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Abstract
It is known that the Frank-Wolfe (FW) algorithm, which is affine-covariant, enjoys accelerated
convergence rates when the constraint set is strongly convex. However, these results rely on norm-
dependent assumptions, usually incurring non-affine invariant bounds, in contradiction with FW’s
affine-covariant property. In this work, we introduce new structural assumptions on the problem
(such as the directional smoothness) and derive an affine invariant, norm-independent analysis of
Frank-Wolfe. Based on our analysis, we propose an affine invariant backtracking line-search. Inter-
estingly, we show that typical backtracking line-searches using smoothness of the objective function
surprisingly converge to an affine invariant step size, despite using affine-dependent norms in the
step size’s computation. This indicates that we do not necessarily need to know the set’s structure
in advance to enjoy the affine-invariant accelerated rate.

1. Introduction

Conditional Gradient algorithms, a.k.a. Frank-Wolfe (FW) algorithms [14], form a class of first-
order methods solving constrained optimization problems such as

min
x∈C

f(x). (1)

The schemes in this class decompose non-linear constrained problems into a series of linear prob-
lems on the original constraint set, i.e. linear minimization oracles (LMO). They form a practical
family of algorithms [1, 3, 10, 19, 26, 29, 30, 34, 37, 40]; however, many open questions remain
in designing such optimal algorithmic schemes (e.g. [4–6, 8, 9, 22, 32]) and in their theoretical
understanding.

Besides, with the appropriate line-search, the iterates of the FW are affine covariant under the
affine transformation y = Bx+ b of problem (1),

min
y∈C̃=B−1(C−b)

f̃(y)
def
= f(B−1(y − b)), B invertible. (2)
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Algorithm 1 Frank-Wolfe Algorithm
Input: x0 ∈ C.

1: for k = 0, 1, . . . ,K do
2: vk ∈ argmax

v∈C
〈−∇f(xk), v − xk〉 B LMO

3: γk = argmin
γ∈[0,1]

f(xk + γ(vk − xk)) B Line-search

4: xk+1 = (1− γt)xk + γkvk B Convex update
5: end for

Definition 1 An algorithm is affine covariant when its iterates (xk) (resp. (yk)) for problem (1)
(resp. (2)) satisfy

yk = Bxk + b.

In other words, the behavior of Algorithm 1 is insensitive to affine transformations or re-parametrization
of the space. This means that, ideally, the theoretical rate for a affine covariant algorithm should be
affine invariant.

The original Frank-Wolfe algorithm (Algorithm 1) generally enjoy a slow sublinear rateO(1/K)
over general compact convex set and smooth convex functions [19]. In that setting, [7, 19] define a
modulus of smoothness that leads to affine invariant analysis of the Frank-Wolfe algorithm, match-
ing with the affine covariant behavior of the algorithm.

Many works have then sought to find structural assumptions and algorithmic modifications that
accelerate this sublinear rate ofO(1/K). The strong convexity of the set (or more generally uniform
convexity, see [23]) is one of such structural assumptions which lead to various accelerated conver-
gence rates, like linear convergence rates when the unconstrained optimum is outside the constraint
set [12, 13, 27, 38] or sublinear rates O(1/K2) when the function is also strongly convex but with-
out restrictions on the position of the optimum [15]. However, to the best of our knowledge, there
exists no affine invariant analysis for these accelerated regimes stemming from the strong convexity
of the constraint set C.

In these “non affine invariant” analyses, structural assumptions like the L-smoothness (Defi-
nition 2) of f and the α-strong convexity of C (Definition 3) lead to accelerated convergence rate
of the Frank-Wolfe algorithm, but are typically conditioned on parameters L,α and others, which
depend on a particular choice of a norm. This is surprising given that the Frank-Wolfe algorithm
(under appropriate line-search) does not depend on any norm choice.

Recall that the smoothness of a function and the strong convexity of a set are defined as follows.

Definition 2 The function f is smooth over the set C w.r.t. the norm ‖ · ‖ if there exists a constant
L > 0 such that, for any x , y ∈ C, we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2. (3)

Definition 3 A set C is α-strongly convex with respect to a norm ‖ · ‖ if, for any (x, y) ∈ C,
γ ∈ [0, 1] and ‖z‖ ≤ 1, we have

γx+ (1− γ)y + αγ(1− γ)‖x− y‖2z ∈ C. (4)
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Related Work C Str. cvx. f x∗ Algo Step size Rate

Clarkson [7] Simplex 7 Any FW Scheduled O(1/T )
Jaggi [19] Convex 7 Any FW Scheduled O(1/T )
Lacoste-Julien et al., 2013 Any 3 Interior FW Exact ls Linear
Lacoste-Julien et al., 2015 Polytope 3 Any Corr. FW Exact ls Linear
Gutman and Pena [17] Polytope 3 Any FW Exact ls Linear
Our work Strongly cvx 7 ∇f(x?) 6= 0 FW Backtracking ls Linear

Strongly cvx 3 Any FW Backtracking ls O(1/T 2)

Table 1: Existing affine invariant analysis of Frank-Wolfe for smooth convex functions under dif-
ferent schemes.
Strong convexity. The strong convexity assumption is to be taken broad sense. In
[24, 25], the authors consider generalized strong convexity, an affine-invariant measure of
strong convexity, while [17] consider strongly convex functions relative to a pair (C, ω)
where ω is a distance-like function. In our work, we not directly assume strong convexity,
but the directional smoothness of the function (see later Definition 10), whose constant is
bounded if various assumptions are satisfied for (1) (Theorem 12).
Step size. By scheduled step sizes, we consider, for instance, the classical γk = 1

k .
We denote by exact-line search when the optimal stepsize depends on an unknown affine-
invariant quantity, whose accessible upper-bounds are affine-dependent (thus breaking the
affine invariance of FW).

Obtaining practical accelerated affine invariant rates is hard, as an affine invariant step size is
required. Indeed, some adaptive step sizes rely on theoretical affine invariant quantities which are
in general not accessible. Therefore, by practical, we consider rates that can be achieved without a
deep knowledge of the problem structure and constants.

For instance, scheduled step sizes, e.g. γk = 2
k+2 , makes the Frank-Wolfe algorithm practically

affine covariant, yet they do not capture the accelerated convergence regimes. Exact line-search
guarantees a practically affine covariant algorithm while capturing accelerated convergence regimes
but significantly increases the time to perform a single iteration. Finally, it is possible to use back-
tracking line-search such as [35]. Unfortunately, backtracking techniques rely on the choice of a
specific norm, thus breaking affine invariance of the algorithm. This raises naturally the following
questions:

Can we derive affine invariant rates for the Frank-Wolfe algorithm on strongly convex sets?

