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Abstract

We present a direct extension of the Semi-Proximal Mirror-Prox algorithm [3] for
minimizing convex composite problems with objectives consisted of three parts
– a convex loss represented by stochastic oracle, a proximal-friendly regularizer
and another LMO-friendly regularizer. The algorithm leverages stochastic oracle,
proximal operators, and linear minimization over problems’ domain and attains
optimality in two-fold: i) optimal in the number of calls to the stochastic oracle
representing the objective, ii) optimal in the number of calls to linear minimization
oracle representing problem’s domain in the “smooth” saddle point case.

1 Introduction

Last decade demonstrates significant interests in minimizing composite functions of the form:

minx∈X
1
n

∑n
i=1 fi(x) + h(x)

where fi are convex continuously differentiable functions and h is a convex but perhaps not dif-
ferentiable function. Such problems arise ubiquitously in machine learning, where the first term
usually refers to empirical risk and h is a regularizer. The mainstream algorithms are devoted to
address two challenges, i) large number of summation, ii) nonsmoothness of regularization term.
To deal with the finite sum, a variety of stochastic and incremental gradient methods have been
developed that use only one or a mini batch of components at a time. To handle the nonsmooth
regularization and utilize the underlying structure, two kinds of algorithms have been widely stud-
ied – the proximal type and conditional gradient type. Proximal type methods ([10, 1, 12]) require
computation of a composite proximal operator at each iteration, i.e. solving problems of the form,
minx∈X

{
1
2‖x‖

2
2 + 〈ξ, x〉+ αh(x)

}
, given input vector ξ and positive scalar α. Function h that

admits easy-to-compute proximal operators, are called proximal-friendly. In contrast, conditional
gradient type methods [2, 11] operate with the linear minimization oracle (LMO) at each iteration,
i.e., solving problems of the form, minx∈X {〈ξ, x〉+ αh(x)}, much cheaper than computing proxi-
mal operators. For instance, in the case of nuclear-norm, LMO only requires computing the leading
pair of singular vectors, which is by orders of magnitude faster than full singular value decomposi-
tion required when computing proximal operator. Such h, are called LMO-friendly.

The scope of this paper. Despite of the much success in this regime, few work has been devoted to
the situation where the regularization is given by a mixture of proximal friendly and LMO-friendly
components. Such mixtures are often introduced to promote several desired properties of the solu-
tion simultaneously, such as sparsity and low rank. While recent work [3, 7] considers only deter-
ministic case, in this paper, we focus on the stochastic setting and aim to solve problems such as
(i) stochastic composite optimization

minx=[x1,x2]∈X Eξ[f(x, ξ)] + h1(x1) + h2(x2) (1)

(ii) stochastic composite saddle point problem

minx1∈X1
maxx2∈X2

Eξ[Φ(x1, x2, ξ)] + h1(x1)− h2(x2) (2)
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where E[f(x, ξ)] is convex in x ∈ X; E[Φ(x1, x2, ξ)] is convex in x1 ∈ X1 and concave in x2 ∈
X2; h1(x1) is proximal-friendly and h2(x2) is LMO-friendly. Such problems indeed arise from
many sparse and low-rank regularized models used in recommendation systems and social network
prediction. To address them in a unified manner, we will focus on a broad class of variational
inequalities with mixed structures, which further generalize problems (1) and (2).

Our contribution. We develop a stochastic variant of the Semi-Proximal Mirror-Prox proposed
in [3] that supports and leverages stochastic oracles, proximal operators and linear minimization or-
acles and achieves the best of three worlds. The algorithm extends the usual conditional gradient to
stochastic setting, and enjoys, in terms of LMO calls, a O(1/ε2) complexity for “smooth case” (e.g
f and Φ in (1) and (2) are smooth) as well as a O(1/ε4) complexity for general nonsmooth case. In
both situation, the algorithm attains the optimal O(1/ε2) complexity of the number of stochastic or-
acles. To our best knowledge, the algorithm as well as theoretical results presented seem to be novel.

