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Abstract

When analyzing parametric statistical models, a useful approach consists in modeling geometrically
the parameter space. However, even for very simple and commonly used hierarchical models like
statistical mixtures or stochastic deep neural networks, the smoothness assumption of manifolds is
violated at singular points which exhibit non-smooth neighborhoods in the parameter space. These
singular models have been analyzed in the context of learning dynamics, where singularities can act
as attractors on the learning trajectory and, therefore, negatively influence the convergence speed
of models. We propose a general approach to circumvent the problem arising from singularities by
using stratifolds, a concept from algebraic topology, to formally model singular parameter spaces.
We use the property that specific stratifolds are equipped with a resolution method to construct a
smooth manifold approximation of the singular space. We empirically show that using (natural)
gradient descent on the smooth manifold approximation instead of the singular space allows us to
avoid the attractor behavior and therefore improve the convergence speed in learning.

1. Introduction

A parameter space is a subspace of the Euclidean space equipped with the metric topology induced
by the Lo-norm that includes all permissible parameters of a statistical model. This geometric
viewpoint of the set of parameters allows us to analyze how specific topological properties given
by the parameter space influence the learning dynamics. Specifically, regular parameter spaces are
modeled as Fisher-Rao manifolds [14] to allow continuous and smooth update. However, even
commonly used simple models like neural networks [21] violate the manifold assumption. We
will refer to such points in the parameter space that are continuous but not smooth as singular.
This setting results into two main problems: (1) the tangent space on the parameter space is not
well defined ar the singularity due to the lack of smoothness. Therefore, gradient-based learning
algorithms in a gradient flow setting fail here. (2) several studies [4, 5, 27] have shown that near
the singularity an attractor behavior [19] can be observed such that update steps gets smaller close
to the singularity. This is due to the fact that the Hessian of the loss function becomes singular (also
referred to as degenerate or higher-order saddles) when the parameters space is singular, leading to
slower convergence when training the model [6, 24].

To overcome those problems we propose to model the parameter space as a specific topological
space, namely Stratifolds [7, 11, 16] and then use a resolution of the space to obtain a smooth
manifold approximation around the singularities.

© P.M. Esser & F. Nielsen.



TOWARDS MODELING AND RESOLVING SINGULAR PARAMETER SPACES USING STRATIFOLDS

-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 -20 -15 -10 -05 00 05 10 15 20
6,

(@) (b) ()

Figure 1: (a) Singular parameter space in red. Initialization at the red point. True parameterization at
the green point. The update has to go through the singularity. (b) Proposed smooth approximation.
(c) Gradients at different points on the singular parameter space and the smooth approximations.

We illustrate the main idea on a specific example shown in Figure 1. Consider a function
fo..0,(x) such that the parameters lie on a topological space restricted to 0? 4+ 03 = 0 as displayed
in Figure 1 (a). A standard learning problem is now to start at some initialization (shown by the red
dot) and try to reach a true parameterization (shown by the green dot) using a gradient decent (GD)
approach. We note that at the singularity at (61,62) = (0,0) the space has a singularity, charac-
terized by the lack of a unique tangent space. We can formally model such a space as a Stratifold
by decomposing it into a set of smooth manifolds. To overcome the problem arising from the lack
of smoothness we propose to instead consider a manifold approximation of the singular topological
space as illustrated in Figure 1 (b), which can be formalized as fg, g, () s.t. 62 + 03 = €. In the
main part of the paper we will formalize this idea. Depending on how close the approximation is,
we observe the following tradeoft: for a close approximation (in this case small €) even points close
to the singularity are well approximated however, as mentioned above, singularities admit an attrac-
tor behavior, which is stronger the closer the approximation is to the original model. We can see
this illustrated in Figure 1 (c¢). Away from the singularity differences in gradients are very similar
while close to the singularity the gradients on the approximation are large, allowing for the effective
application of GD, while they degenerate near the singularity.

