure the existence of the universal constant C6.

B.3. Stage 3

The last stage is the simplest part of the proof. We only need to bound ` := ‖Σ−UV >‖ and ‖B‖2
simultaneously.

Suppose initially `(t2) ≤ 1
3σd, and ‖B‖2 ≤ ρσd. Then ‖P‖2 ≤ ‖P‖2 + ‖Q‖2 = ‖Σ −

UV >‖2 ≤ σ2
d
9 . Hence AA> = Σ− P +BB> implies the smallest singular value of AA> is lower

12
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bounded by 2
3σd. Then, the smallest singular value of U = A+B and V = A−B is lower bounded

by
√
σd
2 , if

√
ρ ≤

√
2
3 −

1
2 . Hence we could draw a conclusion that

‖∇f(U, V )‖2 = ‖(Σ− UV >)V ‖2 + ‖(Σ− UV >)>U‖2

≥ σd
2
f(U, V ),

which is exactly Polyak-Łojasiewicz inequality. With a little abuse of notation, we use θ to denote
this integral curve. Then

‖θ̇(t0)‖2 ≥
σd
2

(
f(θ(0))−

∫ t0

0
‖θ̇(t)‖2

)
dt. (25)

Hence ln 1
f(θ(t))

∣∣∣t0
0
≥ σdt

2 , i.e. f(θ(t)) ≤ e−
σdt

2 f(θ(0)).

In other words, ‖Σ−U(t2 + t)V >(t2 + t)‖2 ≤ e−
σdt

2 ‖Σ−U(t2)V
>(t2)‖2. For simplicity, we

denote ‖Σ− U(t2)V
>(t2)‖2 by F0.

Besides, ˙‖B‖2 ≤ 2‖P‖‖B‖2, i.e. ‖B(t2 + t0)‖2 ≤ e
∫ t0
0 2‖P (t)‖dt‖B(t2)‖2, which is bounded

by e
8
σd

√
F0B(t2)‖2 ≤ e

8
3 ‖B(t2)‖2. Hence, we only need to make ‖B(t2)‖2 ≤ ρσd

e
8
3

, which is an

obvious condition (because ‖B‖ is O
(
1
ξ

)
).

Notice that we have proved linear convergence. To sum up, by factoring what has been discussed

above in, we could draw a conlusion that the total complexity is O
(
κ
σd

ln(κd) +
ln 1

ε
σd

)
, here κ is

the condition number, σd is the smallest singular value of Σ, d is the dimension of the matrix, and ε
means that our output satisfies f(U, V ) ≤ ε‖Σ‖2.
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