2 Stochastic Semi-Proximal Mirror-Prox

2.1 The situation

Structured Variational Inequalities. We consider the variational inequality VI(X,F ):

Find x∗ ∈ X : 〈F (x), x− x∗〉 ≥ 0,∀x ∈ X
with domain X and operator F that satisfy the assumptions (A.1)–(A.4) below.

(A.1) Set X ⊂ Eu × Ev is closed convex and its projection PX = {u : x = [u; v] ∈ X} ⊂ U ,
where U is convex and closed, Eu, Ev are Euclidean spaces;

(A.2) The function ω(·) : U → R is continuously differentiable and also 1-strongly convex w.r.t.
some norm ‖ · ‖. This defines the Bregman distance

Vu(u′) = ω(u′)− ω(u)− 〈ω′(u), u′ − u〉 ≥ 1
2‖u
′ − u‖2;

(A.3) The operator F (x = [u, v]) : X → Eu × Ev is monotone and of form F (u, v) =
[Fu(u);Fv] with Fv ∈ Ev being a constant and Fu(u) ∈ Eu satisfying the condition

∀u, u′ ∈ U : ‖Fu(u)− Fu(u′)‖∗ ≤ L‖u− u′‖+M

for some L <∞,M <∞;
(A.4) The linear form 〈Fv, v〉 of [u; v] ∈ Eu×Ev is bounded from below onX and is coercive on

X w.r.t. v: whenever [ut; vt] ∈ X , t = 1, 2, ... is a sequence such that {ut}∞t=1 is bounded
and ‖vt‖2 →∞ as t→∞, we have 〈Fv, vt〉 → ∞, t→∞.

Semi-structured Variational Inequalities. The class of semi-structured variational inequalities
allows to go beyond Assumptions (A.1)− (A.4), by assuming more sub-structure. This structure is
consistent with what we call a semi-proximal setup, which encompasses both the regular proximal
setup and the regular linear minimization setup as special cases. Indeed, we assume further

(S.1) Proximal setup for X: we assume that Eu = Eu1 × Eu2 , Ev = Ev1 × Ev2 , and U ⊂
U1 × U2, X = X1 × X2 with Xi ∈ Eui × Evi and PiX = {ui : [ui; vi] ∈ Xi} ⊂ Ui
for i = 1, 2, where U1 is convex and closed, U2 is convex and compact. We also assume
that ω(u) = ω1(u1) + ω2(u2) and ‖u‖ = ‖u1‖Eu1 + ‖u2‖Eu2 , with ω2(·) : U2 → R
continuously differentiable such that

ω2(u′2) ≤ ω2(u2) + 〈∇ω2(u2), u′2 − u2〉+ L0

κ ‖u
′
2 − u2‖κEu2 ,∀u2, u

′
2 ∈ U2;

for a particular 1 < κ ≤ 2 and L0 <∞. Furthermore, we assume that the ‖·‖Eu2 -diameter
of U2 is bounded by some D > 0.

(S.2) Partition of F : operator F induced by the above partition of X1 and X2 can be written as

F (x) = [Fu(u);Fv] with Fu(u) = [Fu1(u1, u2);Fu2(u1, u2)], Fv = [Fv1 ;Fv2 ].

(S.3) Proximal mapping on X1: we assume that for any η1 ∈ Eu1
and α > 0, we have at our

disposal easy-to-compute prox-mappings of the form,

Proxω1(η1, α) := argminx1=[u1;v1]∈X1
{ω1(u1) + 〈η1, u1〉+ α〈Fv1 , v1〉} .
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(S.4) Linear minimization oracle for X2: we assume that we we have at our disposal Composite
Linear Minimization Oracle (LMO), which given any input η2 ∈ Eu2

and α > 0, returns
an optimal solution to the minimization problem with linear form, that is,

LMO(η2, α) := argminx2=[u2;v2]∈X2
{〈η2, u2〉+ α〈Fv2 , v2〉} .

