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Abstract
We proposed a doubly stochastic primal-dual coordinate optimization algorithm
for regularized empirical risk minimization that can be formulated as a saddle-
point problem. Different from existing coordinate methods, the proposed method
randomly samples both primal and dual coordinates to update solutions, which
is a desirable property when applied to data with both a high dimension and a
large size. The convergence of our method is established not only in terms of the
solution’s distance to optimality but also in terms of the primal-dual objective gap.
When applied to the data matrix already factorized as a product of two smaller
matrices, we show that the proposed method has a lower overall complexity than
other coordinate methods, especially, when data size is large.

1 Introduction

Setup We consider the following regularized empirical risk minimization (ERM) problem:

min
x∈Rp

P (x) ≡ 1

n

n∑
i=1

φi(a
T
i x) +

p∑
j=1

gj(xj)

 , (1)

where a1, . . . , an ∈ Rp are n data points, φi : R → R is a convex loss function, and gj : R → R
is a function of xj , the j-th coordinate of x. We further assume that gj is λ-strongly convex for
j = 1, 2, . . . , p and φi is (1/γ)-smooth for i = 1, 2, . . . , n. The dual problem of (1) is

max
y∈Rn

{
D(y) ≡ −g∗

(
−A

T y

n

)
− 1

n

n∑
i=1

φ∗i (yi)

}
, (2)

where A = [a1, a2, . . . , an]T ∈ Rn×p is the data matrix, and φ∗i and g∗ are the Fenchel’s conjugates
of φ and g, respectively. We denote the i-th row of A by ai and the j-th column of A by Aj . Let
‖ · ‖ represents `2-norm. The maximum norm of data points is defined as R = maxi=1,...,n ‖Ai‖.
Both (1) and (2) corresponds to the following saddle-point problem

min
x∈Rp

max
y∈Rn

{
g(x) +

1

n
yTAx− 1

n

n∑
i=1

φ∗i (yi)

}
. (3)

In this paper, we propose an efficient primal dual coordinated descent algorithm for the general
problem (3) and also one for a specific problem when the data A is factorized.

Related Works For solving problem (3), efficient deterministic first-order methods have been de-
veloped, including smoothing method [15, 3], excessive gap method [14], extragradient method [10,
12], Mirror-Prox method [13] and primal-dual hybrid gradient methods [1, 2, 4]. These approaches
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Algorithm 1 Doubly Stochastic Primal-Dual Coordinate (DSPDC) Method
Input: x(−1) = x(0) = x̄(0) ∈ Rp, y(−1) = y(0) = ȳ(0) ∈ Rn, and positive parameters (θ, τ, σ)

For t = 0, 1, 2, . . . , T − 1

Uniformly and randomly choose two sets of indices I ⊂ {1, 2, . . . , n} and J ⊂ {1, 2, . . . , p} of
sizes m and q, respectively.

y
(t+1)
i =

{
arg maxβ∈R

{
1
n
〈Ai, x̄(t)〉β − φ∗

i (β)

n
− 1

2σ
(β − y(t)i )2

}
if i ∈ I,

y
(t)
i if i /∈ I,

(4)

ȳ(t+1) = y(t) +
n

m
(y(t+1) − y(t)), (5)

x
(t+1)
j =

{
arg minα∈R

{
1
n
〈Aj , ȳ(t+1)〉α+ gj(α) + 1

2τ
(α− x(t)j )2

}
if j ∈ J,

x
(t)
j if j /∈ J,

(6)

x̄(t+1) = x(t) + (θ + 1)(x(t+1) − x(t)). (7)

Output: x(T ) and y(T )

need to evaluate the full (sub)gradient of objective function at each iteration which becomes pro-
hibitive when primal dimension p or dual dimension n are both large. Recent years there have seen
an increased interest in stochastic variance reduced gradient methods [8, 24, 17, 9] and incremental
gradient methods [19, 6, 11] that makes use of all instances in computing the stochastic gradient,
which can accelerate the conventional stochastic gradient decent method. Stochastic coordinate
methods work by updating randomly sampled coordinates of decision variables [16, 18, 20]. In [7]
the authors showed that randomized (block) coordinate descent methods can be accelerated by paral-
lelization when applied to the problem of minimizing the sum of a partially separable smooth convex
function and a simple separable convex function. Shalev-Shwartz & Zhang [22, 21, 23] proposed
stochastic dual coordinate ascent (SDCA) and its mini-batch, accelerated and proximal variants to
maximize the dual formulation (2). Zhang & Xiao [26] and Dong & Lan [5] both proposed stochas-
tic primal-dual coordinate method for (3), which alternates between maximizing over a randomly
chosen dual variable and minimizing over all the primal variables. However, all these need to update
either full primal or full dual coordinates, which can still have a high computational cost in each
iteration when data has both a large size and a high dimension.

