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Abstract

We investigate the practical performance of several recent iterative methods for solving ro-
bust convex optimization. In particular, we compare the performance of simple constraint
generation to that of the more recent advances on incorporating regret minimization. We
investigate the performance of these techniques on two robust convex quadratic problems:
robust portfolio optimization and robust support vector machines (SVMs). For these prob-
lems, we identify how these recent iterative methods can be coupled with recent advances
on solving trust region subproblem to achieve superior performance.

1 Introduction

Consider the general form of a robust convex optimization (RCO) problem:

min
x

⇢
f(x) : sup

ui2Ui

f
i(x, ui)  0, i 2 [m], x 2 X

�
, (1)

where X ✓ Rn is a convex domain, U1
, . . . , U

m are uncertainty sets, and f, f
1
, . . . , f

m are all convex
functions of x 2 X and [m] = {1, . . . ,m}. In traditional nonrobust optimization, the input data is a singleton
u
i for each U

i and thus there is no supremum. Often, the data defining the nonrobust problem are uncertain
or misspecified (only an approximation of the true data is available). In many applications, optimization
with poorly instantiated data can have a large negative effect on performance. For example, in portfolio
optimization, the covariance matrix is difficult to estimate, and the mean-variance model is known to be
notoriously sensitive to these errors Goldfarb and Iyengar [2003]. To address this, several methodologies
have been developed to handle the data uncertainty. Robust optimization (RO) addresses data uncertainty by
seeking a solution x 2 X that is feasible for all data realizations ui from the uncertainty sets U i. RO has been
extensively studied in the literature, and we refer the reader to the paper by Ben-Tal and Nemirovski Ben-Tal
and Nemirovski [1998], the book by Ben-Tal et al. Ben-Tal et al. [2009] and surveys Ben-Tal and Nemirovski
[2002, 2008], Bertsimas et al. [2011], Caramanis et al. [2012] for a detailed account of RO theory and its
numerous applications.

The traditional solution method for RCO is based on reformulating it first into an equivalent deterministic ro-
bust counterpart problem via duality theory, and then solving the robust counterpart as a deterministic convex
optimization problem. However, the robust counterpart approach often leads to larger and much less scalable
problems than the associated nominal problem of (1) where the uncertain data (noise) [u1; . . . ;um] is fixed to
a given value. For example, it is well-known that the robust counterpart of a convex quadratic program (QP)
with ellipsoidal uncertainty is a semidefinite program Ben-Tal et al. [2009]. To bypass the robust counterpart
approach and the challenges associated with it, recently several interesting iterative methods have been sug-
gested for solving RO problems; see e.g., Mutapcic and Boyd [2009], Ben-Tal et al. [2015], Bertsimas et al.
[2016], Ho-Nguyen and Kılınç-Karzan [2016]. These methods solve (1) by iteratively updating the solution
x and the noise [u1; . . . ;um] to approximate their optimum values.

The iterative RCO methods of Mutapcic and Boyd [2009], Ben-Tal et al. [2015], Ho-Nguyen and Kılınç-
Karzan [2016] build a solution x̄ in similar ways by iteratively generating a solution sequence xt and a data

sequence ut (for t � 1) that approximate the ‘ideal’ solution and data points respectively. A key feature
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in these approaches is that generating the next solution point xt uses information from the data sequence
u1, . . . , ut�1 up to iteration t� 1, and vice versa. Both Mutapcic and Boyd [2009] and Ben-Tal et al. [2015]
in each iteration call a nominal solution oracle that involves solving full optimization problems in the same
class as the underlying deterministic optimization problem of (1), whereas Ho-Nguyen and Kılınç-Karzan
[2016] replaces these solution oracles via some intricate first-order updates. Mutapcic and Boyd [2009] and
Ben-Tal et al. [2015] differ in terms of how the noise updates are carried out: Mutapcic and Boyd [2009]
relies on a pessimization oracle whereas Ben-Tal et al. [2015] performs regret minimization (online learning)
for this. While Ben-Tal et al. [2015], Ho-Nguyen and Kılınç-Karzan [2016] are shown to have a worst-
case bound of O( 1p

T
) on their error after T steps, the cutting-set method of Mutapcic and Boyd [2009]

has an exponential worst-case convergence rate. In spite of its theoretical convergence rate, Mutapcic and
Boyd [2009] demonstrated that their cutting-set method requires few iterations in practice for random robust
linear programs and two classes of robust convex QPs equipped with domain-specific exact, approximate, or
heuristic pessimization oracles.

In this paper we perform detailed numerical experiments on the performance of the iterative algorithms from
Mutapcic and Boyd [2009] and Ben-Tal et al. [2015]. In particular, we investigate a cutting-set algorithm
equipped with a pessimization oracle like in Mutapcic and Boyd [2009] and a regret minimization approach
as suggested in Ben-Tal et al. [2015]. Our focus is on solving robust convex QPs with ellipsoidal uncertainty
sets arising in two different applications: robust portfolio optimization and robust SVMs. In this setting,
given a feasible solution x, the pessimization problem of finding the worst-case uncertainty instantiation u is
equivalent to the trust-region subproblem (TRS). We show that the cutting-set method combined with a TRS
solver leads to fast practical performance; few cutting sets are required across all problems. We find that the
regret minimization approach has much higher variance in its performance: for some problems it is fast; but
occasionally it requires prohibitively many iterations and encounters numerical issues.