Stochastic Oracles. We are interested in the situation where we only have access to noisy infor-
mation on Fu(u). More specifically, we assume that the operator is represented by the following
stochastic oracle, such that for any u ∈ U , it returns a vector g(u, ξ) satisfying

(C.1) Unbiasedness and bounded variance: E[g(u, ξ)] = Fu(u), E[‖g(u, ξ)− Fu(u)‖2∗] ≤ σ2,

(C.2) Light tail: E
[
exp{‖g(u, ξ)− Fu(u)‖2∗/σ2}

]
≤ exp{1} for some σ > 0.

where ‖ · ‖∗ is the dual norm same as in (A.3). Note that by Jensen’s inequality, (C.2) implies (C.1).

2.2 Stochastic Semi-Proximal Mirror-Prox
We present our Stochastic Semi-Proximal Mirror-Prox in Algoirthm 1. The algorithm blends com-
posite Mirror Prox and composite Conditional Gradient to exploit the best efficiency out of the
mixed structure. At each iteration t, we estimate the operator F by taking the average of mt vectors
returned by the stochastic oracle. For sub-domain X2 given by LMO, instead of computing exactly
the prox-mapping, we mimick the prox-mapping via a conditional gradient algorithm (denoted as
CCG) directly from [3]. For the sub-domain X1, we compute the prox-mapping as it is.

Algorithm 1 Stochastic Semi-Proximal Mirror-Prox Algorithm for Semi-VI(X,F )

Input: stepsizes γt > 0, accuracies εt ≥ 0, t = 1, 2, . . .
[1] Initialize x1 = [x1

1;x1
2] ∈ X , where x1

1 = [u1
1; v1

1 ];x1
2 = [u1

2; v1
2 ].

for t = 1, 2, . . . , T do
[2] Set ut = [ut1;ut2], compute [gt1; gt2] = 1

mt

∑mt
j=1 g(ut, ξtj) and yt = [yt1; yt2] that

yt1 := [ût1; v̂t1] = Proxω1(γtg
t
1 − ω′1(ut1), γt)

yt2 := [ût2; v̂t2] = CCG(X2, ω2(·) + 〈γtgt2 − ω′2(ut2), ·〉, γtFv2 ; εt)

[3] Set ût = [ût1; ût2], compute [ĝt1; ĝt2] = 1
mt

∑2mt
j=mt+1 g(ût, ξtj) and xt+1 = [xt+1

1 ;xt+1
2 ] that

xt+1
1 := [ut+1

1 ; vt+1
1 ] = Proxω1

(γtĝ
t
1 − ω′1(ut1), γt)

xt+1
2 := [ut+1

2 ; vt+1
2 ] = CCG(X2, ω2(·) + 〈γtĝt2 − ω′2(ut2), ·〉, γtFv2 ; εt)end for

Output: xT := [ūT ; v̄T ] = (
∑T
t=1 γt)

−1∑T
t=1 γty

t

The CCG routine [3] is designed to solve smooth semi-linear problems: minx=[u;v]∈X{φ+(u, v) =
φ(u) + 〈c, v〉}. For the input pair (X,φ, c; ε), the algorithm works as follows:

(a) x1 := [u1; v1] ∈ X;
(b) x̂t := [ût; v̂t] = argminx=[u;v]∈X{〈∇φ(ut), u〉+ 〈c, v〉}

compute δt = 〈∇φ+(xt), xt − x̂t〉, return if δt ≤ ε (CCG(X, φ, c; ε))
(c) xt+1 := [ut+1; vt+1] s.t. φ+(xt+1) ≤ φ+(xt + 2

t+1 (x̂t − xt))

We provide the convergence analysis in the next section.

3 Convergence Results

3.1 Main Results

Let us denote the resolution of the execution protocal IT = {yt, F (yt)}Tt=1 and a collection
λT = {λt}Tt=1 with λt = γt/

∑T
t=1 γt on any set X ′ ⊂ X by

Res(X ′|IT , λT ) = supx∈X′
∑T
t=1 λt〈F (yt, yt − x〉.