2 Primal-Dual Algorithm for General Data Matrix

In this section, we propose a doubly stochastic primal-dual coordinate method in Algorithm 1 for
problem (3). When φi is a (1/γ)-smooth and g is λ-strongly convex, the saddle-point problem (3)
has a unique solution denoted by (x?, y?) with x? and y? being the optimal primal and dual solutions
for (1) and (2), respectively. The condition number of problem (3) is defined as κ = R2

λγ . Algorithm 1
requires three control parameters θ, τ and σ and its convergence is obtained after a proper choice of
these parameters as shown in Theorem 1. All the proofs for the theorems here are deferred to our
long version manuscript [25].

Theorem 1. Suppose the parameters θ, τ and σ in Algorithm 1 are chosen so that

θ =
p

q
− p/q

R√
λγ

√
n
m
p
q + max{ nm ,

p
q }
, τσ =

nq

4pR2
,

p

2qλτ
+
p

q
=

n2

2mγσ
+
n

m
, (8)

where the last two equations are equivalent to

τ =
p

qλ

( n
m
− p

q

)
+

√(
n

m
− p

q

)2

+
4np2R2

mq2λγ

−1

σ =
n2

mγ

(p
q
− n

m

)
+

√(
n

m
− p

q

)2

+
4np2R2

mq2λγ

−1

.

(9)
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For each t ≥ 0, Algorithm 1 guarantees(
p

2qτ
+
pλ

q

)
E‖x? − x(t)‖2 +

( n

4mσ
+
γ

m

)
E‖y? − y(t)‖2

≤

1− 1

max
{
p
q
, n
m

}
+ R√

λγ

√
n
m
p
q

t [(
p

2qτ
+
pλ

q

)
‖x? − x(0)‖2 +

( n

2mσ
+
γ

m

)
‖y? − y(0)‖2

]
.

Besides the distance to the saddle-point (x?, y?), a more useful quality measure for the solution
(x(t), y(t)) is its primal-dual objective gap, P (x(t)) −D(y(t)), because it can be evaluated in each
iteration and used as a stopping criterion in practice. The next theorem establishes the convergence
rate of the primal-dual objective gap ensured by DSPDC.
Theorem 2. Suppose the parameters τ and σ in Algorithm 1 are chosen as (9) and θ is chosen as

θ =
p

q
− p/q

2R√
λγ

√
n
m
p
q + 2 max{ nm ,

p
q }
. (10)

Algorithm 1 guarantees

E
[
P (x(t))−D(y(t))

]
≤

(
1− 1

2 max{ n
m
, p
q
}+ 2R√

λγ

√
n
m
p
q

)t 1

min
{
p
q
, n
m

} +
max

{
R2

2γ
, R

2

λn

}
min

{
λp
q
, γ
m

}
[(

p

2qτ
+
pλ

2q

)
‖x(0) − x?‖2 +

( n

2mσ
+

γ

2m

)
‖y(0) − y?‖2 + max

{
p

q
,
n

m

}(
P (x(0))−D(y(0))

)]
.

For strongly convex problem, the convergence of objective value implies that of solution but the
opposite is not true. Therefore, Theorem 2 is not a direct consequence of Theorem 1, especially
when P (x) or D(y) contains a non-smooth component or is not defined everywhere in Rp or Rn.

3 Efficient Implementation for Factorized Data Matrix

Now we consider a specific case where the data matrix A in (3) has a factorized structure A = UV
whereU ∈ Rn×d and V ∈ Rd×p with d << min{n, p}. We can maintain the vectors ū(t) = UT ȳ(t)

and v̄(t) = V x̄(t) and update them in O(dm) and O(dq) time, respectively, in each iteration. Then,
we can obtain

〈
Ai, x̄

(t)
〉

in (4) in O(dm) time by evaluating
〈
Ui, v̄

(t)
〉

for each i ∈ I , where Ui is
the ith row of U . Similarly, we can obtain

〈
Aj , ȳ

(t+1)
〉

in (6) inO(dq) time by taking
〈
V j , v̄(t)

〉
for

each j ∈ J , where V j is the jth column of V . This leads to an efficient implementation of DSPDC
whose per-iteration cost is O(dm + dq), lower than the O(mp) cost when A is not factorized. The
detailed procedure is shown in Algorithm 2. The similar efficient implementation can be also applied
to other coordinate methods such as SPDC, SDCA and ASDCA to obtain a lower computation
cost in each iteration. To make a clear comparison between DSPDC and other coordinate methods
when applied to factorized data, we summarize their numbers of iterations and per-iteration costs in
Table 3. Here, we assume n

m ≥
p
q without lose of generality 1 and omit all the big-O notations.4 Numerical Experiments

In this section, we conduct numerical experiments to compare the DSPDC method with other two
methods, SPCD [26] and SDCA [22] over several real datasets2 Covtype, RCV1 and Real-sim.
We consider the setting of sparse recovery problem after applying randomized feature reduction to
binary classification. In particular, let X ∈ Rn×p be the original training data, and G ∈ Rd×p a
Gaussian random matrix. So now A = UV with U = XGT , V = G. The problem of interest is

min
x∈Rp

max
y∈Rn

{
λ2
2
‖x‖22 + λ1‖x‖1 +

1

n
yTXGTGx− 1

n

n∑
i=1

φ∗i (yi)

}
(17)

1If n
m
≤ p

q
, we can apply the dual version of DSPDC by switch the updating schemes for x and y.

