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Abstract
Stochastic gradient descent (SGD) has emerged as the de-facto method for solving (uncon-

strained) stochastic optimization problems. However, it suffers from two fundamental limitations:
(i) slow convergence due to inaccurate gradient approximation, and (ii) numerical instability, es-
pecially with respect to step size selection. To improve the slow convergence, accelerated variants
such as stochastic gradient descent with momentum (SGDM) have been studied; however, the in-
terference of gradient noise and momentum can aggravate the numerical instability. Proximal point
methods, on the other hand, have gained much attention due to their numerical stability. Their
stochastic accelerated variants though have received limited attention. To bridge this gap, we pro-
pose the stochastic proximal point algorithm with momentum (SPPAM), and study its convergence
and stability. We show that SPPAM enjoys a better contraction factor compared to stochastic prox-
imal point algorithm (SPPA), leading to faster convergence. In terms of stability, we show that
SPPAM depends on problem constants more favorably than SGDM.

1. Introduction

In this paper, we are interested in the following unconstrained stochastic optimization problem:

minimizex∈Rd f(x) = Eξ[f(x; ξ)] ≈
1

n

n∑
i=1

fi(x) (1)

where the expectation is taken with respect to the random variable ξ ∈ S which represents the data.
Given the recent scale of datasets which reach millions and billions [8], stochastic gradient

descent (SGD) has emerged as the main workhorse in machine learning community due to its com-
putational efficiency [5, 6, 29]. Specifically, SGD iterates as follows:

xt+1 = xt − η∇fit(xt), (2)

where η is the step size, and it is drawn uniformly at random from {1, . . . , n}. While computa-
tionally efficient, it is well-known that stochastic methods suffer from two major limitations: (i)
slow convergence and (ii) numerical instability. For instance, due to the noise present in the ap-
proximated gradient, SGD could take longer to converge, in terms of number of iterations [10, 19].
Moreover, SGD suffers from numerical instability both in theory [20] and practice [5], allowing
only a small range of the step size η (which usually depend on unknown quantities) that leads to
convergence [19].
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With respect to the slow convergence, many variants of accelerated methods have been pro-
posed, most notably Polyak’s momentum [23] and Nesterov’s acceleration [1, 21]. These methods
allow faster (sometimes optimal) convergence rates, while having virtually the same computational
cost as SGD. In particular, SGD with momentum (SGDM) iterates as follows:

xt+1 = xt − η∇fit(xt) + β(xt − xt−1), (3)

where β ∈ (0, 1) is the momentum parameter. While there are many other acceleration schemes,
much of the state-of-the-art performance have been achieved with SGDM [13–15].

On the other hand, to address the numerical stability, variants of SGD that utilize proximal
updates have recently been proposed [2, 3, 25–28]. In particular, [28] introduced stochastic proximal
point algorithms (SPPA) and analyzed its convergence and stability, which iterates as follows:

x+t+1 = arg min
x∈Rn

{
f(x) + 1

2η‖x− xt‖
2
2

}
= xt − η∇f(x+t+1) (4)

xt+1 = x+t+1 − ηεt+1. (5)

Without the stochastic errors εt+1, Eq. (4) is known as the proximal point algorithm (PPA) [11, 24]
or the implicit gradient descent (IGD), and is known to converge with minimal assumption [4, 22]
in deterministic setting.

In this work, we bridge the two paths and study the convergence and stability of stochastic PPA
with momentum (SPPAM):

x+t+1 = arg min
x∈Rp

{
f(x) + 1

2η‖x− xt‖
2
2 −

β
η 〈xt − xt−1, x〉

}
= xt − η∇f(x+t+1) + β(xt − xt−1) (6)

xt+1 = x+t+1 − ηεt+1. (7)

In particular, we study if adding momentum results in faster convergence akin to SGDM, while
preserving the numerical stability inherited by utilizing proximal updates.

Apart from the empirical success of SGDM, we motivate the inclusion of momentum in SPPA
(among many alternatives of acceleration schemes) through the following geometric interpretation.
First, for large η, the algorithm is minimizing the original function f(x). On the other hand, for
small η, the algorithm not only tries to stay local by minimizing the quadratic term, but also tries
to minimize the inner product between x and the vector from xt to xt−1. By the definition of inner
product, this means that the new parameter xt+1, on top of minimizing f(x) and staying to close to
xt, also tries to move along the direction from xt−1 to xt. This intuition exactly aligns with that of
Polyak’s momentum [23].

