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Abstract

In this paper, we study nonconvex min-max bilevel optimization problem where the outer objective
function is non-convex and strongly concave and the inner objective function is strongly convex.
This paper develops a single loop single timescale stochastic algorithm based on moving average
estimator, which only requires a general unbiased stochastic oracle with bounded variance. To the
best of our knowledge, the only existing work on min-max bilevel optimization focuses on the ones
with an upper objective in certain structure and only achieves an oracle complexity of O(e~?).
Under some mild assumptions on the partial derivatives of both outer and inner objective functions,
we provide the first convergence guarantee with an oracle complexity of O(¢~*) for a general class
of min-max bilevel problems, which matches the optimal complexity order for solving stochastic
nonconvex optimization under a general unbiased stochastic oracle model.

1. Introduction

We consider stochastic min-max bilevel optimization problems given by
min max f(x, a,y(x)) = E¢[f(x, a,y(x);§)]  (upper)
xeRdz a€A

y(x) € argming(x,y) = E¢[g(x,y;¢)]  (lower)
yeR%

ey

where f and g are smooth functions and A C R% is a convex set. In particular, in this paper
we assume that f(x, a,y) is nonconvex in the primal variable x but strongly concave in the dual
variable «, g(x,y) is strongly convex in y. Problem (1) involves two optimization problems and
has a two level structure. We refer to miny pa, maxac4 f(X, @, y(x)) as the upper problem and
ming g, g(x,y) as the lower problem. We call f(x,ca,y(x)) the outer objective and g(x,y) the
inner objective. Tackling the problem (1) is challenging as it involves solving a min-max problem
and a coupled min problem simultaneously.

1.1. Related work
1.1.1. MIN-MAX BILEVEL OPTIMIZATION

To the best of our knowledge, the only existing work that provides a stochastic algorithm with
provable convergence guarantee on min-max bilevel problems is [9]. They propose a single loop
bi-time scale stochastic algorithm based on gradient descent ascent, and prove that it converges to
an e-stationary point with an oracle complexity of O(e~°). However, this convergence result is only
established for a special case where f(X,-,y) is a linear function.
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1.1.2. STOCHASTIC NONCONVEX STRONGLY CONCAVE MIN-MAX PROBLEMS

The considered problem is also closely related to non-convex strongly concave min-max problems,
which have been studied extensively recently. To the best of our knowledge, [19] establishes the
first results by proposing proximally guided stochastic mirror descent and variance-reduced gradient
algorithms (PG-SMD/PG-SVRG) for solving non-smooth nonconvex concave min-max problems.
They prove a convergence to nearly stationary point of the primal objective function with an oracle
complexity in the order of O(¢~%), which can be reduced to O(e~*) if the objective function is
strongly concave in the dual variable and has certain special structure. The same order of oracle
complexity is achieved in [22] without relying on any special structure. These two works use two-
loop algorithms. There are some studies focusing on single-loop algorithms. [16] analyzes a single-
loop stochastic gradient descent ascent method for smooth nonconvex strongly convave problem,
which achieves (’)(6*4) complexity but with a large mini-batch size. In [11], the same order of
complexity is achieved by a momentum method employing the stochastic moving average estimator
(SEMA) without a large mini-batch size. Some recent works are trying to improve the complexity
by leveraging the individual smoothness condition. In particular, an improved complexity of O(e~3)
was achieved in several recent works under the Lipschitz continuous oracle model for the stochastic
gradient [13, 17, 20].

1.1.3. STOCHASTIC NONCONVEX BILEVEL OPTIMIZATION

The considered problem belongs to a general family of non-convex bilevel optimization problems.
Non-asymptotic convergence results for stochastic nonconvex bilevel optimization with strongly
convex lower problem has been established in several recent studies [3, 8, 11, 12, 14]. As the one
who gives the first results for this problem, [8] proposes a double-loop algorithm with O(e~°) oracle
complexity for finding an e-stationary point of the objective function. [14] improves the complexity
order to O(e~*), but suffer from a large mini-batch size. [12] proposes a single-loop algorithm
with two time-scale updates that achieves an oracle complexity of O(e?). Recently, [11] improves
the oracle complexity to the state-of-the-art oracle complexity O(e~*) by proposing a single-loop
algorithm based on SEMA estimator. [4] unifies several SGD-type updates for stochastic nested
problems into a single SGD approach and presents a new analysis showing that an improved sample
complexity O(¢~*) can be achieved for SGD-type methods. There are studies that try to further
improve the complexity by leveraging the Lipschitz continuous conditions of stochastic oracles.
In particular, by employing the variance reduction technique STORM [6] in gradient estimations,
[10] achieves complexity of O(e~3) without large mini-batch size. [15] proposed a single timescale
algorithm based on a double-momentum structure that achieves not only the same oracle complexity,
but a reduced per-iteration complexity. However, none of these works tackle the min-max bilevel
optimization problem directly.

1.2. Contributions

We present a single loop single timescale stochastic method based on the SEMA for solving a gen-
eral form of min-max bilevel optimization problem under the nonconvex strongly concave (upper)
strongly convex (lower) setting. Then we show, theoretically, that it converges to e-stationary point
with complexity O(e~*) under a general unbiased stochastic oracle model. This oracle complexity
surpasses the existing work [9] and matches the optimal complexity order for solving stochastic
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nonconvex optimization under a general unbiased stochastic oracle model [2].