While there are a few works that consider Stratifolds or similar constructions in the context of
learning theory [8, 21] and focus on local manifold structures [17], to the best of our knowledge this
is the first approach to consider Stratifolds and their resolution in the context of learning dynamics.
Furthermore there are several approaches on the analysis of specific singular models where the
most general one, based on a topological viewpoint, is by Watanabe [24, 25, 26]. While [24] relies
in principle on the same resolution theorems for algebraic varieties [12, 13] as we do, [24] focuses
on information criteria, as standard approaches [1, 20] do not hold in the singular regime. The
technique of [24] uses a blowup of the function space into higher dimensions and therefore follows
a functional perspective where in contrast we consider a resolution that preserves the dimension of
the manifold, motivated by a fopological viewpoint.

The remainder of the paper is structured as follows. We start with Section 2.1 and Section 2.2
to introduce the construction and resolution of Stratifolds which are then applied to a simple toy
model in Section 2.3. From there we illustrate that the above presented idea is relevant to the
machine learning community by showing how using the resolution avoids the attractor behavior and
improves the learning convergence rate.
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2. Introduction to Stratifolds

Equipped with the above-given intuition, we can now define the central concept for this paper:
Stratifolds. To do so, we follow [7, 11, 16] but restrict ourselves to outlining the main ideas. We
provide further definitions and details in Appendix B and C.

Let C C C°(.%) be a locally detectable subalgebra then we can describe the decomposition for
a differential space (., C)) over the subspace .7 := {z € .| dim(T,.%) = i} and the disjoint
union .’ = | |, ./ ‘. Furthermore we introduce the following terminology: Let . be the i-stratum
of . and let | J,., " =: X" be the r-skeleton of .#. Now a n-dimensional Stratifold .7 is a
topological space .7 together with a class of distinguished continuous (smooth) functions . — R.
This generalizes smooth manifolds M where the class of considered functions are in C*°. An n-
dimensional Stratifold is a smooth manifold iff .#”* = (), ¥ i < n. For the Stratifold, this class of
smooth functions offers the decomposition. A natural example of spaces with singularities occur in
algebraic geometry as algebraic varieties, i.e., zero sets of a family of polynomials.

2.1. Inductive Construction of a Stratifold

Given the concept of Stratifolds, an immediate question that comes up is given a parameter space,
how can we construct a Stratifold that describes it?

We consider an inductive construction, as defined in [16], where we start with the lowest dimen-
sional stratum and then by induction iteratively glue higher dimensional strata on it until reaching
the top stratum. Start by considering a n dimensional Stratifold (., C') and a smooth manifold W
together with a boundary with a collar ¢ : 9V x [0,¢) — W and furthermore assume k£ > n. In
addition we define the morphism f : OW — .¥ to be the attaching map. Now we define .7’ by
gluing W to . with f by: ./ := )V Uy .. On this space we consider the algebra C’ consisting
of those functions g : ./ — R who’s restriction to .# is in C who’s restriction to the interior of

W, V(i):: W — OW is smooth and such that for some § < e we have gc(x,t) = gf(x) for all
x € 0Wandt <.

To illustrate this idea we can now apply the construction as described above on the example
of a probability simplex. Consider the specific case of a simplex where the scalars of the in-
dividual points ug,...,ur € R* are k + 1 standard unit vectors also known as a Standard n-
simplex, denoted by A™. An example of such a probability simplex in practice is the multinomial
distribution: for n independent trials k£ possible mutually exclusive outcomes, with correspond-
ing probabilities p1,...,pr € RF| Zf:o pi = 1,p; > 0 Vi € [k], such that p; lies on the sim-
plex.  We can now use the previously define inductive construction to obtain a Stratifold for-
mulation. We have trivially for A° a 0-dimensional manifold and therefore also a 0-dimensional
Stratifold: .70 = AY = {(tg) € R} Z?:o t; = 1} which we use as a starting point and from
there glue higher dimensional simplices on it. In addition the algebra C' is all constant functions
on .Y € R!.  Therefore in the spirit of induction, we can consider the A° and the gluing of