Can we design an affine invariant backtracking line-search for Frank-Wolfe algorithms?
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This work provides a positive answer to these questions, by proposing the following contribu-
tions.

Contributions. In this paper, 1) we conduct affine invariant analyses of the Frank-Wolfe Algo-
rithm 1, when the function f is smooth w.r.t. to a specific distance function ω(·) and the set C is
strongly convex also w.r.t. ω(·). We then introduce new structural assumptions extending the class
of problems for which such accelerated regimes hold in the case of Frank-Wolfe, called directionally
smooth functions with direction δ. From this definition, 2) we propose an affine invariant backtrack-
ing line-search for finding the optimal step size. Finally, 3) we show that existing backtracking line-
search methods, which use a specific norm, converges surprisingly to the optimal norm-invariant,
affine invariant step size, meaning that affine-dependent and affine invariant backtracking techniques
perform similarly.

Outline. In Section 2, we motivate the need for affine invariant analysis of Frank-Wolfe on strongly
convex sets. In Section 3 and 4, we introduce the structural assumptions on the optimization prob-
lem that we will consider for analysing Frank-Wolfe. In Section 5 we detail our affine invariant
analysis of Frank-Wolfe on strongly convex set. In Section 6 and 7 we provide a backtracking
line-search that directly estimate the affine invariant quantities we developed and we explain how it
relates with existing ones. We conclude in Section 8 with numerical experiments.

Related Work. Other linear convergence rates of Frank-Wolfe algorithms exists with affine in-
variant analysis. For instance, corrective variants of Frank-Wolfe exhibit (affine invariant) linear
convergence rates when the constraint set is a polytope [24, 25] and the objective function is (gen-
erally) strongly convex. See Table 1 for a review of all affine invariant analyses of Frank-Wolfe
algorithms.

These affine invariant analyses emphasize that there is no specific choice of norm to be made
in Frank-Wolfe algorithms as well as there is no need for affine pre-conditionners. Frank-Wolfe
algorithms are arguably free-of-choice methods, i.e. little needs to be known on the optimization
problem’s structures to obtain the accelerated regimes. This is in line with recent works showing
that the Frank-Wolfe methods exhibit accelerated adaptive behavior under a variety of structural
constraints of (1) which depend on inaccessible parameters, e.g. Hölderian Error Bounds on f [21,
39, 41] or local uniform convexity of C [23].

Affine invariant analyses introduce constants seeking to characterize structural properties with-
out a specific choice of norm. This has then been the basis for works extending the accelerated
convergence analysis to non-smooth or non-strongly convex functions [17, 36], which then explore
new structural assumptions on f .

2. “Affine-dependent” Analysis of FW

It is known that when the function is smooth (Definition 2), the set is strongly-convex (Definition
3) and the gradient is lower bounded ‖∇f(x)‖ ≥ c over the constraint set (i.e., the constraints are
active), the Frank-Wolfe algorithm 1 converges linearly [12, 13, 27], at rate (with hk , f(xk)− f?)

hk ≤
(

max

{
1

2
, 1− cα

2L

})k
h0. (5)

Note that assuming the gradient to be lower bounded means the constraints are tight, i.e., the solution
of the unconstrained counterpart lies outside the set of constraints. However, the constants L, α,
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and c depend on the choice of the norm for the smoothness and the strong convexity. In contrast,
the Frank-Wolfe algorithm and iterates do not depend on such a choice, due to its affine covariance.
Therefore, the rate of Algorithm 1 should be affine invariant. Unfortunately, it is possible to show
that the known theoretical analyses can be arbitrarily bad in the case where the constants L, c, α
depend on “affine variant” norms.

Example 1 Consider the projection problem

minx f(x)
def
= 1

2‖x− x̄‖
2 such that 1

2‖x‖
2 ≤ 1.

In such case, we have that L = 1, α = 1√
2

and c = 1− ‖x̄‖ (L, α and c are defined according to
the `2 norm). However, if we transform the problem into miny f(By), the new constants become

L = σmax(B), α = σmin(B)√
2σmax(B)

, c = σmax(B)(1− ‖x̄‖).

Comparing the rate (5) of the two problems, identical to the eyes of the FW algorithm, we have that

f(xk)− f? ≤
(

1− (1−‖x̄‖)
2
√

2

)k (
f(x0)− f?

)
,

f(Byk)− f? ≤
(

1− (1−‖x̄‖)
2
√

2
κ−1(B)

)k (
f(x0)− f?

)
,

where κ(B) = σmax(B)
σmin(B) is the condition number of B. This means we can artificially make a large

theoretical upper bound on the rate of convergence by using an ill-conditioned transformation (i.e.,
κ(B) large). However, the speed of convergence of FW iterates are not affected by any linear trans-
formation (dues to their affine-covariance), therefore the upper bound will not be representative of
the true rate of convergence of FW.

When the optimum is in the relative interior of any compact set C, FW converges linearly when
f is strongly convex [16, 24]. On the other hand, linear convergence on strongly convex sets does
not require strong convexity of f when the solution of the unconstrained problem lies outside the
set [12]. Our paper hence focuses on extending the analysis where the unconstrained optimum is
outside the constrain set [12].

These two analysis cover most practical cases, but not the situation where the unconstrained
optimum is close to the boundary of C. A recent analysis on strongly convex sets of [15] is not
restrictive w.r.t. the position of the unconstrained optimum but conservative (convergence rate of
O(1/K2)). It is interesting as it not only deals with the (previously unknown) situation where the
unconstrained optimum is on the boundary on C, but also when it is arbitrarily close to it, leading
to poorly conditioned linear convergence regimes. In Appendix D, we provide an affine invariant
analysis of [15].

3. Smoothness and Strong Convexity w.r.t. General Distance Functions

The major limitation in the definition of smoothness of a function (Definition 2) and the strong
convexity of a set (Definition 3) is the presence of the norm in their definition, whose constants may
be dependent on affine transformation of the space (see Example 1). Technically, the notion of norm
in the definition of smoothness and strong convexity of a function can be extended to the concept
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of distance-generating function, for instance using Bregman divergence [2, 28] or gauge functions
[11].

Although is it classical to use different distance-generating functions ω (that satisfies Assump-
tion 4 below) to characterize the smoothness of a function, we are not aware of such analysis for
strongly convex sets. We believe that such analysis may exist, but for completeness we propose here
an extension of the strong convexity of a set w.r.t. a distance function ω.

Assumption 4 The function ω(·) satisfies
• ω(x) = 0 ⇔ x = 0,
• Positivity: ω(x) ≥ 0,
• Triangular Inequality: ω(x+ y) ≤ ω(x) + ω(y)
• Positive homogeneity: ω(γx) = γω(x), γ ≥ 0,
• Bounded asymmetry: maxx

ω(x)
ω(−x) ≤ κω.