2. Related Work

PPA was introduced to convex programming in [24], and was popularized in [11]. In particular, [11]
proved that for convex function f(·), PPA satisfies

f(xT )− f(x?) ≤ O
(

1∑T
t=1 ηt

)
for any T ≥ 1. (8)

As can be seen, by setting the step size ηt to be large, PPA can converge “arbitrarily” fast. Due
to this remarkable convergence property, PPA was soon considered in stochastic setting. In [25],
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Deterministic

PPA [11] / IGD
xt+1 = argminx

{
f(x) + 1

2η‖x− xt‖
2
2

}
⇔ xt+1 = xt − η∇f(xt+1)

Catalyst [17, 18]

xt+1 ≈ argminx
{
f(x) + κ

2‖x− yt‖
2
2

}
yt = xt + βt(xt − xt−1)

where α2
t = (1− αt)α2

t−1 +
µ

µ+καt, βt =
αt−1(1−αt−1)

α2
t−1+αt

Stochastic

SPPAM (this work) xt+1 = xt − η(∇f(xt+1) + εt+1) + β(xt − xt−1)

SPI [25] / ISGD [26, 27]
xt+1 = argminx

{
fit(x) +

1
2η‖x− xt‖

2
2

}
⇔ xt+1 = xt − η∇fit(xt+1)

APROX [2] Set fit(x) := max {fit(xt) + 〈∇fit(xt), x− xt〉, infz fit(z)} from SPI

Stochastic Catalyst [16]

xt+1 ≈ argminx
{
f(x) + κ

2‖x− yt‖
2
2

}
yt = xt + βt(xt − xt−1)

where f(x) := f(yt) + 〈gt, x− yt〉+ κ+µ
2 ‖x− yt‖

2
2

Table 1: Comparison of different algorithms in Section 2.

Stochastic version of PPA dubbed as stochastic proximal iterations (SPI) was analyzed, where an
approximation of f(·) using a single data point fi(·) was considered. Later, the same algorithm was
(statistically) analyzed under the name of implicit stochastic gradient descent (ISGD) in [26, 27]. It
was also analyzed recently in [2, 3, 16] where fi(·) was further approximated with simpler surrogate
functions. While settings considered under which differ slightly, these works generally point to the
same message: in the asymptotic regime, SGD and SPI/ISGD have the same convergence behav-
ior, but in the non-asymptotic regime, SPI/ISGD outperforms SGD thanks to numerical stability
provided by utilizing proximal updates.

In terms of acceleration, in deterministic setting, accelerated PPA was first proposed in [12],
where Nesterov’s acceleration [21] was applied to Eq. (4). However, Nesterov’s acceleration re-
quires setting an adequate schedule for the momentum parameter β on every iteration, and as can
be seen in Eq. (8), in practice one can already achieve arbitrarily fast convergence (assuming PPM
can be implemented exactly). Hence, following works studied the conditions under which the prox-
imal step in Eq. (4) can be computed inexactly, while still exhibiting some acceleration [17, 18].
This was later extended to the stochastic setting in [16]. Acceleration of stochastic PPA was also
considered in [7] where fi(·) was further approximated with auxiliary functions, but similarly to
the aforementioned works, a convoluted 3-step acceleration scheme was required. We summarize
these algorithms Table 1. To the best of our knowledge, this is the first work that considers directly
applying Polyak’s momentum to stochastic PPA following the geometric intuition outlined at the
end of Section 1, and studies its convergence and stability properties.
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3. Acceleration and Stability of SPPAM

3.1. Acceleration

Here, we characterize whether and when SPPAM enjoys faster convergence than SPPA for strongly
convex functions. We start with the iteration invariant bound:

Theorem 1 For µ-strongly convex f(·), SPPAM in Eq. (7) satisfies the following iteration invariant
bound:

E
[
‖xt+1 − x?‖22

]
≤ 1− β

1 + 2ηµ
E
[
‖xt − x?‖22

]
+

β2

1 + 2ηµ

(
2− β

2− β(1 + β)

)
E
[
‖xt−1 − x?‖22

]
+ η2E

[
‖εt+1‖22

]
.

Moreover, its contraction factor is upper bounded by the following quantity :

1− β
2(1 + 2ηµ)

+
1

2
·

√(
1− β

1 + 2ηµ

)2

+
β2

1 + 2ηµ

(
2− β

2− β(1 + β)

)
. (9)

Remark 2 Notice that for β = 0, the above contraction factor reduces to 1
1+2ηµ , which exactly

matches that of SPPA for strongly convex objective in [28].

Based on the contraction factor in (9), it is not immediately obvious when SPPAM enjoys faster
contraction than SPPA in Eq. (5). We characterize this condition in the following corollary:

Corollary 3 For µ-strongly convex f(·), SPPAM in Eq. (7) converges faster than SPPA in Eq. (5) if
the following condition holds:

β(2− β)
2− β(1 + β)

<
4

1 + 2ηµ
.

In words, for a fixed η and the constant µ, there is a range of momentum parameter β that exhibits
acceleration compared to SPPA. We showcase this behavior using linear regression and Poisson
regression in Figure 1.

3.2. Stability

In this section, we study the stability of SPPAM in Eq. (7). Preliminary result is summarized in the
following theorem:

Theorem 4 Initial conditions of SPPAM in Eq. (7), ‖x0 − x?‖22 and ‖x−1 − x?‖22, exponentially
discounts after T iterations with the factor

τ−1 ·
(

1− β
1 + 2ηµ

+ τ

)T
, where τ =

√
1− β

1 + 2ηµ
+

β2

1 + 2ηµ

(
2− β

2− β(1 + β)

)
.