Al on it as a kind of base case. Now consider 9. = . — }, where we define 0. = AY and
S = Al = {(to,tl) € R2|Z}:0ti = 1} and . ¥/—= Al — AO = {(to,tl) € R2|Z}:0ti < 1}
where t; > 0Vi. Then the algebra C is all functions that are smooth on joﬂ and constant on 0.¥. We
can define the space by starting with initial Stratifold (., C) := A®, considering a & > n dimen-

sional manifolds with boundary, in this case YW := Al. Finally the attaching map f : OW — .%
is an identity map as A? = W (the lower dimensional simplex lies on the boundary of the higher
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Figure 2: (a) Parameter space of the double cone model, together with examples of learning dynam-
ics. Let Bipj; be the parameter initialization, then 67 is an example for a true parameterization that
lies on the same cone, where as 63 is an example for a true parameterization that lies on the second
cone. (b) (left) two sheet hyperboloid. (middle) Stratification. (right) one sheet hyperboloid.

dimensional one). From there, the inductive step would be to consider the newly constructed A as
a starting point and attach A? onto it.

2.2. Resolution of Stratifolds

While the previous section provided us with a framework for modeling parameter spaces that are not
smooth manifolds, the descriptive element does not improve the model performance. Therefore we
are interested in a resolution of the Stratifold that provides a smooth manifold approximation leaving
the dimension of the top stratum untouched. For this paper we consider the setting of isolated
singularities. [11] extends this concept but the details become quite technical and we therefore refer
to this analysis as future work. To do so we start with defining the setup more formally [11].

Let .# be an m-dimensional Stratifold. A resolution of .% is a map p : & — . such that:
(D ¥ is a smooth manifold, (2) p is a proper morphism, (3) the restriction of p to p_l(f ™) is a
diffeomorphism onto ., (4) p~ (™) is dense in .% .

If .~ is an algebraic variety Hironaka [12, 13] shows that there is a resolution of the singularity
using algebraic geometry. This link is especially interesting considering that Watanabe [24] is built
on the same theorems but in the context of functional blowup and not in the context of topological
resolutions. In the following we will illustrate the construction and resolution on a specific example.

2.3. The Cone Model as a Stratifold - Inductive Construction and Resolution

For our analysis we look at a simple model that is used to show the influence of singularities on
learning trajectories and convergence speed [3—5, 27]. Consider a random variable & € R3, subject
to a Gaussian distribution with mean g and covariance matrix 1. The hypothesis class over all such
function is given by Hg := {hg(x) = \/21?3 exp(— 3|z — ;LH2)‘ pe R 2+ 3 —pf =0}
where p is restricted to be on the surface of a double cone.

As the cone lies in R? we can reparameterize the cone as: 1 = £, g = &cosf, 3 = Esinf.
This results in two cones, one for £ > 0 and one for £ < 0, connected at the apex £ = 0, which
we refer to as the singularity of the model. This means that the parameter surface is given by
S = {(p1, p2, p3) € R | pf + p3 = pi3 }. We can see this model illustrated in Figure 2 (a).

We are now interested in the applying the steps as described in Section 2.2 to define the model
as a Stratifold and then also derive a resolution of it.
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Figure 3: (a) (left) top view onto the cone model. Displayed are the learning trajectories for three
different initializations (blue dots) for the same target value (green cross). Solid lines: learning
trajectories for the GD on the original cone model. Dotted lines: learning trajectories GD on the
Stratifold resolution. (right) Loss functions corresponding to the plotted learning trajectories. (b)
Loss for NGD and SGD on the Cone Model. Mean (left) and median (right) loss over different
initializations.