Since ω(x) is convex by the triangle inequality, we define the dual distance

ω∗(v) = max
x:ω(x)≤1

〈v, x〉. (6)

Remark 5 Usually, extensions of smoothness of a function use Bregman divergences (see e.g. [2,
28]). However, the assumption that the distance-generating function is positively homogeneous is
crucial in our analysis, which is unfortunately, not satisfied for most Bregman divergences.

A typical example satisfying such assumptions are gauge functions, also called Minkowski func-
tional,

ωQ(v)
def
= argmin

τ≥0
τ subject to v ∈ τQ,

where 0 ∈ intQ. Such distance-generating function satisfies Assumption 4 if the set Q is convex
and compact, and contains 0 in its interior. Moreover, gauge functions are affine invariant.

Usually, most works using gauge function assume that the setQ is centrally symmetric [11, 31],
which add the assumption that

ω(x) = ω(−x).

In that case, the gauge function is a norm [Theorem 15.2.]rockafellar1970convex. Removing sym-
metry extends non-trivially the definition of strongly convex sets w.r.t. the distance function ω. We
now recall the definitions of smoothness and strong convexity of a function w.r.t. a distance function
ω.

Definition 6 A function f is smooth (resp. strongly convex) w.r.t. the distance function ω if, for a
constant Lω (resp. µω), the function satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
Lω
2
ω2(y − x), (7)

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µω
2
ω2(y − x). (8)

Definition 7 A set C is αω-strongly convex w.r.t. ω if, for any (x, y) ∈ C and γ ∈ [0, 1], we have

zγ + αωγ(1− γ)
(1− γ)ω2(x− y) + γω2(y − x)

2
z ∈ C,

where zγ = γx+ (1− γ)y, for all z such that ω(z) ≤ 1.
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This definition extends the one of strongly convex sets with a general distance function that may not
be a norm, see for instance [15].

With Definition 7, the level sets of smooth and strongly convex functions are also strongly
convex sets when the function ω is used. Such results appear for instance in [20] when ω is the `2
norm.

Lemma 8 (Strong Convexity of Sets) Let f be a L-smooth and µ-strongly convex function w.r.t.
ω. Then, the set

C = {x : f(x)− f? ≤ R}

is α-strongly convex w.r.t. ω, with α = µω
κω
√

2LωR
.

We defer the proof in Appendix A. This result corresponds exactly to the one of [Theorem 12]journee2010generalized,
when we use ω = ‖ · ‖.

Scaling Inequality. All proofs of Frank-Wolfe methods on strongly convex sets leverage the
same property. The scaling inequality (equivalent to strong convexity of C [Theorem 2.1.]gon-
charov2017strong) crucially relates the Frank-Wolfe gap with ‖xt−vt‖2, see e.g. [Lemma 2.1.]ker-
dreux2020uniform. We extend the scaling inequality to strongly convex sets with generic distance
functions.

Lemma 9 (Distance Scaling Inequality) Assume C is αω-strongly convex w.r.t. ω. Then for any
x ∈ C, φ ∈ NC(v) (normal cone), and vφ ∈ argmaxv∈C〈φ, v〉 we have

〈φ, vφ − x〉 ≥ αωω∗
(
φ
)
ω2(vφ − x). (9)

In particular for any iterate xk of Frank-Wolfe and its Frank-Wolfe vertex vk (Line 2 in Algorithm
1), we have

〈−∇f(xk); vk − xk〉 ≥ αωω∗
(
−∇f(xk)

)
ω2(vk − xk).

Proof We start with vφ = argmaxv∈C〈φ; v〉. Then, we use the definition of strong convexity of a
set,

γx+ (1− γ)vφ + αωγ(1− γ)Dγz ∈ C ∀z : ω(z) ≤ 1.

where Dγ(x− y)
def
= γω2(x−y)+(1−γ)ω2(y−x)

2 . Then, by optimality of vφ,

〈φ; vφ〉 ≥ 〈φ; γx+ (1− γ)vφ + αωγ(1− γ)Dγ(x− vφ)z〉

After simplification,
〈φ; vφ − x〉 ≥ αω(1− γ)Dγ(x− vφ)〈φ; z〉

which holds in particular when φ = −∇f(x), γ = 0 and z being the argmax (see (6)).
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4. Directional Smoothness

We separately introduced smoothness for functions, and strong convexity for sets w.r.t. a distance
function ω. Analyses of Frank-Wolfe algorithm on strongly convex sets [12, 13, 27] show that,
when f is convex and smooth, and the unconstrained minima of f are outside of C, there is linear
convergence.

We hence propose a novel condition that mingles the smoothness of f with the strong convexity
of C when moving in a specific direction δ. We are interested in particular with the FW direction
and we will see later that this assumption guarantees a linear convergence rate in this case. We call
this condition the directional smoothness.

Definition 10 The function f is directionally smooth with direction function δ : C → Rd if there
exists a constant Lf,δ > 0 s.t. ∀x ∈ C and h > 0 with x+ hδ(x) ∈ C,

f
(
x+ hδ(x)

)
≤f(x)− h〈−∇f(x), δ(x)〉 (10)

+
Lf,δh2

2
〈−∇f(x), δ(x)〉.

The rationale of Definition 10 is to replace the norm in the usual smoothness condition (Defini-
tion 2) by a scalar product between the direction and the negative gradient, in order to get an affine
invariant quantity for the FW direction (see Proposition 11 below).

Assuming δ(x) is a descent direction, i.e., 〈−∇f(x), δ(x)〉 > 0, we can obtain a minimization
algorithm for f , by minimizing (10) over h,

xk+1 = xk + hoptδ(xk), hopt = min{hmax ; L−1
f,δ}.

Example 2 (Gradient descent on smooth functions) The gradient algorithm uses δ(x) = −∇f(x).
In such case, the function is directionally smooth with constant L, and we obtain

f(xk+1) ≤ f(xk)− h‖∇f(x)‖2 + Lh2

2 ‖∇f(x)‖2

= f(x)− h
(
Lh
2 − 1

)
‖∇f(x)‖2.

The best h is given by hopt = 1
L , which is also the optimal one [33].

The advantage of directional smoothness is its affine invariance in the case where δ(x) is the
FW step.

Proposition 11 (Affine Invariance of Lf,δ) If δ(x) is affine covariant (e.g. the FW direction δ(x) ,
v(x) − x), then Lf,δ in (10) is invariant to an affine transformation of the constraint set (proof in
Appendix B.2).

The next theorem shows that, in the case of the FW algorithm, the directional smoothness con-
stant is bounded if the function is smooth and the set is strongly convex for any distance function ω.
We use this result later, to show that affine invariant backtracking line-search is equivalent to using
the best distance function ω to define Lω, cω and αω.
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Theorem 12 (Directional Smoothness of FW) Consider the function f , smooth w.r.t. the distance
function ω, with constant Lω, and the set C, strongly convex with constant αω.
Let δ(x) = x− v(x), v(x) being the FW corner

v(x)
def
= argmin

v∈C
〈∇f(x), v〉.