The resolution can be used to certify the accuracy of the approximate solution x̄T =
∑T
t=1 λty

t to
generic convex problems not limited to variational inequalities (see [8] for details). We arrive at the
following
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Theorem 3.1. Let the stepsizes γt satisfy 0 < γt ≤ (
√

3L)−1 and Θ[X ′] = sup[u;v]∈X′ Vu1(u)

for any X ′ ⊂ X . For a sequence of inexact prox-mappings with inexactness εt ≥ 0 and batch size
mt > 0, we have under assumption (C.1) that

E[Res(X ′|IT , λT )] ≤M0(T ) := (
∑T
t=1 γt)

−1
(

2Θ[X ′] + 7
2

∑T
t=1γ

2
t (M2 + 2σ2

mt
) + 2

∑T
t=1εt

)
.

Moreover, if assumption (C.2) holds, then for any Λ > 0,
Prob

{
Res(X ′|IT , λT ) ≥M0(T ) + ΛM1(T )

}
≤ exp{−Λ2/3}+ exp{−Λ}

whereM1(T ) = (
∑T
t=1 γt)

−1

(
7
2

∑T
t=1

γ2
t σ

2

mt
+ 3Θ[X]

√∑T
t=1

γ2
t σ

2

mt

)
.

As a corollary, we can derive (based on immediate results in [8])

(i) when F is a monotone vector field, the resulting efficiency estimate takes place for the dual
gap of variational inequalities, i.e. E[εVI(x̄T

∣∣X,F )] ≤M0(T );
(ii) when F stems from the (sub)gradient of a convex minimization problem minx∈X f(x) (for

instance, problem (1)) with optimal solution being x∗, the resulting efficiency estimate takes
place for the suboptimality, i.e. E[f(x̄T )− f(x∗)] ≤M0(T );

(iii) when F stems from a convex-concave saddle point problem minx1∈X1
maxx2∈X2

Φ(x1, x2)
(for instance, problem (2)), along with two induced convex optimization problems

Opt(P ) = minx1∈X1

[
Φ(x1) = supx2∈X2

Φ(x1, x2)
]

(P )
Opt(D) = maxx2∈X2

[
Φ(x2) = infx1∈X1

Φ(x1, x2)
]

(D)

the resulting efficiency estimate is inherited both by primal and dual suboptimality gaps, i.e.
E[Φ(x̄1

T )− Opt(P )] ≤M0(T ) and E[Opt(D)− Φ(x̄2
T )] ≤M0(T ).

3.2 When Fu is Lipschitz continuous (M = 0)

In the case when Fu is a Lipschitz continuous monotone operator with L > 0 and M = 0, we have
Proposition 3.1. Under the assumptions (A.1) − (A.4), (S.1) − (S.4) with M = 0 and the
proximal setup on U2 being Euclidean setup. Setting stepsize γt = (

√
2L)−1 and batch size

mt = O(γ2
t σ

2T/Θ[X]), t = 1, . . . , T , for the Stochastic Semi-Proximal Mirror-Prox algorithm
to return an stochastic ε-solution to the variational inequality V I(X,F ) represented by stochastic
oracle in (C.1)− (C.2), the total number of stochastic oracle calls required does not exceed

NSO = O(1)σ2Θ[X]/ε2

and the total number of calls to the Linear Minimization Oracle does not exceed
NLMO = O(1)L2D2Θ[X]/ε2

where σ2, D,Θ[X] are defined previously.

3.3 When Fu is bounded (L = 0)

In the case when Fu is a uniformly bounded monotone operator with M > 0 and L = 0, we have

Proposition 3.2. Under same assumptions with L = 0. Setting stepsize γt = O(1)

√
Θ[X]

M
√
T

and

batch sizemt = O(1) σ
2

M2 , t = 1, . . . , T , for the Stochastic Semi-Proximal Mirror-Prox algorithm to
return an stochastic ε-solution to the variational inequality V I(X,F ), the total number of stochastic
oracle calls required does not exceed

NSO = O(1)σ2Θ[X]/ε2

and the total number of calls to the Linear Minimization Oracle does not exceed
NLMO = O(1)M4D2Θ[X]/ε4.