Following directly from the definition it is easy to see that we can not define a unique tangent
plane on the singularity at 4 = {0,0,0}. Furthermore we also see that the point is closed. We
define the zero set as ¥ := {s;},_, = so = (0,0,0) = dim(X) = 0. This gives us an
algebraic variety V' C R? with one isolated singularity and in line with the earlier definitions the
distance function becomes p;(x) := ||z —so||?, which gives a distance to the origin of the coordinate
system. The ¢ enclosing ball is around the origin and we can see V,(s;) := V N Dg,(s;) as the
part of the double cone that is within the € ball. We can see this illustrated in Figure 2 (b) (middle).
Seeing D, to be the enclosing ball we can see lo?gi as the ¢ ball without the border. As we only
have one singularity we can define W now as: W := V — D, (s0) Usq V%, (s5) x [0,;]. Here W
builds now the double cone structure away from the singularity where the enclosing ball builds the
corners close to the singularity.

This gives a final Stratifold as one 0-dimensional manifold of the singularity, %%, and the
manifold of the cone, with the corner build by the enclosing ball around the singularity .#° as:
SV = 59, S? = W. And the complete Stratifold as . = | |,." = 90192 = 5o LU W.
For the cone model define h(p1, u2, 13) = ,u% + ,u% - ,u% = 0 and following Section 2.2 we have
¥ = h~1(0) with a not optimal resolution of Yy = h~!'(e) which gives us a hyperboloid of two
sheets (Figure 2 (b), left) and an optimal resolution of #; = h~!(—¢) which gives us a hyperboloid
of one sheet as illustrated in Figure 2 (b) (right).

3. Experiments

Finally we can now analyze in the next section how such a resolution can be used in the context of
machine learning — more specifically to improve convergence speed. Using the above concepts as
a starting point we can conduct experiments that extend the analysis of the cone model in [27] to
gradient decent on the previously derived smooth manifold approximation. We focus our analysis on
the convergence speed and form of the learning trajectories. To do so we recall the two problems that
can arise in the context of singularities: (1) slower convergence as result from attractor behaviour
near the singularity. (2) the tangent space at the singularity is undefined.
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Figure 4: Comparing loss and learning trajectory where the initialization and true parameterization
are on different cones. The parameters have to go through the singularity as £ = 0. (left) cone one
& > 0. (middle) cone two £ < 0. (right) loss function.

To analyze the behavior near and at the singularity, we consider gradient decent over different
initialization. Formally let (") be the model parameters at time-step ¢, then the update rule for GD
is defined as 041 = () — 9V ) L. (x;0®)) where 9 is the learning rate and V g Lc.(z; 81)) the
gradient of the negative log-likelihood £(x; @) with respect to the parameters 6 (), Furthermore the
NGD update rule is given by 8¢+ = @) —9T-1VgL(x;€, 6, €) where T is the Fisher information
matrix (FIM). For readability we omit the indication of the time-step in the following.

Applying this to the double cone model we can write L (x; 1) := $(3°0_ (; — 113)?) with the

following reparameterization p := (pu1, 2, p3) = (£, /&2 + ecos b, /&2 + esin 6). From there
it is easy to obtain the learning dynamics under GD with Z; = E[x;] using

VoL T1 + Ty cos OO + T3 sin o) — 2§(t) T 12 0
e = —£0(Zy sin 0 + T3 cos 1) ) Teone 0 &

Similarly for NGD we obtain the learning dynamics for the smooth manifold approximation of the

cone model by first defining the reparameterisation (f11, fiz, fi3) = (£, /€% 4+ €cos 0, /&% + esin 6)
so that we obtain the following gradient and FIM:

T 4 26 — €T cos —A— — T3 sin ——i— +2¢2
VaLlhyp = 71+ 24 — & cos V€ +e §25 sin Erel | Ty = €€+£2 !
VE2 + €Tosinf — /€2 + €T3 cos b 0 e+¢&

Now using the above update equations be obtain the learning trajectories and loss curves as
illustrated in Figure 3. As we are interested in the comparison of GD on the initial model and the
hyperboloid we note that for parameters that are initialized close to the true parameterization, the
behavior for both settings is very similar as it does not come close to the singularity. In contrast if
we focus on the learning dynamic plotted in blue, GD provides an update that gets trapped at the
singularity and results in a plateau behaviour. On the other hand if we look at the same initialization
on the hyperboloid, the influence of the singularity is less pronounced; the model does not get
trapped and converges faster.