2. Algorithm

Notations. Let || - || denote the Euclidean norm of a vector or the spectral norm of a matrix. For
a twice differentiable function f : X x Y — R, V,f(z,y) (resp. V,f(x,y)) denotes its par-
tial gradient taken with respect to x (resp. y), and Vg, f(x,y) (resp. V,, f(z,y)) denotes the
Jacobian of V, f(x,y) aty (resp. V,f(z,y) aty). A mapping f : X — R is L-Lipschitz con-
tinuous iff || f(z) — f(2')|| < L||lz — 2'|| Vz,2’ € X. A function f is L-smooth iff its gradient
V f(-) is L-Lipschitz continuous. A function g : X — R is A-strongly convex iff Vz, 2’ € X,
g9(z) > g(z') + Vg(2') T (x — 2') + 3|lz — 2’||%. A function g : X — R is A-strongly concave iff
—g(z) is A-strongly convex. Let II 4 denote a projection onto a convex set .A.

We state the definition of e-stationary point as following.

Definition 1 Consider a differentiable function F(x), a point x is called e-stationary if |V F(x)|| <
€. A stochastic algorithm is said to achieve an e-stationary point in t iterations if E[||VF (x;)||] < ¢,
where the expectation is taken over the stochasticity of the algorithm until the iteration t.

Assumptions. Before presenting our algorithm, we make the following well-behaving assumptions.
Assumption 2 For function f and g, we assume that the following conditions hold

* f(x,a,y) is pg-strongly concave with respect to o for any fixed x,y, and g(x.,y) is fig-strongly
convex with respect to y for any fixed x.

o Vif(x,a,y), Vo f(x,a,y), Vy f(x,a,y) are Ly-Lipschitz continuous, with respect to (x, ., y).
Vig(x,y), Vyg(x,y) are Ly-Lipschitz continuous, with respect to (x,y). Vﬁyg(x,y), Vyzyg(x,y)
are Lggy, Lgyy-Lipschitz continuous respectively, with respect to (x,y).

o IV, 0p)|? < C2,
ngyl‘

Vyflx,ap)|* < C‘?y’ Viyg(x,y)\lz < Cuyp 02 Ogy(x,y) =

gy’

Moreover, the gradients of functions f and g can be only accessed through unbiased oracles
with bounded variance.

Assumption 3 Oy, Ofo, Oy, Ogy, Ogxy, Ogyy are unbiased stochastic oracles of Vi f(x,c.y) ,

Vaflx,a,y), Vyf(x,a,y), Vyg(x,y), Viyg(x,y), Vyyg(xy), and their variances are bounded by
2

o°.

The proposed algorithm is constructed by employing the SEMA for updating x,y and a. Al-
gorithms based on moving average estimators have achieved the state-of-the-art oracle complexity
in both min-max and bilevel optimizations [11]. We first give a brief introduction to the SEMA es-
timator. For solving a nonconvex minimization problem minycra F'(X) though an unbiased oracle
Or(x), i.e. E[Op(x)] = VF(x), the stochastic momentum method (stochastic heavy-ball method)
that employs SEMA updates is given by

Vir1 = (1= B)vi — BOp(x¢)

Xt4+1 = X¢ — N)Vt41,
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where 3 is the momentum parameter and 7 is known as step size or learning rate. The variance
recursion property of the SEMA estimator (Lemma 9 in the appendix) plays a key role in the con-
vergence analysis.

Algorithm 1: Stochastic Momentum Method for Min-max Bilevel Optimization

Input: Vo, O, H07 Zp,X0, W0, Yo
for 1=0,1,...,7-1 do

Virr = (1 = Ba) Ve + BaOfa(Xt, a1, ¥;)s
a1 = (1 —na)ay + naHA[Oét + 7'th+1]§
Wil = (1 - ﬁy)Wt + 53; Ogy(XtJt);

Yer1 = Y — NlyWe+1s
Hi = A1, <I — ﬁ(’)gyy’i(xt, yt)), q : uniformly sampled from {1,..., k:};

ngy

O = Opx(Xt, at,¥4) — Ogxy (X, ¥4 ) Hi1 101y (Xe, i, ¥4);
zir1 = (1 — Bo)zs + .04
Xt+1 = Xt — NzZt41;

end

We present the proposed method for solving problem (1) in Algorithm 1. The procedure for
each iteration is as following: first, update the dual variable « in the upper problem and the variable
y in the lower problem using SEMA estimators. Second, we approximate the inverse of the Hessians
Viyg(xt, y¢) by Hy1. Here Ogyy i(X4,y,) denotes the output of the oracle Ogyy(X¢,y,) with a data
point randomly sampled from the dataset. Note that such approximation has been widely used in
previous studies to avoid directly computing matrix inverses [1, 8, 11]. Finally, we perform a SEMA
update in ;11 = (1 — SB;)z¢ + 5, Oy in order to reduce the variance of biased estimator O;.

To understand the biased estimator Oy, first define F'(x) := f(x,a(x),y(x)), where a(x) =
arg max,c 4 f(X, o, y(x)), then the upper problem can be written equivalently as min, cpa, F'(X).
Due to the strong concavity of f(x,-,y) and convexity of .4, one may apply Lemma A.5 in [18] to
obtain

VEF(x) = Vxf (%, a(x),¥(x)) + Vxy(x)" Vy f (x, a(x), y(x))
= Vxf(x,a(x),¥(x)) = Viyg(x, ¥(x))[V3y9(x, y(x))] ' Vy f(x, a(x), ¥(x)),

where the standard result Vyy(x)” = —V3,g(x,¥(x))[Vayg(x,y(x))] " in the literature of bilevel
optimization [8] is used in the second equality. Define

VF(Xta Qt, yt) = vxf(xtv Qi, yt) - V)Q(yg(xtvYt)[viyg(xhyt)]_lvyf(xt’ at’Yt)'

as an approximation of VF'(x;). Then, with unbiased estimator for each term in VF'(x, o, y;)
except [Viyg(xt, y,)] %, for which we have biased estimator Hy 1, we have the biased estimator O;
of VF(x¢, au,y,). We have the following convergence result regarding to Algorithm 1.