Discussion. The stochastic variant of Semi-Proximal Mirror-Prox algorithm is designed to solve
a broad class of variational inequalities allowing to cover the stochastic composite minimization
and saddle point problems in (1) and (2). The algorithm enjoys the optimal complexity bounds,
i.e. O(1/ε2), both in terms of the number of calls to stochastic oracle (see [9]) and the number
of calls to linear minimization oracle (see [6]) when the underlying problem is in the saddle point
form and associated monotone operator is Lipschitz continuous. In the general nonsmooth situation,
the algorithm enjoys still optimal complexity bound O(1/ε2) in terms of the number of calls to
stochastic oracles, but that of the linear minimization oracle becomes O(1/ε4).
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4 Technical Details.

4.1 Problems (1) and (2) in the Form of Semi-Structured Variational Inequality

The stochastic composite optimization in the form of (1)

min
u=[u1,u2]∈U=U1×U2

Eξ[f(u, ξ)] + h1(u1) + h2(u2)

can be written as
min

u∈X,v1≥h1(u1),v2≥h2(u2)
Eξ[f(u, ξ)] + v1 + v2.

The variational inequality VI(X,F ) associated with the above problem is given by

X = {x = [u = [u1, u2]; v = [v1, v2]] : u1 ∈ U1, u2 ∈ U2, v1 ≥ h1(u1), v2 ≥ h2(u2)},

F (x = [u = [u1, u2]; v = [v1, v2]]) = [[∂u1Eξ[f(u, ξ)], ∂u2Eξ[f(u, ξ)]]; [1, 1]].

Clearly, the above VI(X,F ) satisfies the assumptions (A.1)− (A.4), (S.1)− (S.4).

Similarly, for the stochastic composite saddle point problem in the form of (2)

min
u1∈U1

max
u2∈U2

Eξ[Φ(u1, u2, ξ)] + h1(u1)− h2(u2)

and its reformulation

min
u1∈U1,v1≥h1(v1)

max
u2∈U2,v2≤h2(v2)

Eξ[Φ(u1, u2, ξ)] + v1 − v2

the variational inequality VI(X,F ) associated with the above problem is given by

X = {x = [u = [u1, u2]; v = [v1, v2]] : u1 ∈ U1, u2 ∈ U2, v1 ≥ h1(u1), v2 ≥ h2(u2)},

F (x = [u = [u1, u2]; v = [v1, v2]]) = [[∂u1Eξ[Φ(u1, u2, ξ)],−∂u2Eξ[Φ(u1, u2, ξ)]]; [1, 1]].

Clearly, the above VI(X,F ) also satisfies the assumptions (A.1)− (A.4), (S.1)− (S.4).

4.2 Proof of Theorem 3.1

Proof. The proof builds upon [5] and [4]. First of all, we show that

Lemma 4.1. For any ε ≥ 0, x = [u; v] ∈ X and ξ = [η; ζ] ∈ E, let [u′; v′] = P εx(ξ), where

P εx(ξ) = {x̂ = [û; v̂] ∈ X : 〈η + ω′(û)− ω′(u), û− s〉+ 〈ζ, v̂ − w〉 ≤ ε ∀[s;w] ∈ X},

we have for all [s;w] ∈ X ,

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ Vu(s)− Vu′(s)− Vu(u′) + ε. (3)

10. When applying Lemma 4.1 with [u; v] = xt, ξ = [γτg
t; γτFv], [u′; v′] = yt, and [s;w] =

[ut+1; vt+1] = xt+1 we obtain:

γτ [〈gt, ût − ut+1〉+ 〈Fv, v̂t − vt+1〉] ≤ Vut(ut+1)− Vût(ut+1)− Vut(u′τ ) + ετ (4)

and applying Lemma 4.1 with [u; v] = xτ , ξ = γτ [ĝt, Fv], [u′; v′] = xt+1, and [s;w] = z ∈ X we
get:

γτ [〈ĝt, ut+1 − s〉+ 〈Fv, vt+1 − w〉] ≤ Vut(s)− Vut+1(s)− Vut(ut+1) + ετ . (5)

Adding (5) to (4) we obtain for every z = [s;w] ∈ X

γt[〈ĝt, ût − s〉+ 〈Fv, v̂t − w〉] ≤ Vut(s)− Vut+1(s) + σt + 2εt , (6)

for any [s, w] ∈ X , where

σt := γt〈ĝt − gt, ût − ut+1〉 − Vût(ut+1)− Vut(ût) .
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Let ∆t = Fu(ût)− ĝt, then for any z = [s, w] ∈ X , we have