Interestingly if we consider NGD, the convergence speed on both the cone model and the hyper-
boloid is very similar. This first might seem to be surprising however previous results [27] showed
that if we account for the FIM, the singularity has less influence on the learning trajectory.

This immediately brings up the question “Why are we interested in the resolution of the model
if the NGD seems to give a fast convergence?” Answering this brings us to the the second question
posed in the introduction: what is the behavior of the learning dynamics at the singularity? We note
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that the Fisher information may potentially be infinite when the integral diverges: For example,
this happens for the parametric family of uniform distributions {U|a,a + 1] : a € R}. In that
case, Amari [2] proposed to used Finsler geometry instead of Riemannian geometry by defining the
information using Hellinger divergence between infinitesimally close distributions. Furthermore we
observe that the FIM degenerates at the singularity, therefore problems arise when we consider a
setting where we have to go through the singularity (as illustrated in Figure 4). In the case of the cone
model this happens when we initialize the parameters on one cone while the true parameters lie on
the second cone. We indeed observe that the parameters get stuck at the singularity and we can not
reach the true parameterization on the second cone. In contrast we see that for the hyperboloid, while
we see a slowdown around £ = 0, GD reaches the true parameterization. Therefore even in a NGD
setting the consideration of the resolution can play a valuable role. Finally on an application level
we note that the use of NGD also comes with limitations [18] like the requirement to computation
of the inverse of the FIM which can become computationally intensive for complex models.

4. Conclusion and Future Work

We take a first step towards constructing a general framework for modeling geometrically singular
parameter spaces. By taking advantage of the nature of Stratifolds, we are able to describe parameter
spaces that do not fulfill smoothness assumptions and use the resolution of this description of the
parameter space to obtain a smooth manifold approximation of the singular space. Experimentally
we show that using first-order methods (SGD) on the smooth manifold approximation decreases the
effect of the singularity and therefore speeds up learning convergence. For natural gradient descent
we additionally find that the Fisher information metric can no longer degenerate during training as
the resolution offers an approximation at previously singular points.

As we usually consider extensions to vanilla first-order gradient-based optimization like [10, 15,
22] or optimizations that take the parameter surface into account [9, 23] as a step into considering
the parameter space more explicitly, those approaches do not require explicit knowledge of the
topological properties of the parameter space. While first steps are taken in this direction [17]
a main focus of future research will be to develop a better understanding of the topology of the
parameter spaces of commonly used models and formally characterize their singular points and
their resolution. While the presented toy examples would allow for simpler geometric constructions
we strongly expect that more complex structures such as Stratifolds will be necessary to describe
more complex models.

In line with the this direction, we can recall that for this paper, we focused on the very simple
case of isolated singularities. It is to be expected that studying the topology of parameter spaces of
complex models will also reveal more complex singularities. While [11] provides first theoretical
results on the resolution of more complex singularities, it is open how applicable those results are in
practice. Nevertheless, we conclude by emphasizing that the goal of this paper is not to beat state-
of-the-art models but rather to gain a better understanding of how the structure of the parameter
space influences the learning behavior, and propose the idea of resolving singular parameter spaces
into smooth manifolds.
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Appendix A. Notation and Illustration of Blowup

In this section we first give some notes on the general notation as well as some additional illustra-
tions for conceps used in the main paper.

