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Abstract

Concave-Convex Procedure (CCCP) has been widely used to solve nonconvex
d.c.(difference of convex function) programs occur in learning problems, such as
sparse support vector machine (SVM), transductive SVM, sparse principal com-
ponenent analysis (PCA), etc. Although the global convergence behavior of CC-
CP has been well studied, the convergence rate of CCCP is still an open problem.
Most of d.c. programs in machine learning involve constraints or nonsmooth ob-
jective function, which prohibits the convergence analysis via differentiable map.
In this paper, we approach this problem in a different manner by connecting CC-
CP with more general block coordinate decent method. We show that the recent
convergence result [1] of coordinate gradient descent on nonconvex, nonsmooth
problem can also apply to exact alternating minimization. This implies the con-
vergence rate of CCCP is at least linear, if in d.c. program the nonsmooth part
is piecewise-linear and the smooth part is strictly convex quadratic. Many d.c.
programs in SVM literature fall in this case.

1 Introduction

Concave-Convex Procedure is a popular method for optimizing d.c.(difference of convex function)
program of the form:

min
x

u(x)− v(x)

s.t. fi(x) ≤ 0, i = 1..p

gj(x) = 0, j = 1..q

(1)

where u(x), v(x), and fi(x) being convex functions, gj(x) being affine function, defined on Rn.
Suppose v(x) is (piecewise) differentiable, the Concave-Convex Procedure iteratively solves a se-
quence of convex program defined by linearizing the concave part:

xt+1 ∈ argmin
x

u(x)−∇v(xt)Tx

s.t. fi(x) ≤ 0, i = 1..p

gj(x) = 0, j = 1..q

(2)

This procedure is originally proposed by Yuille etal.[2] to deal with unconstrained d.c. program
with smooth objective function. Nevertheless, many d.c. programs in machine learning come with
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constraints or nonsmooth functions. For example, [4] and [5] propose using a concave function to
approximate lo-loss for sparse PCA and SVM feature selection repectively, which results in d.c. pro-
grams with convex constraints. In [11], [12], R.Collobert etal. formulate ramp-loss and transductive
SVM as d.c. programs with nonsmooth u(x), v(x). Other examples such as [9] and [13] use (1)
with piecewise-linear u(x), v(x) to handle nonconvex tighter bound [9] and hidden variables [13] in
structural-SVM.

Though CCCP is extensively used in machine learning, its convergence behavior has not been fully
understood. Yuille etal. give an analysis of CCCP’s global convergence in the original paper [2],
which, however, is not complete [14]. The global convergence of CCCP is proved in [10] and [14]
via different approaches. However, as [14] pointed out, the converence rate of CCCP is still an open
problem. [6] and [7] have analyzed the local convergence behavior of Majorization Minimiation
algorithm, where CCCP is a special case, by taking (2) as a differentiable map xt+1 = M(xt), but
the analysis only applies to the unconstrained, differetiable version of d.c. program. Thus it cannot
be used for examples mentioned above.

In this paper, we approach this problem in a different way by connecting CCCP with more general
block coordinate decent method. We show that the recent convergence result [1] of coordinate
gradient descent on nonconvex, nonsmooth problem can also apply to block coordinate descent.
Since CCCP, and more general Majorization-Minimization algorithm are special cases of block
coordinate descent, this connection provides a simple way to prove convergence rate of CCCP.
In particular, we show that the sequence {xt}∞t=0 provided by (2) converges at least linearly to a
stationary point of (1) if the nonsmooth part in u(x) and v(x) are convex pieceiwise-linear and the
smooth part in u(x) is strictly convex quadratic. Many d.c. programs in SVM literature fall in this
case, such as that in ramp-loss SVM [11], transductive SVM [12], and structual-SVM with hidden
variables [13] or nonconvex tighter bound [9].

2 Majorization Minimization as Block Coordinate Descent

In this section, we show CCCP is a special case of Majorization Minimization algoritm, and thus
can be viewed as block cooridnate descent on surrogate function. Then we introduce an alternative
formulation of algorithm (2) when v(x) is piecewise-linear that fits better for convergence analysis.

The Majorization Minimization (MM) principle is as follows. Suppose our goal is to minimize f(x)
over Ω ⊂ Rn. We first construct a majorization function g(x, y) over Ω× Ω such that{

f(x) ≤ g(x, y), x, y ∈ Ω
f(x) = g(x, x), x ∈ Ω

(3)

The MM algorithm, therefore, minimizes an upper bound of f(x) at each iteration
xt+1 ∈ argmin

x∈Ω
g(x, xt) (4)

until fix point of (4). Since the minimum of g(xt, y) occurs at y = xt, (4) can be seen as block
coordinate descent on g(x, y) with two blocks x, y.