Theorem 4 (Informal) Under Assumption 2,3 and considering Algorithm 1, for all ¢ > 0, with
Ta, Ty Small enough and step sizes Na, My, Ne, Bas Bys Bz = O(€?), we have the following conver-
gence guarantee in T = O(e~*) iterations

T

T
1
—— > B[[VFx)] <€, —— Y E[|VF(x;) — ze11]*] < 2¢*.
TH; IVE(e)|?] < &2, T IV F () — zep1[|%] < 2€
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Remark. It is clear that the oracle compelxity of Algorithm 1 is O(e~%), which matches the state-
of-the-art complexity for solving nonconvex strongly concave min-max problems and nonconvex
bilevel problems. In fact, as shown in [2], O(e~*) is the optimal oracle complexity for solving
stochastic nonconvex optimization under a general unbiased stochastic oracle model.

2.1. Application in Robust Meta Learning

Meta learning aims to train a model on a variety of learning tasks such that a small number of
training data from a new task will produce good generalization performance on that task. However,
as shown in [5], having a simple average loss across all tasks as the objective function, like the
popular Model-agnostic meta-learning (MAML) [7], the worst task performance is not well con-
trolled. Motivated by this drawback, [5] considers the task-robust MAML in min-max optimization
formulation. In particular, the average loss in the objective is replaced by a weighted loss, and
the maximization is taken over the weights parameter. Similarly to the idea presented in [9], we
consider K tasks, each of which has a corresponding loss function f;(x,y;;&;) and an inner loss
function g;(x,y;; ¢;). Here x is the shared parameter and y, is the task specific parameter. The data
samples (;, &; are taken from the training dataset S; and testing dataset D; respectively. Then the
goal is to solve the following min-max bilevel optimization problem

K
min max ZaiEgiNDi [fi(%,¥;(%); §i)] — AKL(

X OLEAK .
=1

y'L(X) = arg min]ECiNSi [g’b(x7y17 CZ)} + R<yz)7 i = 17 27 v 7K7
y;€RM

OJ,?)

where A = {@ € RE : Y. a; = 1,a; > 0} is a K-dimensional simplex, the negative KL-
divergence term —\KL (o, 1/K) = —A Y% | a;log(K a;) in the outer objective ensures the strong
concavity of the outer objective in dual variable « that makes the function smooth in terms of x,
and R(-) is a strongly convex regularizer. Applying the proposed algorithm to the above problem
yields a complexity of O(1/€*). In contrast, [9] considers the same problem with A = 0 and suffers
a complexity of O(K/e>). Although the two results are not directly comparable, we can see that
adding the negative KL-divergence term not only increase the modeling flexbility but also enjoys a
faster convergence speed by our algorithm.

3. Conclusion and Future Work

We have developed a new single loop single timescale stochastic algorithm for solving a family
of min-max bilevel optimization problems. We showed that it achieves an oracle complexity of
O(e~%), which surpasses the existing work and matches the optimal complexity order for solving
stochastic nonconvex optimization under a general unbiased stochastic oracle model. Since our
study is focused on the algorithm development and theoretical convergence analysis, this work is
lack of cogent experimental results. In the future, we plan to conduct experiments to evaluate its
empirical performance. At the same time, we hope our work inspires others to find more novel
applications of our idea.
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Appendix A. Convergence analysis
First of all, we give the formal statement of Theorem 4.
Theorem 5 Let F'(xo) — F(x*) < Ap. Under Assumption 2,3 and considering Algorithm 1, with

P 2 22
Ta <1/(3Ly), 7y < 1/(3Ly), Bz < toscy> Do < 13824C, 02’ By < 6912(2CQL§1+Cy)02’

2
2 < : :ufﬁa B2Ca 4
Mo = MmN { 64TQL?,’ 67-0“qu%7 TO%,LL? ’

n? < min (1§ B2(6Co L243Cy) MaTab7(6CaLlZ+3Cy)  1ugB2  B,(2CaL2+Cy) 4
y = 087y ugCal? ' TOSTypgCall O 18T,L20 2dmyugL% ' Tapd [
e < min { 0 TaTally 1By Ny Tykg VBs 1
v = 62v/CaLy’ 62V/CaLa’ 44\/2CaL2+CyLy " 44y/2Ca L2 +CyL,  19LF 7 2LF [

c 16C2,, C?
> Yavy 9Ty~ fy
ki > S log< ,

2.2

T > max J 1444F 1728C ||ag—a(x0y0)||? 13824Cadsa,0 864(2Co L2+Cy)éy0 6912(2C L2 +Cy)dgy.0 21661,0}

Noe? NaTakfe? © o pjfac® 7 My Ty thg€” ’ 113 By€? ' Bre?
where C' is a constant defined in the proof of this Theorem and C.,, Cy are constants defined in the
proof of Lemma 7, we have

T T

1
E[|VF N2
IVEEIF < g

1

S E[|VEF(x;) — 2] < 2¢2
T+12 ([IVE@xe) —zey1 "] < 2€

To prove Theorem 5, we need the following lemmas.