A.1. Notation

We denote algebras by C, differential spaces as (X, C') and tangent spaces as 7, X with the dif-
ferential map df, : T, X — Ty X ’. Manifolds are given by M, A and Stratifolds by .. For a

topological space S we denote the interior by § and the boundary as 0S. The germ of a function at
a point describes how the function behaves very close to the point. For a point z € X, we consider
the germs of functions at z, C,. For readability, we overload the notion of resolution as the function
mapping from a singular space onto the smooth manifold as well as the manifold resulting from the
resolution itself.

A.2. Additional Illustrations

* In Section 1 we discussed the comparison between the resolution as used in [24] and this
paper. We further illustrate this in Figure 5.

* A standard n-simplex is the subset of R"*! given by:

n
Ztizl,tiz()w}

A" = {(to,...,tn) S R+
=0

For an illustration of the inductive construction see see Figure 7.

* The most natural examples of manifolds with singularities occur in algebraic geometry as
algebraic varieties, i.e., zero sets of a family of polynomials. This example is mentioned in
the main part and illustrated in Figure 6.

10
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l Resolution

Figure 5: Illustration of the resolution of singular points. (left) Blowup following [24]. This illus-
trates a functional approach where the function is blown up into a higher dimension. (right) Our
approach. Preserving the dimension, we propose to construct a smooth manifold approximation of
the singular topological parameter space.

S={(x-y)€R’x-y=0} S'=5-(0,0) S% = (0,0)
Stratifie ‘
I _— [ ]

Figure 6: A simple example for a Stratifold. Considering a simple algebraic varietie x - y = 0 with
a stratification as described above.

d2 d2
1 ; ds
L S — r——— 9> dl J . dl RS dl
0 1 0 1
dim =0 dim=1 dim =2 dim =3

Figure 7: Probability simplex in a {di, d2,ds} coordinate system: O-simplex (point), 1-simplex
(line segment), 2-simplex (triangle), 3-simplex (tetrahedron).
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Appendix B. Additional Definitions — An Introduction to Topology

In this chapter we will recap some of the fundamental concepts from Topology, specifically related
to smooth manifolds, as those concepts are essential for the later definition of Stratifolds. The
specific notation and phrasing of the definitions of this chapter are taken from [11] but are not
meant as a comprehensive introduction but as a reference for clarifying the terminology in the main
part.

B.1. Differential Space

Definition 1 (Algebra) Denote the set of continuous functions from X — R by C°(X)
A subset C C C°(X) is called an algebra of continuous functions if for f, g € C the sum f + g
the product f g and all constant functions are in C.

Example 1 set of functions f : U — R, where all partial derivatives of all orders exist, given by
=)

Definition 2 (Locally Detectable) Let C' be a subalgebra of the algebra of continuous functions
f X —>R

We say that C is locally detectable if a function h : X — R is contained in C if and only if for
all z € X there is an open neighbourhood U of x and g € C such that h|y = g|y.

Definition 3 (Differential Space) A differential space is a pair (X, C), where X is a topological
space and C C C°(X) is a locally detectable subalgebra of the algebra of continuous functions
satisfying the condition:

For all fy, ..., fr. € C and smooth functions g : R¥ — R, the function

z = g(fi(z),..., fu(z))
isinC.
B.2. Smooth Manifolds

Definition 4 (homeomorphism) A function f : X — Y between two topological spaces is a
homeomorphism if it has the following properties:

* f is a bijection
* f is continuous and

o the inverse function f~! is continuous

Example 2 A chart of a manifold is an homeomorphism between an open subset of the manifold
and an open subset of a Euclidean space.

Example 3 R and R™ are not homeomorphic for m # n. (no bijaction)

Definition 5 (Isomorphism) Ler (X, C) and (X', C") be differential spaces. A homeomorphism
f X — X'is called an isomorphism if for each g € C' and h € C, we have gf € C and
hf~tec.