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Algorithm 2 Efficient Implementation of Algorithm 1 for Factorized Data (A = UV )
Input: x(−1) = x(0) = x̄(0) ∈ Rp, y(−1) = y(0) = ȳ(0) ∈ Rn, and positive control parameters (θ, τ, σ)

Initialize:u(0) = UT y(0), v(0) = V x(0),ū(0) = UT ȳ(0), v̄(0) = V x̄(0)

Iterate:
For t = 0, 1, 2, . . . , T − 1

Uniformly and randomly choose two sets of indices I ⊂ {1, 2, . . . , n} and J ⊂ {1, 2, . . . , p} of
sizes m and q, respectively.

y
(t+1)
i =

{
arg maxβ∈R

{
1
n
〈Ui, v̄(t)〉β − φ∗

i (β)

n
− 1

2σ
(β − y(t)i )2

}
if i ∈ I,

y
(t)
i if i /∈ I,

(11)

u(t+1) = u(t) + UT (y(t+1) − y(t)), (12)

ū(t+1) = u(t) +
n

m
UT (y(t+1) − y(t)), (13)

x
(t+1)
j =

{
arg minα∈R

{
1
n
〈V j , ū(t+1)〉α+ gi(α) + 1

2τ
(α− x(t)i )2

}
if j ∈ J,

x
(t)
j if j /∈ J,

(14)

v(t+1) = v(t) + V (x(t+1) − x(t)), (15)

v̄(t+1) = v(t) + (θ + 1)V (x(t+1) − x(t)). (16)

Output: x(T ) and y(T )

Algorithm Number of Iterations Per-Iteration Cost Overall Complexity when
m = q = 1

DSPDC
(
n
m

+
√

κn
m

p
q

)
log( 1

ε
) qd+md (nd+

√
κnpd) log( 1

ε
)

SPDC
(
n
m

+
√

κn
m

)
log( 1

ε
) pd+md (npd+

√
κnpd) log( 1

ε
)

SDCA (n+ κ) log( 1
ε
) pd (npd+ κpd) log( 1

ε
)

ASDCA (n+
√
κn) log( 1

ε
) pd (npd+

√
κnpd) log( 1

ε
)

Table 1: The complexity to find an ε-optimal solution when A = UV and n
m ≥

p
q .
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Figure 1: Left: Covtype (n = 581012, p = 54). Middle: RCV1 (n = 20242, p = 47236). Right: Real-sim
(n = 72309, p = 20958).

We consider problem (17) with smoothed hinge loss

φi(z) =


0 if biz ≥ 1
1
2 − biz if biz ≤ 0
1
2 (1− biz)2 otherwise

, (18)

where bi ∈ {1,−1} is the class label for the ith instance. In all experiments, we choose d = 20
and set λ1 = 10−4, λ2 = 10−2 in (17). Since these three sets data are real data, their sizes
and dimensions are not in whole thousands. We choose m and q so that n and p can be either
dividable by them or has a small division remainder. The numerical performances of the three
methods are showed in Figure 1 with the values of m and q stated below. In these three examples,
SPDC and DSPDC both outperform SDCA significantly. DSPDC has as similar performance to
SPDC on RCV1 Real-sim but has a better performance than SPDC when applied to Covtype. The
complementary results could be found in the full version manuscript [25].
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[9] J. Konečný, J. Liu, P. Richtárik, and M. Takáč. Mini-batch semi-stochastic gradient descent in the proxi-

mal setting. Technical report, the School of Mathematics, University of Edinburg, 2014.
[10] G. Korpelevic. The extragradient method for finding saddle points and other problems. Ekonomika i

Matematcheskie Metody, 12:747–756, 1976.
[11] G. Lan. An optimal randomized incremental gradient method. Technical report, Department of Industrial

and Systems Engineering, University of Florida, 2015.
[12] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of tseng’s modified f-b splitting and korpele-

vich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization
problems. SIAM J. on Optimization, 21(4):1688–1720.

[13] A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz
continuous monotone operators and smooth convex-concave saddle-point problems. SIAM Journal on
Optimization, 15(1):229–251, 2004.

[14] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Jorunal on Optimization,
16(1):235–249, 2005.

[15] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:127–152,
2005.

[16] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

[17] A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Neural Information
Processing Systems (NIPS), 2014.
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