CCCP is a special case of (4) with f(x) = u(x)−v(x) and g(x, y) = u(x)−v′(y)T (x−y)−v(y).
The condition (3) holds because, by convexity of v(x), the first-order Taylor approximiation is less
or equal to v(x), with eqaulity when y = x. Thus we have{

f(x) = u(x)− v(x) ≤ u(x)− v′(y)T (x− y)− v(y) = g(x, y) , x, y ∈ Ω
f(x) = g(x, x) , x ∈ Ω

(5)

However, when v(x) is piecewise-linear, the term −v′(y)T (x − y) − v(y) is discontinuous and
nonconvex. For convergence analysis, we express v(x), in another way, as maxmi=1 (a

T
i x+ bi) with

v′(x) = ak piecewisely, where k = argmaxi(a
T
i x+ bi). Thus we can express d.c. program (1) in

another form

min
x∈Rn,d∈Rm

u(x)−
m∑
i=1

di(a
T
i x+ bi)

s.t.
m∑
i=1

di = 1, di ≥ 0, i = 1..m

fi(x) ≤ 0, i = 1..p, gj(x) = 0, j = 1..q

(6)
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Alternaing minimizing (6) between x and d yields the same CCCP algorithm (2).1

This formulation replaces discontinous, nonconvex term −v′(y)(x− y)− v(y) with quadratic term
−
∑m

i=1 di(a
T
i x+bi), so (6) fits the form of nonsmooth problem studied in [1], that is, minimizing a

function F (x) = f(x)+cP (x), with c > 0, f(x) being smooth, and P (x) being convex nonsmooth.
In next section, we give convergence result of CCCP by showing that the alternating minimization
of (6) yields the same sequence {xt, yt}∞t=0 as that of a special case of Coordinate Gradient Descent
proposed in [1].

3 Convergence Theorem

Lemma 3.1. Consider the problem

min
x, y

F (x, y) = f(x, y) + cP (x, y) (7)

where f(x, y) is smooth and P (x, y) is nonsmooth, convex, lower semi-continuous, and seperable
for x and y. The sequence {xt, yt}∞t=0 produced by alternating minimization

xt+1 = argmin
x

F (x, yt) (8)

yt+1 = argmin
y

F (xt+1, y) (9)

(a) converges to a stationary point of (7), if in (8) and (9), or their equivalent problems2, the objective
functions have smooth parts f(x), f(y), that are strictly convex quadratic.

(b) with linear convergence rate, if f(x, y) is quadratic (maybe nonconvex), P (x, y) is polyhedral,
in addition to assumption in (a).

Proof. Let the smooth parts of objective function in (8) and (9), or their equivalent problems, be
f(x) and f(y). We can define a special case of Coordinate Gradient Descent (CGD) proposed in
[1] which yields the same sequence {xt, yt}∞t=0 as that produced by the alternating minimization,
where for each iteration k of the CGD algorithm, we use hessian matrix Hk

xx = ∇2f(x) ≻ 0n for
block J = x and Hk

yy = ∇2f(y) ≻ 0m for block J = y, with exact line search (which satisfies
Armijo Rule)3. By Theorem 1 of [1], the sequence {xt, yt}∞t=0 converges to a stationary point of
(7). If we further assume that f(x, y) is quadratic and P (x, y) is polyhedral, by applying Theorem
2 and 4 in [1], the convergence rate of {xt, yt}∞t=0 is at least linear.

Lemma 3.1 provides a basis for the convergence of (6), and thus the CCCP (2). However, when
minimizing over d, the objective in (6) is linear instead of strictly convex quadratic as required by
lemma 3.1. The next lemma shows that the problem, nevertheless, has equivalent strictly convex
quadratic problem that gives the same solution.

Lemma 3.2. There exist ϵ0 > 0 and d∗ such that the problem

argmin
d∈Rm

− cT d+
ϵ

2
∥d∥2

s.t.

m∑
i=1

di = 1, di ≥ 0, i = 1..m
(10)

has the same optimal solution d∗ for ∀ϵ < ϵ0.

1Let set S = argmini (−aT
i x− bi). When minimizing (6) over d, an optimal solution just set dk∈S =

1/|S| and dj /∈S = 0. When minimizing over x, the problem becomes xt+1 = argminx (u(x)− aT
Sx− bS) =

argminx (u(x)− v′(xt)Tx) subject to constraints in (1), where aS , bS are averages over ak, bk for k ∈ S,
and v′(xt) = aS is a sub-gradient of v(x) at xt.

2By ”equivalent”, we means the two problems have the same optimal solution.
3Note, in [1], the Hassian matrix Hk affect CGD algorithm only through Hk

JJ , so we can always have a
positive-definite Hk when Hk

JJ is positive definite by assigning, other than Hk
JJ , 1 to diagnoal elements, 0 to

non-diagnoal elements.
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Proof. Let set S = argmaxi (ci) and cmax = maxi (ci). As ϵ = 0, we can obtain a optimal
solution d∗ by setting d∗k∈S = 1

|S| and d∗j /∈S = 0. Let α, β, be Lagrange multipliers of affine and
non-negative constraints in (10) respectively. By KKT condtion, the solution d∗, α∗, β∗ must have
−c−α∗e− β∗ = 0, with β∗

k∈S = 0, α∗ = −cmax, and β∗
j /∈S = cmax − cj , where e = [1, .., 1]Tm.