Lemma 6 Consider the update in Algorithm 1, where x¢y1 = Xt — MNxZev1. With nyLp < %, we
have 0 0 .
Fxpy1) < F(x) + 5"||VF(xt) —zel” - %HVF(xt)HQ - ZxHZtHHQ-

Lemma 7 Under Assumption 2 and considering Algorithm 1, for all nonnegative integer t, we
have

IVE(xt) = ze41]* < 3Callar — alxo)[|” + 3Cyly, — y(xe)|? + IV F(xe, as,34) — 21 [ (2)
where C,,Cy are constants defined in the proof.

Lemma 8 [Lemma 4.3 [16]] Under Assumption 2, y(x) is Ly-Lipschitz-continuous with L, =
Lg/ g Define a(x,y) := argmax,¢c 4 f(x,a,y). Then o(x,y) is Lo = Ly /py-Lipschitz continu-
ous in the sense that

loee, ye) = a(ees, 3 2) P < La(le = ]® + [y = 144 ]%).

Lemma9 [Lemma 2 [21]] (Variance recursion of SEMA) Considering a moving average sequence
Zer1 = (1 — Be)ze + B On(xy) for tracking h(x:), where E[Oy,(x¢)] = h(x:) and h is a L-Lipschitz
continuous mapping. Then we have

L?||x; — x4 1||?
Billlrss — Ax0)I) < (1 = B0l — bl + 26201 Onx) — )2+ EZ L

where B denotes the expectation conditioned on all randomness before Op,(xy).
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Lemma 10 [Lemma 5 [11]] Consider update a1 = (1 — 1)t + NIl a[ae + Tovis1] in Algo-
rithm 1. With 7, < 1/(3Ly) and natapy < 2, we have

NaTak 81aT.
laess = atetye ) < (1= P75 flas = eyl + 2202 Va f (50, at,3,) = vie |
274 NaTallf,, 1 3Ly 5  8L2n? 2
- —(1+ — — — )|l — a1 || + ——]ze+1
w1+ D G = Sl — v+ L2 e

2
o

NaTaltf

”J’t _yt+1||2'

Lemma 11 [Lemma 13 [11]] Consider update y, ., = (1 — ny)y, + n,Ilyly, — 7ywi41] where
Y C R% is convex. With, < 1/(3Lg), nyTytg < 2, we have

NyTyk 81y T,
i =yl < (1= 752 )y, =y ()P =2 Vgl yi) = wiea P
g

21y NyTyltg, 1 3Ly 2 8Ly2 77323
—— 0+ =)= — )y —yeall" +
My 4 27y 4 ! i ylylg

Note that in Algorithm 1, since ) = R%, the projection is not needed. Thus the update for y:
can be simplified toy, | =y; — 1,W¢41, where the constant 7, is absorbed in the step size 7.

Lemma 12 [[11][8]] Under Assumption 2,3 and considering update of Algorithm 1, we have

_ 1 ke
L] = (Vgeey) < - (1 _ /ﬁg)

g Cayy
ky 2 -1 1 ke
[Hepal < v Vgl y )™ = Heall < — + =—.
Cyyy » tg  Cayy

A.1. Proof of Theorem 5

Proof First, we bound the last term of the RHS of 2. Since H:;; is an biased estimator of
[ngg(xt, y;)] ", we cannot directly apply Lemma 9 to z; 1. Define

A~

VF(Xtv Qg yt) = va(Xta Qi yt) - vag(Xt7yt)]E[Ht+1]vyf(Xta yt)
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2 G = [l — ()2 and by s := [ly, — y(x0)|[% By the

Denote 0+ 1= ||V F(X¢, ¢, y;) — Ze41
update rule of z; 1,

6] = E[|VF (x;, a1, ¥;) — 211]]
E[|VF(xt,ar¥,) = (1= Be)2 — Ba(Opx(Xe, at, ¥;) — Oy (X, ¥) He 410 gy (X1, 0, ¥4)) ||
E[|(1 = B2)(VE(X¢—1, -1, ¥,1) — ) + (1 = B )(VF(Xt, n yy) — VF (X1, —1¥; 1))
+ Be(VF (x4, 00 y;) — 6F(Xt, apy,)) + ﬂm(ﬁF(Xhat i) — (Ofx(xta at,¥t)
— Oy (%4, ¥) Hi11 O gy (X1, a1, ¥,))) [17]
=E[[[(1 = B2)(VEF(X¢—1, -1, ¥,1) — 2) + (1 = B2)(VF (X, ar yy) — VF(X¢—1, -1¥,1))
+ Bo(VE(x, ary,) — VE(xp, a0 y)) %] + B2E[IVE (X, ar y;) — (Opx(xe, 04, y,)
— Ogxy (xt, ¥;) Hi1 0 py (X1, i Yt))”2]
< (14 82)(1 = Bo)*EI(VF (%¢—1, -1, Y1) — 2]

1 ~
2 (1 ; 6) E[IVE(xe, a0 ¥,) — VE (o1, a1 3o )12 + BV E (1, 00 y,) — VP (x1, 00 )2

+ BE[IVE (xe, 1 ¥y) = (Opx(%1 a1, ¥e) = Ogay (%1, ¥) His1 Oy (e, e, 7))
3)

where the last equality follows from the definition of VF (X¢, a¢ y,), in the sense that
ﬁF(Xtv oY) = E[Opx(xe; o, ¥y) + Oguy(Xe, ¥) Hi 1 O gy (X, au, ¥y
The last two terms of 3 can be bounded as
E[||VF(xt, a0 y,) = VE(xe, a0 y)|P] < Cooy |E[Hea] = [Viyg(xe, ¥)]HPCF,