T∑
t=1

γt〈F (yt), yt − z〉 ≤ Θ[X] +

T∑
t=1

σt +

T∑
t=1

2εt +

T∑
t=1

γt〈∆t, û
t − s〉 (7)

Let et = ‖gt − gt‖∗ and êt = ‖ĝt − Fu(ût)‖∗ = ‖∆t‖∗, Then we have

‖ĝt − gt‖2∗ = ‖(ĝt − Fu(ût) + (Fu(ût)− gt) + (gt − gt)‖2∗
≤ (êt + L‖ût − ut‖+M + et)

2

≤ 3L2‖ût − ut‖2 + 3M2 + 3(et + êt)
2

Hence,

σt ≤
γ2
t

2
‖ĝt − gt‖2∗ +

1

2
‖ût − ut+1‖2 − Vût(ut+1)− Vut(ût) ≤

γ2
t

2
‖ĝt − gt‖2∗ −

1

2
‖ût − ut‖2.

Since the stepsize γt satisfy that 3γ2
tL ≤ 1, we further have

σt ≤
3γ2
t

2
[M2 + (et + êt)

2]. (8)

Define a special sequence ũt such that

ũ1 = u1; ũt+1 = argmin
u∈PuX

{〈γt∆t, u〉+ Vũt(u)}

The sequence defined above satisfies the following relation (see Corollary 2 in [5] for details): for
any z = [s, w] ∈ X ,

T∑
t=1

γt〈∆t, ũ
t − s〉 ≤ Θ[X] +

t∑
t=1

γ2
t

2
‖∆t‖2∗ = Θ[X] +

t∑
t=1

γ2
t

2
êt (9)

Combining (7), (8), (9), we end up with

Res(X ′|IT , λT ) ≤ (

T∑
t=1

γt)
−1

(
2Θ[X] +

T∑
t=1

7γ2
t

2
[M2 + (e2

t + ê2
t )] +

T∑
t=1

2εt +

T∑
t=1

γt〈∆t, û
t − ũt〉

)
(10)

20. Under Assumption (C.1), we have

E[∆t|Ft] = 0, E[e2
t |Gt−1] ≤ σ2

mt
, and E[ê2

t |Ft] ≤
σ2

mt
.

where Ft = σ(ξ1
1 , . . . , ξ

1
2mt , . . . , ξ

t
1, . . . , ξ

t
mt) and Gt = σ(ξ1

1 , . . . , ξ
1
2mt , . . . , ξ

t
1, . . . , ξ

t
2mt).

One can further show that E[〈∆t, û
t − ũt〉] = 0. It follows from (10) that

E[Res(X ′|IT , λT )] ≤ (

T∑
t=1

γt)
−1

(
2Θ[X] +

T∑
t=1

7γ2
t

2
[M2 +

2σ2

mt
] +

T∑
t=1

2εt

)
(11)

which proves the first part of the theorem.

30. Under Assumption (C.2), we have

E[exp{e2
t/(σ/

√
mt)

2}] ≤ exp{1} and E[exp{ê2
t/(σ/

√
mt)

2}] ≤ exp{1}.

Let C1 =
∑T
t=1

γ2
t σ

2

mt
, it follows from convexity and the above equation that

E

[
exp

{
1

C1

T∑
t=1

γ2
t (e2

t + ê2
t )

}]
≤ E

[
1

C1

T∑
t=1

γ2
t σ

2

mt
exp

{
(e2
t + ê2

t )/(σ/mt)
2
}]
≤ exp{2}.