12
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Definition 6 (smooth manifold) A k-dimensional smooth manifold is a differential space (M, C)
where M is a Hausdorff space with a countable basis of its topology, such that for each v € M
there is an open neighbourhood U C M, an open subset V. C R¥ and an isomorphism

p: (V,C=(V)) = (U,C(U)).
a k-dimensional smooth manifold is a differential space which is locally isomorphic to R¥

Definition 7 (Germ) The germ of a function at a point describes how the function behaves very
close to the point

For a point x € X, we consider the germs of functions at x,Cy. If f € C and g € C are
representatives of germs at x, then the sum f + g and the product f - g represent well-defined germs
denoted [f]z + [g]z € Cy and [f]z - [9]z € Ca.

Definition 8 (Derivation) Ler (X, C) be a differential space. A derivation at x € X is a map from
the germs of functions at x

a:C, — R

s.1.
o ([fla + [9l2) = a ([f]z) + a ([gl2)
a([flz - [9e) = a([fla) - 9(x) + [(z) - a ([9]2)
a(lele - [flz) = ¢ a([f])

forall f,g € C and [c], the germ of the constant function which maps all y € X to c € R.

Definition 9 (Tangent Space) Let (X, C) be a differential space and = € X. The vector space of
derivations at x is called the tangent space of X at x and denoted by T, X.

Definition 10 (Differential) Ler f : (X,C) — (X', C’) be a morphism. Then for each x € X the
differential

dfy : ToX — Ty X'

is the map which sends a derivation o to o where o assigns to [g] () € C, the value o([gf]z).

B.3. Boundaries

Besides the very standard definitions presented above, we have to consider some concepts that are
related N
Let (.7, 0. be a pair of topological spaces. We denote . — 0. by . and call it the interior.

We assume that . and 0.7 are stratifolds of dimension n and n — 1 and that 9.% is a closed
subspace.
Now we want to look at the map onto a neighborhood of the boundary:

1. As the illustration might be misleading: An important note here is that at p we have to to be able to define the tangent
space 1, M. Therfore the point can not lie on the boundary of a topological space. We will further discuss this in the
following, Section B.3.
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Figure 8: Illustration of a Differential map df; : 7o X — Ty X ’. Consider M and A be smooth
manifolds, displayed are only a part of it !

////v<:> 08 =8-8
\

O

S=&— a8

Figure 9: boundary: For a topological space we consider the interior and boundary or the space,
as illustrated above
Definition 11 (Collar) Let (., 0.%) be a pair as above. A collar is a homeomorphism

c:U. >V

where € > 0,U, := 0.7 x [0,¢€) and V' is an open neighbourhood of 0.7 in ./’ such that c|.» {0}
is the identity map to 0. and c|y._ (9.7 x{0}) is an isomorphism of stratifolds onto V — 0.

Intuitively: the boundary cross an interval open on one side, equivalently a small open neigh-
borhood of the boundary.
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Appendix C. More Formal setup of Section 2

While in Section 2 we generally refer to Stratifolds we note that there are technical more detailed to
consider. Therefore we state the following definitions.

Definition 12 (k-dimensional Stratifold [16])
A k-dimensional Stratifold is a differential space (#,C), where S is a locally compact Haus-
dorff space with countable basis, and the skeleta X! are closed subspaces. In addition we assume:

1. Restriction gives a smooth structure on .#* and for each x € . restriction gives an isomor-
phism
it Cp,—= C™ (Y’)w

2. All tangent spaces have dimension < k,

dm7T,¥ <k Vze

3. (Bump Function) for each x € . and open neighbourhood U C . there is a non-negative
function p € C such that p(x) # 0 and supp p C U

A natural examples of spaces with singularities occur in algebraic geometry as algebraic vari-
eties, i.e., zero sets of a family of polynomials. To get a better intuition, consider the following
example: an algebraic variety of the form = - y = 0 as Stratifold. Consider the parameter space
defined over {z,y} s.t. z - y = 0 we can stratify this space into a 0-dimensional manifold as {0, 0}
and four axis elements. In addition we define the following specific class of Stratifolds.