Then, if ω∗(−∇f(x)) > cω for all x ∈ C and some cω > 0, the function f(x) is directionally
smooth w.r.t. to ω, with constant

Lf,δ ≤
Lω
cωαω

. (11)

Proof See Appendix A.1 for the proof.

5. Affine Invariant Linear Rates

With the directional smoothness constant Lf.δ (affine invariant when δ is the FW direction), Theo-
rem 13 shows an affine invariant linear rate of convergence of FW, generalizing existing convergence
results of Frank-Wolfe on strongly convex sets [12, 13, 27].

Theorem 13 (Affine Invariant Linear Rates) Assume f is a convex function and directionally
smooth with direction function δ with constant Lf,δ. Then, the FW Algorithm 1 with step size

hopt = min
{

1, 1
Lf,δ

}
, with δ = v(x)− x,

or with line-search, where v(x) is the FW corner

v(x) = argmin
v∈C

〈∇f(x), v〉,

converges linearly, at rate

f(xk)− f? ≤ max
{

1
2 , 1− 1

2Lf,δ

}
(f(xk−1)− f?) .

Proof We start with the directional smoothness assumption. For 0 < h < 1,

f
(
xk+1

)
≤f(xk) +

(
h− Lf,δh

2

2

)
〈∇f(xk), δ(xk)〉

After minimization, we have two possibilities: hopt = 1
Lf,δ or hopt = 1. In the first case, we obtain

f
(
xk+1

)
≤ f(xk) + 1

2Lf,δ 〈∇f(xk), δ(xk)〉

Notice that the scalar product in the right-hand-side is the negative dual gap of Frank-Wolfe, that
satisfies

〈∇f(xk), v(x)− x〉 ≤ − (f(xk)− f?) ,
which gives the desired result. The second case follows immediately.

This provides an affine invariant analysis of the linear convergence regimes of FW on strongly
convex sets.

The next proposition shows that the directional constant in Theorem 13 is bounded by (11) w.r.t.
the distance function ω that gives the best ratio. This means that the Frank-Wolfe method acts like it
optimizes the function in the best possible geometry, i.e., the geometry that gives the best constants.
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Proposition 14 (Optimality of Dir. Smoothness) Let Ω the set of function defined as

Ω = {ω : ω satisfies assumptions 4}.

Then, the directional smoothness constant follows

Lf,δ ≤ min
ω∈Ω

Lω
cωαω

,

where Lω is the smoothness constant of the function f , αω the strong convexity of the set C and

cω ≤ ω∗
(
−∇f(x)

)
, ∀x ∈ C.

Proof The proof is immediate by noticing that the FW algorithm do not use ω, therefore we can
choose the best ω in Theorem 12.

To obtain a similar affine invariant analysis without restriction on the position of the optimum,
i.e. the O(1/K2) analysis in [15], one can define a similar property to the direction smoothness
defined in Section 4. This new structural assumption additionally mingles together with the strong
convexity of f . We provide details in Appendix D. We choose to focus the analysis for the linear
convergence in the main text as it is the one most significant in practice.

6. Affine Invariant Backtracking

In previous sections, we proposed new constants to bound the rate of convergence of the Frank-
Wolfe algorithm, which is affine invariant. The significant advantage of these constants is that, like
FW, they are independent of any norm. However, the optimal step size of Frank-Wolfe needs the
knowledge of these constants.

We propose in this section an affine invariant backtracking technique (Algorithm 2), based on
directional smoothness. By construction, the backtracking technique finds automatically an estimate
of the directional smoothness that satisfies

Lk < 2Lf,δ, k ≥ log2

(
L0
Lf,δ

)
.

7. Why Backtracking FW with norms is so efficient?

The step size strategy in Frank-Wolfe usually drives its practical efficiency. Sometimes, setting the
step size optimally w.r.t. the theoretical analysis may be suboptimal in practice. Recently, Pedregosa
et al. [35] analyze the rate of the Frank-Wolfe algorithm for smooth function, using backtracking
line search, described in Algorithm 3, Appendix C.

Algorithm 3 in Appendix C is adaptive to the local smoothness constant, and ensures Lk+1 <
2Lf , Lf being the smoothness constant of the function in the `2 norm. Pedregosa et al. [35] observed
that the estimate of the Lipchitz constant is often significantly smaller than the theoretical one;
they wrote: “We compared the average Lipschitz estimate Lt and the L, the gradient’s Lipschitz
constant. We found that across all datasets the former was more than an order of magnitude smaller,
highlighting the need to use a local estimate of the Lipschitz constant to use a large step size.”

With our analysis, however, we can explain why the estimate of the smoothness constant is
much better than the theoretical one. The answer is simple:
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Algorithm 2 Affine invariant backtracking
Input: FW corner vk, point xk, directional smoothness estimate Lk, function f .

1: L ← Lk. Define the optimal step size and next iterate in the function of the directional Lipchitz
constant:

γ?(L)
def
= min{ 1

L , 1},

x(L)
def
= (1− γ?(L))xk + γ?(L)vk.

2: Create the model of f between xk and x(L) based on equation (10),

m(L)
def
= f(xk) + γ?(L) (1− γ?(L)) 〈∇f(xk), vk − xk〉

3: Set the current estimate L̃ def
= Lk

2 .
4: while f(x(L̃)) > m(L̃) (Sufficient decrease not met because L̃ is too small) do
5: Double the estimate : L̃ ← 2 · L̃.
6: end while

Output: Estimate Lk+1 = L̃, iterate xk+1 = x(L̃)

Despite using a non-affine invariant bound, the step size resulting from the estimation of the
Lipchitz constant via the backtracking line-search finds 1

Lf,δ .

Proposition 15 Consider the “local Lipchitz constant” Lloc(x) that satisfies (3) with y = x +
hδ(x), i.e.,

f(x+ hδ(x)) ≤f(x) +∇f(x)(x+ hδ(x))

+ Lloc(x)h
2

2 ‖δ(x)‖22.

Then, Lloc(x) is bounded by

Lloc(x) ≤ Lf,δ
〈−∇f(x), δ(x)〉
‖δ(x)‖2

.

Assuming Lloc(x) “locally constant”, the backtracking line-search finds Lk < 2Lloc(xk), and its
step size γ? satisfies

min

{
1,

1

2Lf,δ

}
≤ γ?.

Proof See Appendix B.1 for the proof.

Therefore, the optimal step size from the backtracking line-search with the `2 norm is exactly
the optimal affine invariant step size of our affine invariant analysis from Theorem 13.