7



Applying Markov’s inequality, we obtain:

∀Λ > 0 : Prob

(
T∑
t=1

γ2
t (e2

t + ê2
t ) ≥ (2 + Λ)C1

)
≤ exp{−Λ}. (12)

Let ζt = 〈∆t, û
t − ũt〉. We showed earlier that E[ζt] = 0. since ‖ût − ũt‖ ≤ 2

√
2Θ[X], then we

also have
E[exp{ζ2

t /(2
√

2Θ[X]σ/
√
mt)

2}] ≤ exp{1}
Applying the relation exp{x} ≤ x+ exp{9x2/16}, one has for any s ≥ 0,

E

[
exp

{
s

T∑
t=1

γtζt

}]
≤ E

[
9s2

16
exp

{
T∑
t=1

γ2
t ζ

2
t

}]
≤ exp

{
9s2

16

T∑
t=1

8σ2Θ[X]2γ2
t

mt

}
By Markov’s inequality, one has

∀Λ > 0 : Prob

 T∑
t=1

γtζt ≥ 3ΛΘ[X]

√√√√ T∑
t=1

σ2γ2
t

mt

 ≤ exp{−Λ2/2} (13)

Combing equation (10), (12), and (13), we arrive at

∀Λ > 0 Prob
(
Res(X ′|IT , λT ) ≥M0(T ) + ΛM1(T )

)
≤ exp{−Λ}+ exp{−Λ2/2}

where

M0(T ) = (
∑T
t=1 γt)

−1
(

2Θ[X] +
∑T
t=1

7γ2
t

2 [M2 + 2σ2

mt
] +
∑T
t=1 2εt

)
,

M1(T ) = (
∑T
t=1 γt)

−1

(
7
2

∑T
t=1

γ2
t σ

2

mt
+ 3Θ[X]

√∑T
t=1

γ2
t σ

2

mt

)
.

4.3 Proof of Proposition 3.1

Proof. Let us fix T as the number of Mirror Prox steps, and since M = 0, from Theorem 3.1, the
efficiency estimate of the variational inequality implies that

E[εVI(x̄T |X,F )] ≤
2Θ[X] + 7

∑T
t=1γ

2
t
σ2

mt
+ 2
∑T
t=1εt∑T

t=1 γt
.

Let us fix εt = Θ[X]
T for each t = 1, . . . , T , then from Proposition 3.1 in [3], it takes at most

s = O(1)(L0D
κT

Θ[X] )1/(κ−1) calls to the LMO oracles to generate a point such that ∆s ≤ εt. Moreover,
we have

E[εVI(x̄T |X,F )] ≤ O(1)
LΘ[X]

T
.

Therefore, to ensure E[εVI(x̄T |X,F ) ≤ ε] for a given accuracy ε > 0, the number of Mirror
Prox steps T is at most O(LΘ[X]

ε ). Therefore, the number of stochastic oracle calls used is at

most NSO =
∑T
t=1mt = O(γ2

t T
2σ2/Θ[X]) = O(1)σ

2Θ[X]
ε2 . Moreover, the number of linear

minimization oracle calls on X2 needed is at most NLMO = sT = O(1)
(
L0L

κDκ

εκ

)1/(κ−1)

Θ[X]. In

particular, if κ = 2 and L0 = 1, this becomes NLMO = O(1)L
2D2Θ[X]
ε2 .

4.4 Proof of Proposition 3.2

Proof. Let us fix T as the number of Mirror Prox steps, and let , from εt = Θ[X]
T for each t =

1, . . . , T , since mt = O(1)σ2/M2, from Theorem 3.1, the efficiency estimate of the variational
inequality implies that

E[εVI(x̄T |X,F )] ≤ O(1)

√
Θ[X]M√
T

.
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Therefore, to ensure E[εVI(x̄T |X,F ) ≤ ε] for a given accuracy ε > 0, the number of Mirror
Prox steps T is at most O(M

2Θ[X]
ε2 ). Hence, the number of stochastic oracle calls used is at most

NSO =
∑T
t=1mt = O(1)σ2T/M2 = O(1)σ

2Θ[X]
ε2 . From Proposition 3.1 in [3], it takes at most

s = O(1)D
2T

Θ[X] calls to the LMO oracles to generate a point such that ∆s ≤ εt. Hence, the num-

ber of linear minimization oracle calls on X2 needed is at most NLMO = sT = O(1)D
2T 2

Θ[X] =

O(1)D
2M4Θ[X]
ε4 .

9
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