We want the above contraction factor to be in (0, 1), which can be easily achieved by setting η
sufficiently large. We plot the discount factor for η = µ = 1 in the top-left plot of Figure 2. We
conjecture that the discount factor can be bounded by exponentially decreasing function; we leave
this for future work.

4



ACCELERATION AND STABILITY OF THE STOCHASTIC PROXIMAL POINT ALGORITHM

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

106
1026
1046
1066
1086

10106
10126
10146

lo
g 

M
SE

Normal
SPPA
SPPAM
SGDM

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

10 5

10 4

10 3

10 2

10 1

100

lo
g 

M
SE

Normal
SPPA
SPPAM

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

10 1

100

101

102

103

lo
g 

M
SE

Poisson
SPPA
SPPAM
SGDM

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

10 1

100

lo
g 

M
SE

Poisson
SPPA
SPPAM

Figure 1: Illustration of acceleration and stability of SPPAM under linear/Poisson regressions. On
the left panel, we plot SPPA in (5), SPPAM in (7), and SGDM in (3), all with the same
constant step size (0.1 and 0.0001 for linear/Poisson regression respectively), batch size
= 10, and β = 0.8 (when applicable). Note that SGDM diverges, exhibiting numerical
instability. On the right panel, SPPA and SPPAM are plotted in the same setting, illustrat-
ing SPPAM’s faster convergence. In both experiments, number of observations is 1000
while number of features is 100, with 1e-3 noise level.

3.3. Illustration of stability: quadratic model
In this section, for simplicity, we consider the quadratic optimization problem in deterministic set-
ting, and derive the exact conditions that lead to convergence. Specifically, we consider the objective
function

f(x) =
1

2
x>Ax− b>x, (10)

where the matrix A ∈ Rn×n is positive semi-definite with eigenvalues [λ1, . . . , λn]. Below, we
characterize the step size η and the momentum β that lead to convergence for different algorithms.
Results for GD and GDM are from [9] but included for completeness.

Proposition 5 (GD [9]) To minimize Eq. (10) with gradient descent, step size η needs to satisfy
0 < η < 2

λi
, where λi is the i-th eigenvalue of A.

Proposition 6 (PPA/IGD) To minimize Eq. (10) with PPA, step size η needs to satisfy
∣∣∣ 1
1+ηλi

∣∣∣ < 1.

Proposition 7 (GDM [9]) To minimize Eq. (10) with gradient descent with momentum, step size η
needs to satisfy 0 < ηλi < 2 + 2β for 0 ≤ β ≤ 1.

Proposition 8 (PPAM) Let δi =
(

β+1
1+ηλi

)2
− 4β

1+ηλi
. To minimize Eq. (10) with PPA with momen-

tum, step size η and momentum β need to satisfy:
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• η > β−1
λi

if δi ≤ 0

• β+1
1+ηλi

+
√
δi < 2 if δi > 0 and β+1

1+ηλi
≥ 0

• β+1
1+ηλi

−
√
δi > −2 if δi > 0 and β+1

1+ηλi
< 0.

Given above propositions, we can study the stability of different algorithms with respect to step
size η and momentum β. Numerical simulation are illustrated in Figure 2, confirming our theory. In
particular, for GD, only a small range of step size η leads to convergence (small white band); on the
other hand, PPA/IGD converges in much wider choices of η. Similarly, GDM requires both η and
β to be in a small region to converge, whereas PPAM converges in much wider choices of η and β;
also note that the empirical convergent region (bottom-middle) almost exactly matches the region
predicted by theory in Proposition 8.

0 20 40 60 80 100
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Di
sc

ou
nt

 fa
ct

or

Initial condition discount = = 1

4 2 0 2 4
Momentum  

4

2

0

2

4

St
ep

 si
ze

  

GD ||x x||22

0

2

4

6

8

10

4 2 0 2 4
Momentum  

4

2

0

2

4

St
ep

 si
ze

  

IGD ||x x||22

0

2

4

6

8

10

4 2 0 2 4
Momentum  

4

2

0

2

4

St
ep

 si
ze

  

AccGD ||x x||22

0

2

4

6

8

10

4 2 0 2 4
Momentum  

4

2

0

2

4

St
ep

 si
ze

  

AccIGD ||x x||22

0

2

4

6

8

10

4 2 0 2 4
Momentum  

4

2

0

2

4

St
ep

 si
ze

  

AccIGD theory

0

2

4

6

8

10

Figure 2: Top-Left: discount factor for η = µ = 1 from Theorem 4; Rest: A ∈ Rn×n and b ∈ Rn
follow standard gaussian distribution. The condition number of A is 10. We sweep step
size η and momentum µ from −5 to 5, and plot the final accuracy after 100 iterations.
White region corresponds to convergence, and black region corresponds to divergence.
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