In conclusion, even if we use non-affine invariant norms to find the smoothness constant, sur-
prisingly, the backtracking procedure finds the optimal, affine invariant step size.

11
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Figure 1: Comparison of FW variants on the projection problem. Left: B = I , Right: κ(B) = 106.
The top row is the gap fk − f∗, and the bottom row corresponds to the estimation of the
directional-smoothness constant Lk or the smoothness constant Lk, where the black line
report the maximum value of Lk. The reason why adaptive FW methods are slower in the
left figure is because, in the worst case, the number of iterations to reach a certain preci-
sion can be up to four times larger than the worst-case bound on non-adaptive methods.
We clearly see that the directional smoothness parameter Lf,δ is affine invariant, as its
estimate is maxk Lk = 32 in both scenarios.

8. Illustrative Experiments

Quadratic / logistic regression. We consider the constrained quadratic and logistic regression
problem,

min
x∈C

1

n

n∑
i=1

l(aTi x, yi), (12)

where l is the quadratic or the logistic loss. Here we adopt the `2-ball, defined as

C = {x : ‖x‖2 ≤ R}, R > 0.

Specifically, we compare our affine invariant backtracking method in Algorithm 2 against the naive
FW Algorithm 1 with step size 1/L [12] and back-tracking FW [35] on the Madelon dataset [18].
The results are shown in Figure 2. In detail, we set R such that the unconstrained optimum x∗

satisfies ‖x∗‖2 = 1.1R, and the initial iterate x0 = 0. As predicted by our theory, the affine
invariant algorithm performs well at the beginning, but after a few iterations the two backtracking
techniques behave similarly.

Projection. We solve here the projection problem described in Example 1, for two cases of B:
One that corresponds to the original problem, i.e. B = I , the second one where B is an ill-
conditioned matrix (with the condition number κ(B) = 106). The vector x0 is random in the `2 ball,
and x̄ = 1d · (1.1/

√
d). We report the results in Figure 1. We compare the standard FW algorithm

with step size 1/L, the FW with backtracking line-search (Algorithm 3) and FW with affine invariant
backtracking technique (Algorithm 2). If the problem is well-conditioned (κ(B) = 1), all methods

12
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Figure 2: Classification problem on Madelon dataset, with (Top) Quadratic loss and (Bottom) Lo-
gistic loss.

perform similarly. This is not the case, however, for the ill-conditioned setting, where the FW with
no adaptive step size converges extremely slowly compared to the two other methods. We also
see that the affine invariant backtracking converges quicker than the standard backtracking. This
is explained by the fact that the latter takes a longer time to find the right constant Lk, while Lk
remains untouched after an affine transformation.

9. Conclusion

In this paper, our theoretical convergence results on strongly convex sets complete the series of ac-
celerated affine invariant analyses of Frank-Wolfe algorithms. To obtain these, we formulate a new
structural assumption with respect to general distance functions, the directional smoothness, which
we will explore more systematically in future works. Also, we present a new affine invariant back-
tracking line-search method based on directional smoothness. Within our framework of analysis,
we provide a new explanation for the reasons behind the efficiency of the existing backtracking line
search, and we show theoretically and experimentally they also find affine-invariant step sizes.

13
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[2] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz
gradient continuity: first-order methods revisited and applications. Mathematics of Operations
Research, 42(2):330–348, 2017.
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Appendix A. Strong Convexity of Sets with asymmetric distance functions

Before presenting the proof, we introduce the following results, extending known properties from
smooth and strongly convex sets.

Proposition 16 If f is strongly convex w.r.t. the distance function ω, then for γ ∈ [0, 1] we have

f(γx+ (1− γ)y) + µγ(1− γ)
γω2(x− y) + (1− γ)ω2(y − x)

2
≤ γf(x) + (1− γ)f(y)

Proof Let zγ = γx+ (1− γ)y. We start with the definition,

f(zγ) + 〈∇f(zγ), x− zγ〉+
µ

2
ω2(x− zγ) ≤ f(x)

f(zγ) + 〈∇f(zγ), y − zγ〉+
µ

2
ω2(y − zγ) ≤ f(y)

After multiplying by γ and 1− γ and adding the two inequalities, we have

f(zγ) + µ
γω2(x− zγ) + (1− γ)ω2(y − zγ)

2
≤ γf(x) + (1− γ)f(y)

Since ω2(x − zγ) = (1 − γ)2ω2(y − x), and ω2(y − zγ) = γ2ω2(x − y), we obtain the desired
result.

Proposition 17 If f is convex and smooth w.r.t. the distance function ω, then it holds that

1

2L
ω2
∗
(
∇f(x)−∇f(y)

)
≤ f(y)− f(x)− 〈∇f(x), y − x〉

where ω∗ is the dual of the function ω, written

ω∗(v)
def
= max

s:ω(s)≤1
〈v, s〉.

In particular, Proposition 17 implies that, if f has a minimum x?, then

1

2L
ω2
∗
(
−∇f(y)

)
≤ f(y)− f(x?) (13)

Proof Let the function φ(y) = f(y) − 〈∇f(x), y〉. This function is, by construction, smooth.
Moreover, miny φ(y) is attained when y = x. Since the function is smooth,

min
y
φ(y) ≤ min

y
φ(z) + 〈∇φ(z), y − z〉+

L

2
ω2(y − z)

Let βu = y − z, where ω(u) = 1 and β ≥ 0. Then,

min
y
φ(y) ≤ min

β,u
φ(z) + β〈∇φ(z), u〉+

β2L

2

17
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The minimum can be split into two minimization problems,

min
y
φ(y) ≤ φ(z) + min

β≥0

(
β2L

2
− β max

u:ω(u)≤1
〈−∇φ(z), u〉

)
.

By definition of the dual of ω,

min
y
φ(y) ≤ φ(z) + min

β≥0

(
β2L

2
− βω∗

(
−∇φ(z)

))
.

Now, we can solve over β, which gives us

min
y
φ(y) ≤ φ(z)− 1

2L
ω2
∗
(
−∇φ(z)

)
.

Replacing the minimum by φ(x), and φ by its expression, we get

f(x)− 〈∇f(x), x〉 ≤ f(z)− 〈∇f(x), z〉 − 1

2L
ω2
∗
(
∇f(x)−∇f(z)

)
.

After reorganization, we get the desired result.

We can now show that level sets of a smooth and strong convex function are strongly convex
sets, when they use the distance function ω.
Proof (Proof of Lemma 8.) Note to the reviewers: there was a small typo in our proof that was
caught after the main paper deadline: the correct constant is actually αω = µ

κω
√

2LR
(i.e. the asym-

metry factor κω does appear in the expression, unlike was originally mentioned in the main text of
Lemma 8). This change is minor and does not change the rest of the story of the paper.