2 Iterative Algorithms for RCO

All algorithms considered in this paper are based on iteratively calling nominal solution oracles to solve
variants of (1) where, instead of the supremum over U i, we solve for a fixed finite set of constraints Ũ i ⇢ U

i.
The exact form of Ũ i changes across iterations of these algorithms. For the cutting-set method equipped with
a pessimization solver, Ũ i is an expanding set containing all worst-case instantiations of noise, with a new
noise instantiation being added for every iteration that constraint i is violated by the current solution xt. For
the regret minimization approach Ũ

i consists of a singleton current noise instantiation chosen according to
some online regret minimization scheme.

The pseudocode for the cutting-set (pessimization) method is given in Algorithm (1). The algorithm starts
out with some initial set of uncertainty instantiations for each i 2 [m], usually a singleton set for each
i. A loop then alternatingly 1) computes x̃, a solution to the current instantiation of (1), and 2) expands
the uncertainty sets with worst-case noise instantiations generated by the pessimization solver against the
current x̃. Following a standard analysis of cutting-plane methods, Mutapcic and Boyd [2009] prove that
their approach is guaranteed to converge to a solution, although after an exponential number of steps. On
the other hand, they also show that in practice far fewer iterations are needed, as is often the case with
cutting-plane methods.

Algorithm 1 Cutting-set (pessimization) approach
input: Initial sets Ũ i

0, feasibility tolerance ✏

Repeat:
Set x̃ equal to a solution to (1) for Ũt�1

If (1) is infeasible, then return “infeasible”
for i = 1, . . . ,m do

if maxui2Ui f
i(x̃, ui) > 0 then

Ũ
i
t = Ũ

i
t�1 [

�
argmaxui2Ui f

i(x̃, ui)
 

If maxi,ui2Ui f
i(x̃, ui) < ✏, then return x̃

Algorithm 2 Regret minimization approach
input: Initial sets Ũ

i
0 , #iterations T, regret mini-

mizer RM , initial solution x0

for t = 1, . . . , T do
for i = 1, . . . ,m do
Ũ

i
t = {RM(xt�1, ut�1)}

Set xt equal to a solution to (1) for Ũt

If (1) is infeasible, then return “infeasible”
return x̄ = 1

T

PT
t=1 xt

The pseudocode for the regret minimization method is shown in Algorithm (2). The algorithm keeps each Ũ
i
t

as a singleton throughout all iterations t. At iteration t, Ũ i
t is updated to the regret-minimizer update returned

by RM(xt�1, ut�1), and then xt is updated to be the solution of (1) for Ũ i
t . Ben-Tal et al. [2015] show

2



that, as long as the updates ut = RM(xt�1, ut�1) satisfy the regret bounds maxui2Ui
1
T

PT
t=1 f

i(xt, u
i)�

1
T

PT
t=1 f

i(xt, u
i
t)  ✏, then the final solution x̄ = 1

T

PT
t=1 xt is a 2✏-approximate solution to (1).

3 Numerical Results and Discussion

In our case, for the case of cutting-set approach, we modeled the resulting pessimization oracle via trans-
forming the associated TRS into a convex QP as described in Appendix A.

For the regret minimization approach, we always check feasibility of both the average of the solutions x̃

obtained so far, as well as the current iterate x̃. Which is better depends on the instance class: for synthetic
portfolio optimization and SVM the current iterate was almost always better, but for portfolio optimization
on real stock data, the averaged iterate was better the majority of the time.

For the regret-minimizer RM in the regret minimization approach, we focus on the Follow the Approximate
Perturbed Leader (FTAPL) algorithm. Note that FTAPL does not necessarily need the uncertainty set U i

to be convex. FTAPL requires the constraint functions to be linear in u
i
t, i.e., f i(xt, u

i
t) = g

i(xt)>ui
t, and

updates ui
t according to

Find u
i
t s.t.

✓ t�1X

s=1

g
i(xs) + pt

◆>
u
i
t � max

ui2Ui

✓ t�1X

s=1

g
i(xs) + pt

◆>
u
i � ✏,

where pt 2 [0, 1/⌘]dim (ui) is chosen uniformly at random. Ben-Tal et al. [2015] suggests a way to transform
robust quadratic constraints into the correct form required by FTAPL. In the updates above, the parameter
⌘ is chosen depending on the structure of the problem; we refer to Ben-Tal et al. [2015] for details about
choosing this as well as the regret bounds.

The experiments were run on a Macbook Pro with a 2.6Ghz Intel Core i7 processor and 16GB of RAM. All
nominal convex QPs as well as all convexified TRSs were solved with Gurobi version 7.5.1. A timeout of 5
minutes was used. In our experiments, we consider two classes of robust convex QPs: one originating from
a robust portfolio optimization and the other from a robust SVM.