2 2 2k
Cgfcycfy (1 _ My ) !
T ’

ngy

and

E[‘|§F(Xtvat i) = (Opx(xe, au, y,) — ngy(xt>Yt)Ht+1Ofy(Xt>at7Yt))H2]
< 2E[||Vxf (e, e ¥;) = (O px(xe, r, ¥) 1)
+ 6E[[| Vayg (%6, YOE[He 1) (Vy f (%6, ¥e) — Oy (%s, a1, ¥)[I]
+ 6E[||Vayg (xe, ¥o) (E[Heg1] — Hip1)Opy (e, s, ¥)||)
+ 6E[[|(Vayg(xt, ¥1) = Ogxy(Xt,¥¢)) Hi1 O gy (X, Yt)||2]

k2 k? k?
<20 + GCsxy C2t o? + 2403xyCTt(CJ%y + %) + 60> C; (C’J%y +0?) =: (Y,
9yy 9yy 9yy

where we use Lemma 12 and E[[|O sy (x¢, at, y,)||?] < C]%y + 2. Thus,

4
E[64] < (1 — Bo)E[ze-1] + — LEE[|[x¢ — x¢—1[|* + [low — ce1]1* + [lyy — ¥ ]%]
xT

5
CQ:B 02 2kt
+ 48, 2Ty <1—C{“‘~" > + B3C,
g gyy

10



A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

where L2, = 2L2 +6 (ngyigL?c + C?

2
9zY ggy Ofy t ngy nZ ny)

2k

Setting k; > (16C92$yC’J2cy/( €?)), we have 4Cg$nyy/#g (1 — ngy) ¢ < €2 /4. There-
fore,

T T—1

) 0 4L2 2T

D Elb] < 20+ —F ZE Ixe = X112 + llee = awen | + vy = Yo I°] + — + BoCi T
2 B, B T

Denote dgy ¢ = [|[Wer1 — Vyg(xe,¥,)|1? and 8ot := ||Ver1 — Vaf (X, at,y,)||*. Applying Lemma

9 to wyy1 and vy, we get

Ly (IIxe — xea]” + [y — ¥era®)

By

E[0gy,t+1] < (1 — By)E[dgyt] + 2&502 +

and

Li(lIxe = xe1 |1 + llag — arsa|® + [y = ¥esa )

E[6sa,t4+1) < (1= Ba)E[6fa,] + 28507 +

Ba
By taking telescopic sum, we obtain
22 T2 727-1
0
ZE il < gy T + = fZE 211+ 25 D EllY: = Vel
By Y =0
and
T 5 22 T-1 12 T-
0 x
> Elfad € L2+ 28007 + f ZE Joeal)+ 22 3 Bl - asal?
t=0 B @ =0
L2 T—1
+ 5 2 Ellye = el
& =0
Then Lemma 11 and Lemma 10 with telescopic sum give
T 4 39 T 2 2T 1 T-1
E[dy,] < oy0 + — E[dgy.t] + E[| |Zt+1H Eflly, — Yt+1||2]
; Ty Tykg I ; U y”g ; =0
4 32 643,0%T 3212 -
< Oy + —5 Oy + L | 58— Ve~ Vil
MyTyltg *° 128y " 2 P2B2 N2Tyig Z% Uy = el
321202  32L%p
(B ) S sttt
nEBy TG ) =

11



A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

)

T-1

> Ellly;: - v l?l

t=0

and
T T 2 2 T—
32
> Ellan — oty ) < i a0l + s S Bl + o % S Bl
t=0 NoTaltf K= Tal'y 1o
202 T—
ZE lae = asa]?] ;X L Z [lye = Yo lI°]
naTa“ft 0 naTa Fr =0
4 64Ba0
< lao — a(x0, ¥o) I + —55-0fa0 + —5—
NaTallf 0 fﬁoa fe ,U/?t
32L2 r-1 32L2 32L2
f
+ - Effo — i |*] +
<M?5§4 naTaMf> ; :U’?BQ % a:U’f
T-1
,62 t+1
:uf « naTa/’Lf t—

12



A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

Note that a(x) = a(x,y(x)). By the L,-smoothness of a(x,y), we get

T T T
> Efda] <2 Z:H%—a&JMH 23" Ella(x.y,) — a(x)|?]
t=0 t= t=0
8 64 1288,0°T
< lao — (X0, ¥o)II> + 550500 + — 35—
NaTallf fBO‘ Mf
64L2 64L2 6412 | =
f 2
—+ — E ||0zt — Oét+1|| ] E Hy -y ” ]
<u262 naTauf) Z 252 NaTaN ; P
64L3n2 64L
fllz anz 2
+ E[l|ze+1]|%] + 222 ) Eldy.]
( 113532 773 T2 Z Z v
8 1285 UZT
< llovo — (%0, ¥o)I* + 57650 + ——5—
NaTallf fﬁa :uf

64L2 2 64L2 T-1
+ - > " Efllay — e[ + = Elly: — ¥ ll?]
(u 282 meTam f) f52 n?&%u? S

64L%n2 6412 4 32 648,0T
T (e i %’ZEMMHHﬁ yo+ o2y + 7L
:ufﬁa 7704 oaMf UyTyMg ’U'Q’By /J'g