Consider the set
C = {x : f(x)− f? ≤ R}

Let x, y ∈ C. Let zγ = γx+ (1− γ)y, and consider the point zγ + u. We have that

f(zγ + u)− f? ≤ f(zγ)− f? + 〈∇f(zγ), u〉+
L

2
ω2(u),

≤ f(zγ)− f? + ω(−u) max
v:ω(v)≤1

〈−∇f(zγ), v〉+
L

2
ω2(u),

= f(zγ)− f? + ω(−u)ω∗
(
−∇f(zγ)

)
+
L

2
ω2(u),

≤ f(zγ)− f? + κωω(u)
√

2L(f(zγ)− f?) +
L

2
ω2(u).

Therefore, to satisfy f(zγ + u)− f? ≤ R, we need to ensure that

f(zγ)− f? −R︸ ︷︷ ︸
=ω

+κω

√
2L(f(zγ)− f?)︸ ︷︷ ︸

=β

ω(u) +
L

2
ω2(u) ≤ 0

Solving the problem in ω(u) gives

ω(u) ≤ −β +
√
β2 − 2Lω

L

18
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We have that
β2 − 2Lω = 2L

(
(f(zγ)− f?)(κ2

ω − 1) +R
)

Therefore,

ω(u) ≤
√

2
−κω

√
(f(zγ)− f?) +

√
(f(zγ)− f?)(κ2

ω − 1) +R
√
L

However, since the function is strongly convex,

f(zγ)− f? ≤ γf(x) + (1− γ)f(y)− f?︸ ︷︷ ︸
≤R

−µγ(1− γ)
γω2(x− y) + (1− γ)ω2(y − x)

2

Let Dγ = γ(1− γ)γω
2(x−y)+(1−γ)ω2(y−x)

2 . The inequality now reads

f(zγ)− f? ≤ R− µDγ . (14)

Therefore, the condition on ω becomes

ω(u) ≤
√

2
−κω

√
R− µDγ +

√
(R− µDγ)(κ2

ω − 1) +R
√
L

which gives

ω(u) ≤ κω
√

2√
L

(
−
√
R− µDγ +

√
R−

(
1− 1

κ2
ω

)
µDγ

)
(15)

To simplify the expression in parenthesis, we multiply and divide by the conjugate of the square
roots to get:(

−
√
R− µDγ +

√
R−

(
1− 1

κ2
ω

)
µDγ

)
=

R−
(

1− 1
κ2ω

)
µDγ − (R− µDγ)√

R− µDγ +

√
R−

(
1− 1

κ2ω

)
µDγ

≥ 1

κ2
ω2
√
R
.

We can thus strengthen the condition (15) to:

ω(u) ≤ µDγ

κω
√

2LR
.

As the definition of a strongly convex set requires ω(u) ≤ αωDγ , we conclude that the level set
is strongly convex with at least the constant αω = µ

κω
√

2LR
.
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A.1. Proof of Theorem 12

Theorem 18 Consider the function f , smooth w.r.t. the distance function ω, with constant Lω, and
the set C, strongly convex with constant αω.
Let δ(x) = x− v(x), v(x) being the FW corner

v(x)
def
= argmin

v∈C
〈∇f(x), v〉.

Then, if ω∗(−∇f(x)) > cω for all x ∈ C, the function f(x) is directionally smooth w.r.t. to ω, with
constant

Lf,δ ≤
Lω
cωαω

. (16)

Proof We start by the definition of smooth functions between x and hδ(x) for the distance function
ω. We have for all 0 ≤ h ≤ 1

f(x+ hδ(x)) ≤ f(x) + h〈∇f(x), δ(x)〉+
h2Lω

2
ω2(δ(x))

Using the scaling inequality in (9),

〈−∇f(x), δ(x)〉 ≥ αωω∗
(
−∇f(x)

)
ω(δ(x))2.

We hence obtain

f(x+ hδ(x)) ≤f(x) + h〈∇f(x), δ(x)〉 − h2Lω
2

〈∇f(x), δ(x)〉
αωω∗

(
−∇f(x)

) .
Since ω∗(−∇f(x)) > cω for all x ∈ C,

f(x+ hδ(x)) ≤f(x) + h〈∇f(x), δ(x)〉 − h2

2

Lω
αωcω

〈∇f(x), δ(x)〉.

which is the definition of directional smoothness.

Appendix B. Missing proofs

B.1. Proof of Proposition 15

Proposition 19 We define the “local Lipchitz constant” Lloc(x), which satisfies

Lloc(x)
def
= Lf,δ

〈−∇f(x), δ(x)〉
‖δ(x)‖2

.

Then, assuming that the local Lipchitz constant is “locally constant”, the backtracking line-search
finds Lk ≤ 2Lloc(xk), and its step size γ? satisfies

min

{
1,

1

2Lf,δ

}
≤ γ?.
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Proof We start with the definition of directional smoothness,

f(x+ hδ(x)) ≤f(x) + h〈∇f(x), δ(x)〉+ [Lf,δ〈−∇f(x), δ(x)〉] h
2

2
.

Writing 1 =
‖δ(x)‖22
‖δ(x)‖22

, the upper bound becomes

f(x) + h〈∇f(x), δ(x)〉 +

[
Lf,δ〈−∇f(x), δ(x)〉

‖δ(x)‖22

]
h2‖δ(x)‖22

2
.

Defining

Lloc(x) ,
Lf,δ〈−∇f(x), δ(x)〉

‖δ(x)‖22
,

we obtain

f(xk + hδ(xk)) ≤f(xk) + h〈∇f(xk), δ(xk)〉+ Lloc(xk)
h2‖δ(xk)‖22

2
.

If we assume that Lloc(xk) is approximately constant, then Algorithm 3 finds Lk ≤ 2Lloc(xk).
Finally, using the definition of γ? in Algorithm 3, we have

γ? = min

{
−∇f(xk)(vk − xk)
Lloc(xk)‖vk − xk‖2

, 1

}
≥ min

{
1

2Lf,δ
, 1

}
.

B.2. Proof of Proposition 11

Proposition 20 (Affine Invariance) If δ(x) is affine covariant (e.g. the Frank-Wolfe direction δ(x) ,
v(x)− x), then the constant Lf,δ in (10) is affine invariant. In other words, let

f̃(·) , f(B·), δ̃C̃(·) , δB·C(·),

then Lf̃ ,δ̃C̃ = Lf,δ.

Proof We start with the definition of directional smoothness, but with x → By. The upper bound
reads

f(By) +

(
h−
Lf,δh2

2

)
〈∇f(By), δ(By)〉

Since we assumed δ(By) affine covariant,

δ(By) = Bδ̃C̃(y).