Our robust portfolio optimization problem is based on the Markowitz mean-variance portfolio model with
short sales and is given by the following problem formulation:

min
x

⇢
max
Ṽ 2UV

x
>(Ṽ >

FṼ )x+ x
>
Dx� � min

µ̃2Uµ

µ̃
>
x : 1>

n x = 1

�
,

where the uncertainty sets are defined as UV :=
n
V0 +

P
j2[k] Pjuj : u 2 Rk

, kuk2  1
o

with fixed ma-
trices V0, Pj 2 Rm⇥n. The first two terms represent risk: F is a covariance matrix specifying factors that
affect returns and V is a matrix describing how these factors affect returns, D is a diagonal matrix specify-
ing expected residual error. The third term represents the expected return of the portfolio. The parameter
� > 0 specifies the tradeoff between maximizing returns and minimizing risk. We discuss the derivation of
this robust portfolio optimization model and the details of the associated instance generation in Appendix B.
For robust portfolio optimization, we consider two types of instances, one based on synthetic data and one
derived from real stock returns. To generate instances based on real data, we utilize data on 482 stocks that
remained in the S&P 500 index for all 1258 trading days between 1 January 2003 and 31 December 2007.

Table 1 shows the synthetic robust portfolio optimization results for both algorithmic approaches across a
number of different instances that vary the number of assets and factors in the model. Across all instance
sizes the cutting-set approach performs very well: it never needs more than 8 iterations before converging
to a solution. In contrast to this, the regret minimization approach frequently ends up requiring hundreds of
iterations, and does not solve all instances for any of the problem sizes.

# iterations runtime (seconds)
algorithm assets (n) factors # solved mean min max mean min max
cutting set 20 8 10 3.70 2 5 0.02 0.01 0.04
cutting set 40 16 10 4.10 2 7 0.06 0.02 0.15
cutting set 80 32 10 5.80 3 8 0.37 0.12 0.62
regret FTAPL 20 8 8 89.00 12 330 1.02 0.16 3.55
regret FTAPL 40 16 9 100.89 4 199 3.18 0.12 6.26
regret FTAPL 80 32 6 121.33 80 204 12.03 8.16 20.98

Table 1: Summary statistics for synthetic robust portfolio optimization instances.
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Figure 1: Runtimes for solution oracles. Left: portfolio optimization, Right: SVM.

Next we run experiments on real stock-market data. The results are shown in Table 2. The cutting-set solver
solves all instances in 3 iterations or less, whereas the regret minimization approach requires significantly
more.

# iterations runtime (seconds)
algorithm period length assets (n) # solved mean min max mean min max
cutting set 20 200 10 2.00 1 3 0.08 0.02 0.15
cutting set 20 482 20 1.55 1 2 0.27 0.06 0.46
cutting set 50 482 40 1.38 1 2 0.21 0.06 0.49
regret FTAPL 20 200 10 2.70 1 11 0.14 0.05 0.57
regret FTAPL 20 482 19 9.89 1 66 2.78 0.26 18.16
regret FTAPL 50 482 40 4.67 1 36 1.39 0.28 10.68

Table 2: Summary statistics for robust portfolio optimization on S&P500 stock data.

We next perform experiments on randomly generated robust SVM instances which leads to the following
problem formulation:

min
↵

1

2
max

u: kuk21
↵
>
Y

>
✓
X0 +

X

j2[k]

Pjuj

◆>✓
X0 +

X

j2[k]

Pjuj

◆
Y �

X

i2[m]

↵i

s.t.
X

i2[m]

↵iyi = 0, 0  ↵i  C 8i 2 [m]

We discuss the derivation of this robust SVM model and the details of the associated instance generation in
Appendix C.

Table 3 shows summary statistics for solving robust SVM instances. As with the case of robust portfolio
optimization, we find that the cutting-set approach solves all instances in a small number of iterations. We do
find that the hardest instances for this approach require 20 to 40 iterations, as opposed to less than 10 for the
robust portfolio optimization case. Similarly, we find that the robust SVM instances are significantly harder
for the regret minimization approach: it can solve only about half of the smaller instances, and only a quarter
of the largest instances.

# iterations runtime (seconds)
algorithm n m # solved mean min max mean min max
cutting set 10 30 40 6.22 2 19 0.09 0.01 0.60
cutting set 20 60 40 6.12 2 42 0.35 0.03 4.60
cutting set 80 240 40 4.22 2 22 3.47 0.53 67.56
regret FTAPL 10 30 21 378.10 1 3059 4.85 0.02 39.05
regret FTAPL 20 60 21 201.05 2 897 6.68 0.06 28.81
regret FTAPL 80 240 11 126.91 10 326 107.02 7.48 271.23

Table 3: Summary statistics for robust SVM instances.

Finally, we examine across iterations the per-solve runtime for the nominal solution oracles involved in these
approaches. The results for both synthetic robust portfolio optimization (left) and robust SVM (right) are
shown in Figure 1. As one might expect, the per-solve runtime of the nominal solution oracle for the cutting-
set approach grows approximately linearly with the number of cuts added to the formulation of its nominal
solution oracle. Contrary to this, the regret minimization approach has the same runtime for its nominal
solution oracle across all iterations.
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