3212 32L2n?2 32L n?
+ | 52 - > Elly, — ¥ l® 7t EE 2]
(/1/52;65 ) H t t—i—l‘ ] 3,85 77y yug H + ‘

nyTyﬂg t=0
8 1285 o*T  8L2
< g — a(x0, ¥o)|I” + 0fa,0 + 5+ —dy0
NaTallf fﬁa :uf Ny Tylg
6412 19812 8,0°T [ 64L% =
+ 25 gy0 + e - Elllae — e %]
2By 7 12 P33 mATaps ;

SE(y, — vl

. (64L§c 6412 | 6ALZL2  2L2 )
t=0

+
pEBA  mATAMF  mgBy  myTylg
64L%n;  64L2n2  64LZL2n2  64L32 Lynx i
,szﬁg 773 3“? g/ng ny y/’Lg t

E]lze11]°).
=0
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A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

Then Plug the bounds we obtained for S 7_ E[0a.], 21— E[dy.] and 3", E[d,,] into Lemma 7
to get

T T T T
D E[IVE(:) = ze41]P] <3Ca > Elbas] +3Cy Y E[dye] +3) E[d.]
t=0 t=0 t=0 t=0
24C, 192C,, 384C, Bac®T
< oo — (X0, ¥o)|I* + “0fap+ ——5——
NaTallf fﬁa Mf
N 24C, L% + 12Cy P 192C, L2 + 96Cy 5 (384C, L2 + 192Cy) By0*T
’0 ,0
My Tyllg ' 112y » 12
3 32T
+ 20,0+ T 4+ 88,C4T
Ba 4

192C,L5  6C, 12L2

+ = Efllat — oz r11?)
( R ENTT ) 2

192C, L3 | 192G L2 <2CQL§ +Cy)L;  6CaL2 +3Cy
M;ﬁg ng{Tgu?c pape M5 Tykg

1212 &
+ ) ZE ly: — Yt+1|| ]

(1920 Lfnx 192C, Lanx 96(2C, L2 + Cy) Lan;

:u‘fﬁa na :uf 52
96(2C, L2 + Cy) L2 nm 121272
+ ! F ZE 2e111%].
MyTyHg
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Applying Lemma 6,
-~ 2F(x0) — 2F (x741) 1
—— NTE[|VFE(x)|?] < o Ly VF(x;) — E||
TH; [IVEF(x)|] < T +Tt§ IVE(X) — ze41]%] Z [l1ze4111%]
T
2F (xg) — 2F (x* 1
< 2E00) 2800 L LS gv () — a1 ZE 1)
T T t=0
2F(xo) — 2F(x*) 1 ( 24C, 192C,
< + = ap — a(Xo, + =42
T T 77(MWH 0 — a(xo,o)|? W2 fo0
24C, L2 + 12C. 192C, L2 + 96C. 3
—+ o y y,0 + @ 2a y(sgy,ﬂ + 751 0
Ny Tylg Mgﬁy B
384C. 2 (384C,L2 +192C 2 3e2
+ | 38.C1 + “f“aJr( e v)Byo + =
Ky Hy 4
1 (192C.L2 60, 12L2 a
= - Ellla: — a1 )]
T ( 1362 By | B2 Z
L 192C, L% 192C, L% (2CQL§+Cy) 2 6C,L2 +3Cy
T\ 1362 naTant 1asy Ty Tyl
12L2
)ZE Iy, — ¥iiall?]
{l‘
L1 192Co LinG  192C, Lanx 96(2C, L2, +C’ v) L2n?
T ,U'fﬁgc 7704 ouuf lu’g
96(2C, L2 + Cy)L2n2 1212
vl F"I - - ZE lzeal?]. @)
NGy g
By setting

2 20
647‘aLf AroprLly

o [ ngBABCLLE + 3Cy) Natatit(6Cald +3Cy)  pgBl  B,(2C,L2 + Cy)
Ty = 687 1gCal? ' T08TyugCall 1287,L2"  167,ueL%
np < min Mfﬁa NaTaltf /Lgﬂy MyTyHg Bz
‘- 62v/CoLy’ 62¢/CoLe’ 44,/2C,L2 + CyL, 44\/2C, L2 + CyLy 16Lp
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we have

192C,, L2 1212
2 az I 260CY + QF <0
:u‘fﬁa naTCXIU/f B

192Co L3 192C,L%  96(2CL2 + Cy)L2  6C,L% +3Cy  12L>

2 02 22,2 232 o 2 2F =0
Wb NaTally 1By My Tykg By
192C, Lin? . 192C Lanx . 96(2C, L2 +0 VL3 N 96(2Ca Ly + Cy)Lyni  12L3n2 1 <0
,sz,Bg na cuu’f :ug y 77y Mg B:% 2~ 7
Which implies that the last three terms of RHS of inequality (4) are less or equal to 0. Hence,
T
1 2F (xg) — 2F(x*) 24C,, 192C,,
= D ElIVFx)|?] < llevo — cv(xo, ¥o) I” + =0 a0
T+1 =0 N T T NaTallf fﬂoc
24C, L% + 12C 192C, L2 + 96C. 3
+ —a Yoy.0 + E— Y 0gy.0 + =020
Ny Tylg ,Ugﬁy B
384C, 2 384C, L2 +192C 2 3e?
1 (3p.0, 4 3BCabac” | (384Cs at WByo” ) | 3¢
1y Hy 4
With