21



AFFINE INVARIANT ANALYSIS OF FRANK-WOLFE ON STRONGLY CONVEX SETS

Therefore,

f(By) +

(
h−
Lf,δh2

2

)
〈BT∇f(By), δ̃C̃(y)〉

Since∇f̃(y) = BT∇f(By), we have

f̃(ỹ + hδ̃C̃(y)) ≤ f̃(y) +

(
h−
Lf,δh2

2

)
〈∇f̃(y), δ̃C̃(y)〉

This means the function f̃ is directionally smooth with constant Lf,δ, which proves the statement.

Appendix C. Backtracking Line Search for Frank-Wolfe Steps

Algorithm 3 Backtracking line-search for smooth functions [35]
Input: FW corner vk, point xk, smoothness estimate Lk, function f .

1: Create the optimal step size and next iterate in the function of the Lipchitz estimate

γ?(L)
def
= min

{
−∇f(xk)(vk − xk)

L‖vk − xk‖2
, 1

}
.

x(L)
def
= (1− γ?(L)) + γ?(L)vk

2: Quadratic model of f between xk and x(L),

m(L)
def
= f(xk) + 〈∇f(xk), x(L)− xk〉+

L

2
‖x(L)− xk‖2

3: Set the current estimate L̃ def
= Lk

2 .
4: while f(x(L̃)) > m(L̃) (Sufficient decrease not met because L̃ is too small) do
5: Double the estimate : L̃← 2 · L̃.
6: end while

Output: Estimate Lk+1 = L̃, iterate xk+1 = x(L̃)

Appendix D. Affine Invariant Analysis without Restriction on Optimum Location

In this section, we propose a modification of the directional smoothness defined in Section 4. This
new assumption is the basis to obtain an affine invariant analysis of Frank-Wolfe on a strongly con-
vex set without restriction on the position of the unconstrained optimum of f , as recently proposed
in Garber and Hazan [15].
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Outline. In Theorem 22, we prove a O(1/K2) sublinear convergence rate as in [15] when the
function is modified directionally smooth (Definition 21). In Theorem 24, we prove that when C
is strongly convex, and f is smooth and strongly convex, then f is modified directionally smooth
for the Frank-Wolfe direction with an affine invariant constant leading to better conditioned conver-
gence rates than in [15]. Finally, in Proposition 25, we show that the constant of modified directional
smoothness is affine invariant.

We now define a modification of directional smoothness. It is a structural assumption on f
constrained on C designed at gathering the strong convexity of C, the smoothness, and the strong
convexity of f into a single quantity.

Definition 21 (Modified Directional Smoothness) Let x0 ∈ C. The function f is called modified
directionally smooth with direction function δ : C → RN if there exists a constant L̃f,δ(x0) > 0
such that ∀x ∈ C,

f
(
x+ hδ(x)

)
≤ f(x) + h〈∇f(x), δ(x)〉 −

L̃f,δ(x0)h2

2
〈∇f(x), δ(x)〉

√
f(x0)− f∗
f(x)− f∗

, (17)

for 0 < h < 1.

Note that the dependence of x0 in the definition of the modified directional smoothness is an
artifact to obtain a dimensionless constant L̃f,δ(x0).

As in Section 5, the modified directional smoothness constant L̃f.δ is affine invariant in the
case where δ is the FW direction. We now derive an affine invariant accelerated sublinear rate of
convergence of Frank-Wolfe providing an affine invariant analysis of [15].

Theorem 22 (Affine Invariant Accelerated Sublinear Rates) Let x0 ∈ C and assume f is a con-
vex function and modified directionally smooth with direction function δ and constant L̃f,δ(x0).
Then, the iterates xk for the Frank-Wolfe Algorithm 1 with step size

hopt = min
{

1, 1
L̃f,δ(x0)

√
f(xk)−f∗
f(x0)−f∗

}
, with δ = v(x)− x,

or with exact line-search, where v(x) is the Frank-Wolfe corner

v(x) = argmin
v∈C

〈∇f(x), v〉,

satisfy

f(xk)− f∗ ≤
4(f(x0)− f∗) max{1, 18L̃2

f,δ(x0)}
(k + 2)2

for k ≥ 0.

Proof The proof is similar to that of Theorem 13. We hence start with the modified directional
smoothness assumption on f . For 0 < h < 1,

f
(
xk+1

)
≤f(xk) +

(
h−
L̃f,δh2

2

√
f(x0)− f∗
f(xk)− f∗

)
〈∇f(xk), δ(xk)〉 (18)

After minimizing over h, we have two possibilities. The case with exact line-search follows im-
mediately after these two cases. In the following, we use the notation hk

def
= f(xk) − f∗ for the
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primal suboptimality at xk, and gk
def
= 〈−∇f(xk), δ(xk)〉 for the Frank-Wolfe gap at xk (and note

that gk ≥ hk by convexity).

Case 1: hopt = 1
L̃f,δ(x0)

√
f(xk)−f∗
f(x0)−f∗ . In such case, we obtain (subtract f∗ on both sides of the

inequality)

hk+1 ≤ hk −
1

2L̃f,δ

√
hk
h0
gk,

and since the Frank-Wolfe gap gk upper bounds the primal suboptimality, we obtain

hk+1 ≤ hk
[
1− 1

2L̃f,δ
√
h0

√
hk

]
.

Case 2: With hopt = 1, we have

hk+1 ≤ hk +

(
1−
Lf,δ

2

√
h0

hk

)
gk.

In that case, we have that 1
L̃f,δ(x0)

√
hk
h0
≥ 1. Hence we obtain

hk+1 ≤ hk − 1
2gk ≤

1
2hk

Finally, we have the following recursive relation on the sequence of primal suboptimality (hk):

hk+1 ≤ hk ·max
{1

2
, 1− 1

2L̃f,δ
√
h0

√
hk

}
= hk ·max

{1

2
, 1−M

√
hk

}
, (19)

with M def
= 1

2L̃f,δ(x0)
√
h0

. The inequality (19) is exactly the same recurrence that was analyzed
by Garber and Hazan [15] (see their Equation (7), with the same notation for M ), where they have
shown a O(1/K2) convergence rate. The exact constant is obtained by following the very same
proof as [15], i.e. proving by induction that there exists C such that hk ≤ C/(k + 2)2. The base
case k = 0 can be trivially obtained by letting C ≥ 4h0.1 Their induction step was shown by
requiring that C ≥ 18

M2 . Thus using C = max{4h0,
18
M2 } (and re-arranging) proves the statement

of our theorem.

The following lemma will be used in the proof of the bound on the modified directional smooth-
ness.