Definition 13 (c-stratifold [16]) An n-dimensional c-stratifold .7 (a collared Stratifold) is a pair

of topological spaces (/,0.7) together with a germ of collars [c] where .’ :} —0.% is an n-
dimensional Stratifold and 0.7 is an (n — 1)-dimensional Stratifold, which is a closed subspace of
. We call 0. the boundary of ..

A smooth map from . to a smooth manifold M is a continuous function f who’s restriction

[¢]
to .7 and to 0. is smooth and which commutes with an appropriate representative of the germ of
collars, i.e., there is a vy > 0 such that fc(x,t) = f(x) forall x € 0. and t < 0.

Those refined definitions are not central for the simple example considered in the main paper
but will play a central role when transferring the idea to more complex models.

Remark 14 (Uniqueness of the decomposition) We can easily construct examples for the same
stratification but different Stratifolds as well as one Space different Stratifolds.

For the main paper we consider the simple case of an isolated singularly as defined below. Again

for more complex models an extension to not singular singularities will be necessary. [11] provides
a theoretical framework for such cases but we formalize the isolated case below.
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Definition 15 (Isolated Singularity) Ler {x};cn be a countable set of points and let g : OM —
{z}ien be a a proper map from an m-dimensional smooth manifold M onto a set of a 0-dimensional
manifold. Writing it as a Stratifold gives us

S = MUy {z;}, .
A m-dimensional Stratifold . is said to have isolated singularity iff
S=0 Yie{l,---,m—1}

C.1. Resolution of Algebraic Varieties with Isolates Singularities [11]

Consider an algebraic variety V' C R"™ with isolated singularities s; € > where X is the singular
set, all points {s;}, are 0-dimensional manifold. In the case where s; is open in V' we do not need
to resolve the point.

Therefore consider the other option. Let s; be closed in V' for the following. From there we
define a distance function p;(z) := ||z — s;]|? on R™ and let D¢, (s;) be the enclosing ball in R"
with radius ¢; around s;. Now the idea is that we define an enclosing ball around the singularity and
define a union of the initial algebraic variety and the enclosing ball. We can define this as

a‘/;iz (SZ) = V;:‘z (32) N aDEz (82)
such that the restriction p; |y, _¢,1 has no critical value. With that we can define a continuous map
E : 8V52 (Sl) X [O,Ei] — V;—Z

this gives us a c-manifold W with obvious collar over the enclosing ball:

W=V — <|_| b&. (81)) Uia OVE, (s;) % [0, ]

finally the map
f=idUh: W =V
gives V the structure of a Stratifold with isolated singularities
C.2. Resolution of Hypersurfaces [11]
Again we assume an algebraic variety, a polynomial p : R"*! — R with singularity {s;};
s; €V :=p }0).

We are interested in the link to the singularity 9V, (s;). Choose a § > 0 such that for all ¢ with
|c| < 6 are regular values of p and pick ¢ such that

p ) # 0

then p~!(c) is a smooth manifold. In the case of a complex polynomial p : C"*! — C(n > 0),
every deformation p~!(c) gives an optima resolution given ||c|| is small enough [11].
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Remark 16 In the above definitions and also the resolution considered afterward, we only con-
sider a specific class of Stratifolds. To be specific, we have to distinguish between p-stratifolds and
c-stratifolds as defined in [11]. For a rigorous definition of the Stratifolds spaces and the resolution,
those distinctions are technically important as they define exact restrictions on allowed mappings
and the properties of the space. In particular, Stratifolds constructed inductively by attaching mani-
folds together using the data: germs of collars and attaching maps, are called parameterized Strati-
folds or p-stratifolds [16]. For this paper and to illustrate the main ideas we omit those distinctions
there but note that revisiting them will become important when modeling more complex models.
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