2 €2 p? €2 ug

< — < — <
Po < 108C,’ fa < 13824C,02’ Py < 6912(2C, L2 + Cy)o?
T max { 144(F(xo) — F(x*)) 1728Ca a0 — c(x0,¥o)|> 13824Cab a0

162 ’ MaTabf€? T pjBac®
864(2C, L2 + Cy)dyo 6912(2C, L2 + Cy)dgy0 216640
Ty Tyhg€” ’ 115 8y€* T Bee? |7
we have
7ZE||VFX||] e+1 2432 2
! 120 "4~
Furthermore, to show the second part of the theorem, we have
T
24C, 192C, 240, L2 + 12C,
S EIIVF(x) - 741 < oo = (%o, ¥0)|I* + —5=8fa0 + -5y
t=0 NaTaklf fﬁa TlyTylg
192C, L2 + 96Cy 3
+ 1) 0+ — 020
2B,y A C M
32 384C. 2 (384C,L2 +192C. 2
+T<4 438,01 + “2”8"‘0 | (384CaLy . v)Byo
:uf :ug

T
1
t5 ;E IVE®)? + [ VE(x) = 2e41]%).
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A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

With parameters set above, it follows that

T
= DBV ~ a7 < 26
[ |
A.2. Proof of Lemma 6
Proof By Lp-smoothness of F'(x), with 7, < ﬁ, we have
F(sxe11) < FOs) + VE(s)" (501 —x0) + 2 [ —
= F(x) — neVE ) 2+ 2l
= Flx) + ZIVF0) P = FITFGI + (02 + %)
[ |

A.3. Proof of Lemma 7

Proof By the standard inequality ||a + b+ ¢||* < 3]|a||* + 3||b||? + 3]||c||* we can split ||V F(x;) —
z;11]|? into three parts. For simplicity, we denote the first two terms obtained as A1, As.

IVE(xt) — z41]|* < 3| VE(x¢, (x¢),¥(x¢)) — VF(x¢, a, Y(x0)) |2 + 3| VE(X¢, c, y(%t)) — VE(X¢, o, y,) ||

+ 3| VE(Xt, i, yy) — 2e1?
=341+ 345 + 3HVF(X15, at,yt) — Zt+1||2

The first term can be bounded as following

Ay = [|[Vxf(x¢, a(Xt), ¥(Xt)) — Vi f(Xe, o, y(Xt))
+ Vg (%, ¥ (%)) Vi g (X6, Y (x0)) [Vy f (%0, e, ¥ (%)) = Vy f (%2, o), y(x0))][|>
< 2|V f (X, (X0), Y(%1)) — Vi f (Xt s, y(x0)) ||

+ 2| Vayg (%6, ¥ (%)) Vi 9 (%0, Y (30)) [V f (%6, 00, Y (%)) = Vg f (%0, x(x1), ¥ (x))] |
2

C2 2
<2L§+2 gfj; f) ey — au(xy)||?
g

=: Cylloy — a(xt)HQ.

IN
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A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

The second term can be bounded in a similar way,

Ag = IVaf (Xt 0, Y(X0)) = Vif (X0, 20, ¥;) + Vg9 (%6, ¥,) Vay 9(X6, ¥0) Vy f (X1, 1, ¥,)
— Vayg(Xe, ¥(X0)) Vg 9 (%0, ¥ (%0)) Vg f (X2, 0, y (%)) ||
< 2|V f(xe, o, ¥(X¢)) — Vi f (X, a, Yt)||2 + 2|’ny9(xt’Yt)v;ylg(xt’Yt)vyf(Xtv at,yy)
— Vayg(Xt, Y(%2)) Vyy g (X2, ¥ (X0)) Vy f (Xt 0, y(x1)) ||
< 2L?«Hyt — y(x)[I* + 6] [Vyg(xe,y,) — nyg(XtJ’(Xt))]V;ylg(Xta Yo) Vy S (x¢, au, yoll?
+ 6| Vayg (%6, Y(%0)) [Vyy 9 (%1, ¥;) = Vi 9 (%, Y (%)) Vy f (%2, iz, 3,) |12
+ 6| Vayg (%6, ¥ (%)) Vg g (X, Y (x0)) [Vy f (X0, 1, ¥1) — Vi f (X, g, y(x0))] |12

2,02 C2L2.C3 (2 12
<2L§«+6 P 6 R 4 6y, v
g :ug MQ
I”.

IN

=: Cylly; — y(x¢)

Combining the three inequalities above gives the desired result. |

A.4. Proof of Lemma 10
Proof Define &1 = I 4[ay + Toviy1]. Then ayp1 = oy + 1o (Gi41 — o), and

o1 — a(xe, ) |I* = llaw + na(Gus1 — ar) — a(xe,y,)|?

= llau — a(xe, y)II> + n2llaus1 — cull® + 200 (Gus1 — an) " (o — a(xe, yy)).-
As a result,

. 1
(Gg1—a) (o —a(xt,¥,)) = =—(loe1—a(xe, y,)||?