Lemma 23 Consider a compact convex set C. Assume f is a µω-strongly convex function with
respect to ω. Let x∗ be the minimum of f on C. Then, for any x ∈ C, we have

ω∗(∇f(x)) ≥
√
µω
2

√
f(x)− f(x∗). (20)

1. Note that Garber and Hazan [15] use a different argument for the base case, bounding instead h1 with L·diam(C)2/2,
using the Lipschitz smoothness of f (and this would become Cf/2 in its affine invariant formulation with Cf as
defined by Jaggi [19]). However, we believe that h0 is usually smaller than Cf in applications, and in any case h0

appears from 1/M2 for us, so using our different base case argument is more meaningful.
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Proof Let x ∈ C. From Definition 6, we have that

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉+
µω
2
ω2(x− x?).

Hence with the optimality conditions, i.e. 〈∇f(x∗), x− x∗〉 ≥ 0, we have

f(x)− f(x∗) ≥ µω
2
ω2(x− x∗). (21)

By convexity of f , we have 〈x − x∗, ∇f(x)〉 ≥ f(x) − f(x∗), and by definition of the Fenchel
conjugate, we have

ω(x− x∗) · ω∗(∇f(x)) ≥ 〈x− x∗, ∇f(x)〉 ≥ f(x)− f(x∗).

Hence by plugging (21), we obtain (20).

We now prove Theorem 24 that is similar to Theorem 12. It states that in the case of the
FW algorithm, the modified directional smoothness constant is bounded if the function is smooth,
strongly convex and the set is strongly convex for any distance function ω. It also provides an
explicit upper bound on the modified directional smoothness constant. This bound implies that the
convergence rate in Theorem 22 is better conditioned than existing results [15].

Theorem 24 (Bounds on modified directional smoothness) Consider x0 ∈ C and a function f ,
smooth w.r.t. the distance function ω, with constant Lω, strongly convex w.r.t. the distance function
ω, with constant µω, and the set C, strongly convex with constant αω. Let δ(x) = x − v(x), v(x)
being the FW corner. Then, the function f(x) is modified directionally smooth w.r.t. to δ, with
constant

L̃f,δ(x0) ≤ κω
√

2Lω
αω
√
µω

1√
f(x0)− f∗

. (22)

Proof Let h ∈ [0, 1]. With the smoothness of f , we have

f(x+ hδ(x)) ≤ f(x)− h〈−∇f(x), δ(x)〉+
h2Lω

2
ω
(
δ(x)

)2
.

Recall that when δ(x) is the Frank-Wolfe direction, we have that the Frank-Wolfe gap g(x) is equal
to 〈−∇f(x), δ(x)〉. Also, the scaling inequality for strongly convex sets (Lemma 9) implies that
ω(δ(x))2 ≤ g(x)/(αωω

?(−∇f(x))), so that

f(x+ hδ(x)) ≤ f(x)− h〈−∇f(x), δ(x)〉+
h2Lω
2αω

g(x)

ω?(−∇f(x))
.

Now, it is easy to see from the definition of the dual distance ω∗ that is has the same bounded
asymmetry constant as for ω, and thus ω?(−∇f(x)) ≥ 1

κω
ω?(∇f(x)). Thus we apply (20) to

obtain:

f(x+ hδ(x)) ≤ f(x)− hg(x) +
h2

2

κw
√

2Lω

αω
√
µω
√
f(x0)− f∗

√
f(x0)− f∗√
f(x)− f∗

g(x),
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which implies equation (22).

Theorem 24 shows that the conditioning of convergence with the directional smoothness, which
does not depend on any norm choice, in Theorem 22 is better than conditioning of other analysis
[15]. We now prove that the optimal constant of modified directional smoothness L̃f,δ is affine
invariant, a result similar to Proposition 11 for the directional smoothness constant.

Proposition 25 (Affine Invariance of Modified Directional Smoothness) Consider C a compact
convex set and f a convex function on C that is modified directionally smooth w.r.t. δ(x) with con-
stant L̃f,δ(x0) (with x0 ∈ C). If for any x ∈ C, δ(x) is affine covariant (e.g. the Frank-Wolfe
direction δ(x) , v(x)− x), then the constant L̃f,δ in (17) is affine invariant. In other words, for an
invertible matrix B, let

f̃(·) , f(B·), δ̃C̃(·) , δB−1·C(·),

then L̃f̃ ,δ̃C̃(x0) = L̃f,δ(y0), where y0 , B−1x0.

Proof Let y ∈ B−1 · C. Applying the definition of directional smoothness for f at By, we obtain

f
(
By+hδ(By)

)
≤ f(By)+h〈∇f(By), δ(By)〉−

L̃f,δ(x0)h2

2
〈∇f(By), δ(By)〉

√
f(x0)− f∗
f(By)− f∗

.

(23)
Similarly to Proposition 11, we have that∇f̃(y) = BT∇f(By) and δ(By) = Bδ̃C̃(y) so that

〈∇f(By), δ(By)〉 = 〈∇f(By), Bδ̃C̃(y)〉 = 〈BT∇f(By), δ̃C̃(y)〉 = 〈∇f̃(y), δ̃C̃(y)〉.

Hence (23) and f̃∗ = f∗, implies that for any y ∈ B−1 · C

f̃(y + hδ̃C̃) ≤ f̃(y) + h〈∇f̃(y), δ̃C̃(y)〉 −
L̃f,δ(x0)h2

2
〈∇f̃(y), δ̃C̃(y)〉

√
f̃(y0)− f̃∗

f̃(y)− f̃∗
.

Hence, f̃ is modified directionally smooth on C̃ , B−1 · C with respect to δ̃C̃ and L̃f̃ ,δ̃C̃(y0) ≤
L̃f,δ(x0). A similar reasoning concludes that the two constants are equal.

Appendix E. Related Work Details

[24] propose an affine invariant analysis of the vanilla Frank-Wolfe algorithm when the uncon-
strained optimum x∗ is in the relative interior of the constraint set C and f is strongly convex.
Hence, the analysis applies when the constraint set is a strongly convex set, and the quantity might
be defined in our context. However, the affine invariant constant µ(FW )

f standing for the strong
convexity of f is zero whenever the optimum is not in the relative interior of the constraint set C.
Indeed, Equation (3) from [24] define the following affine invariant quantity

µ
(FW )
f , inf

x∈C\{x∗},γ∈]0,1]
s̄=s̄(x,x∗,C)
y=x+γ(s̄−x)

2

γ2

[
f(y)− f(x)− 〈∇f(x), y − x〉

]
,
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where s̄(x, x∗, C) = ray(x, x∗) ∩ ∂C. When x∗ /∈ C, we have µ(FW )
f ≤ 0 since there are some

point x ∈ ∂C such that x ∈ s̄(x, x∗, C), and thus we can take s̄ = x in the inf , yielding y = x with
γ > 0. This means that the above quantity cannot be easily generalized to the setting we studied in
Theorem 12 where the unconstrained optimum is assumed to be outside of C.
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