When ϵ > 0, the KKT condition for (10) only differs by the equation ϵd∗−c−α̃e−β̃ = 0, which can
be satisfied by setting β̃k∈S = 0, α̃ = α∗+ ϵ

|S| , and β̃j /∈S = β∗
j /∈S−

ϵ
|S| . If ϵ

|S| < β∗
j = cmax−cj

for ∀j /∈ S, then d∗, α̃, β̃ still satisfy the KKT condition. In other words, d∗ is still optimal if ϵ < ϵ0,
where ϵ0 = minj /∈S (cmax − cj)|S| > 0.

When minimizing (6) over d, the problem is of form (10) with ϵ = 0 and cti = aTi x
t + bi, i = 1..m.

Lemma (3.2) says that we can always find equivalent strictly convex quadratic problem by setting
positive ϵt < minj /∈S (ctmax − ctj)|S|. Now we are ready to give the main theorem.

Theorem 3.3. The Concave-Convex Procedure (2) converges to a stationary point of (1) in at least
linear rate, if the nonsmooth part of u(x) and v(x) are convex piecewise-linear, the smooth part of
u(x) is strictly convex quadratic, and the domain formed by fi(x) ≤ 0, gi(x) = 0 is polyhedral.

Proof. Let u(x) − v(x) = fu(x) + Pu(x) − v(x), where fu(x) is strictly convex quadratic and
Pu(x), v(x) are convex piecewise-linear. We can formulate CCCP as an alternating minimization
on (6) between x and d. The constraints fi(x) ≤ 0 and gj(x) = 0 form a polyhedral domain, so
we transform them into a polyhedral, lower semi-continuous function Pdom(x) = 0 if fi(x) ≤ 0,
gj(x) = 0 and Pdom(x) = ∞ otherwise. By the same way, the domain constraints on d are also
transformed into polyhedral, lower semi-continuous function Pdom(d). Then (6) can be expressed as
minx,d F (x, d) = f(x, d) + P (x, d), where f(x, d) = fu(x)−

∑m
i=1 di(a

T
i x+ bi) is quadratic and

P (x, d) = Pu(x) + Pdom(x) + Pdom(d) is polyhedral, lower-semi-continuous, separable for x and
d. When alternating minimizing F (x, d), the smooth part of subproblem minxF (x, dt) is strictly
convex quadratic, and the subproblem mindF (xt+1, d), by Lemma 3.2, has equivalent strictly con-
vex quadratic problem. Hence, the alternating minimization of F (x, d), that is, the CCCP algorithm
(2), converges at least linearly to a stationary point of (1) by Lemma 3.1.

To our knowledge, this is the first result on convergence rate of CCCP for nonsmooth problem.
Specifically, we show that the CCCP algorithm used in [9], [11], [12] and [13] for structual-SVM
with tighter bound, transductive SVM, ramp-loss SVM and structual-SVM with hidden variables
has at least linear convergence rate.

Acknowledgments

This work was also supported by National Science Council, National Taiwan University and Intel
Cooperation under Grants NSC 100-2911-I-002-001, and 101R7501.

References

[1] Paul Tseng and Sangwoon Yun. (2009) A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming.

[2] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915V936, 2003

[3] L. Wang, X. Shen, and W. Pan. On transductive support vector machines. In J. Verducci, X. Shen, and J.
Lafferty, editors, Prediction and Discovery. American Mathematical Society, 2007.

[4] B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet. Sparse eigen methods by d.c. programming. In
Proc. of the 24th Annual International Conference on Machine Learning, 2007.

[5] J. Neumann, C. Schnorr, and G. Steidl. Combined SVM-based feature selection and classification. Machine
Learning, 61:129V150, 2005.

[6] X.-L. Meng. Discussion on optimization transfer using surrogate objective functions. Journal of Computa-
tional and Graphical Statistics, 9(1):35V43, 2000.

[7] R. Salakhutdinov, S. Roweis, and Z. Ghahramani. On the convergence of bound optimization algorithms.
In Proc. 19th Conference in Uncertainty in Arti?cial Intelligence, pages 509V516, 2003.

4



[8] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T.K. Leen, T.G. Dietterich,
and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 556V562. MIT Press,
Cambridge, 2001.

[9] C. B. Do, Q. V. Le, C. H. Teo, O. Chapelle, and A. J. Smola. Tighter bounds for structured estimation. In
Advances in Neural Information Processing Systems 21, 2009. To appear.

[10] T. Pham Dinh and L. T. Hoai An. Convex analysis approach to d.c. programming: Theory, algorithms and
applications. Acta Mathematica Vietnamica, 22(1):289V355, 1997.

[11] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs. Journal of Machine
Learning Research, 7:1687V1712, 2006.

[12] Collobert, R., Weston, J., Bottou, L. (2006). Trading convexity for scalability. ICML06, 23rd International
Conference on Machine Learning. Pittsburgh, USA.

[13] C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In International Conference
on Machine Learning (ICML), 2009

[14] B. Sriperumbudur and G. Lanckriet, On the convergence of the concave-convex procedure, in Neural
Information Processing Systems, 2009.

5