2
2N, |

—[leu—a(xe, ¥ |2 =2 || Gus1—cu|?) (5)

Due to L s-smoothness of f(x, «,y) with respect to a., we have

N _ Ly
_f(xt7at+17yt) < _f(xta atvyt) - Vaf(Xt,Oét,yt)T(Oét+1 - Oét) + 7f||at+1 - Oét||2.
Hence

Ly

_f(xtvabyt) > _f(xta dtJrl?yt) + v&f(xtvat>yt)T(dt+1 - Oét) - 7||dt+1 - atHQ'

Due to the p,-strong concavity of f(x, «,y) in a, we have
—f (%6, 0, ¥0) > = f (%, 0, ¥) = Vaf (%, a0, ¥) T (@ — ) + %YHO& — oy

= _f(xta ataYt) - vaf(xta atvyt)T(a - dt-f-l) - v@f<xt7at7yt)T(dt+1 - th)
+ Bl =l

= —f(Xt, a,yy) — V?ﬂ(a — ary1) = (Vaf (%6, a1, ¥;) = Vipr) " (@ = dug)

— Ve (e, 00, ) (G = o) + B la = el

18



A STOCHASTIC MOMENTUM METHOD FOR MIN-MAX BILEVEL OPTIMIZATION

Combine the above inequalities and we have

_f(xta ath) > _f(Xt,at,Yt) - V?—&—l(a - &tJrl) - (Vaf(xt’ahyt) - VtJrl)T(a - dt+1)
= Vaf(xe, Olt,yt)T(@tH —ag) + %IHOZ - Oét||2

> — (X, a1, ¥e) — Vg1 (@ — dug1) — (Vaf (Xe, 0, ¥,) — Vig1) T (o0 — Guyr)
Lg, .
— L arsn — ol + B2 lo — aul?
2 2
(6)
Note that &1 = Ilg[as + Tovi41] = argmin,c 4 %Ha — o — TaVeq1]|?. Since A is a convex
set and the function %Ha — ay — TaVes1||? is convex in a, according to the first order optimality
condition of convex function, we have

(Grr1 — ar — TaVep1) (@ — @r1) 20, Vae A

Then we obtain

- 1. .
Val(a — 1) < —(Gpp1 — ap) (@ — Ggyr)
(07
1 . 1 . -
= — (a1 — )" (o — o) + — (a1 — )" (0 — Ggg1) @)
To Te,
1 ~ T 1 ~ 2
= —(r1 — ) (@ — ) = —|lw — qppa |
o Ta

Combining (6) and (7) yields

N 1
—f(Xt,Oé,yt) > —f(XtaOétH,Yt) -
o

- (g1 — o) (@ — ar) = (Vaf (X, 00, ¥;) — V1) (@ — Giyga)

1 B L
+ g — @ |? - =L a — ay?
Ta 2

- 0
61 — aul® + ?aH
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Take o = a(x¢,y,) and we obtain

_f(xtadt-‘rlvyt) > _f(Xtya(Xt7Yt)>Yt)

- 1
> —f(Xt, Oét+1,yt) - ?(at+1 - Oét)T(Oé(Xt,yt) - at)
o

- 1 .
— (Vaf (X, a0, ¥;) — Vey1) T ((Xe, ¥y) — Q) + 7Hat — Gy |?

[0}

Ly, 7
= Gl = orl® + ok y) — ol
- 1
> —f(X¢, g1, yy) — ;(Oét+1 - at)T(a(Xt7Yt) — )
[0
2 " 10 ~
— N Vaf X an,¥,) — Vs |* = S ez, y;) — | — =5 [y — Guga |
P 4 4
1 5 L _
+ = ar|)? = 2Ll — ) + B2 laxe, y,) — ool
Ta 2 2
= —f(X¢, Gey1,y,) + 5 (a1 — a(xe, y)II? = [l — c(xe, ) |12 = m2 |1 — ove]?)
(e N0

2 1) o -
= Va0 v = Ve | = T oGk v,) = el = Ef o = G P
«

1 B L
+ g — @ |? - 2L

s 2 M 2
p 5 Qg1 — oul]” + 5 lou(xe,y;) — ol

where the equality follows from 5.
Hence we have

ANaTa

«

Na Lo 1 Ly B 9
) fa | P - T _
+ 2NaTa (27'a i + 5 ) lloe — Gppt|

T ANa T,
< (1= P57 ) o — s v+ =127 [V f (5,0 v0) = Ve

(67

HallaT
o = alxe ¥l < (1= E2272) flag = alxe v |2 4+ = Vaf (6, 0, ¥) = Ve

3Lf 1

+ 2naTa <4 - QT&> |y — @pstl?,
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where we use 1 < 1/2, i < Ly and 7, < 1/(3Ly).
As aresult,

gyt — Oé(Xt+1,yt+1)||2 = |1 — alxs,y;) + X, yy) — a(Xt+1,yt+1)H2

.
< (175 Jares — alxy)

4
+ {1+ > a(xe,y,) — a(Xey1, 2|12
(1+ Lty — oyl

< (1 + 77047—:/1/04

) lowsr — axe,y)

4
1 L2 (|Ix¢ — x| — 2
(14 ) 2 el + - e )

T 8Na T,
< (1= P ) o — s v P = [V f (50 ) = Ve

«

T, 3L 1 B
+ (1 + W) 2NaTa <f — ) oy — G |?

4 2T
SLi 2 2
Xi — Xer1|* + ly, -y
naTaua(H t = Xer ||° + e — ¥ ll)
T, 8N T
< (1= FT) o — ol v |2+ 2 Vo f (ke a0, ¥,) = Ve |
(07
namua) 27, ( 3Ly 1 9
1 _ - .
+ (1 Mo ( 1 o, ) Il
8L?2
+ —— (% — X1 [I + Iy = ¥era I1P),
%TQM(H ¢ = Xer1 |7+ Y — Yeqall)
where we use (1 +¢/2)(1 —€) < (1 —¢€/2 —¢€%) <1 —¢/2 and Lemma 8. |
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