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Abstract

We study a class of non-convex problems that can be formulated as a disjunctive
program whose feasible region is represented as a union of convex polytopes. We
introduce a novel homotopy-type optimization framework for this class of non-
convex problems. As an example of such problems, we mainly focus in this paper
on semi-supervised SVM (S3VM) and develop a homotopy-type S3VM algorithm.
Numerical experiments on S3VM demonstrate the advantage of our framework
over other non-convex optimization methods such as CCCP.

1 Introduction

We consider a class of non-convex problems that contains many important machine learning prob-
lems such as semi-supervised learning, robust learning, and multi-instance learning. A common
feature of these problems is that they can be formulated as disjunctive programs [1]. Disjunctive
program is an optimization problem over a union (not an intersection) of convex polytopes. The
goal of this paper is to develop a common optimization framework for these problems by exploiting
the disjunctive structure.

We introduce the homotopy method [2]-like approach for these problems. The homotopy method
handles a family of optimization problems parametrized by a so-called homotopy parameter θ ∈
[0, 1]. Our class of non-convex problems is written as

min (convex function) + θ (non-convex function).

We also start from the solution at θ = 0, where the problem is convex and the global optimal solution
can be easily computed. Then, we compute a sequence of local optimal solutions as θ moves from
0 to 1, and finally obtain a local optimal solution of our target non-convex problem at θ = 1.

In this paper, we implement this idea by using parametric programming (a.k.a. path-following) [2]
and develop an algorithm that can compute a path of local optimal solutions from θ = 0 to 1. Unlike
conventional path-following methods, we have to handle discontinuity of the solution path when the
solution moves from one convex polytope to another1.

1Usually, homotopy method refers to a method that computes a continuous path of solutions. In this sense,
it might be misleading to call our approach as a homotopy method. Actually, we will show that there exists no
continuous path of local solutions in the class of problems we consider here.
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We overcome this difficulty by examining the local optimality conditions. The conditions we derive
here can tell us which polytope contains a better solution, and help us to develop an algorithm that
can provably compute the entire path of local optimal solutions for all θ ∈ [0, 1] with a finite number
of iterations.

As an example of such non-convex problems, we mainly focus in this paper on semi-supervised
SVM (S3VM) [3]. We discuss how S3VM can be formulated as a disjunctive program, and develop
a homotopy-type S3VM algorithm. Numerical experiments on S3VM demonstrate the advantage of
our approach over other non-convex optimization algorithms such as CCCP [4].

2 Semi-supervised SVM

In this section, we formulate semi-supervised SVM (S3VM) as a disjunctive program for the purpose
of illustrating the class of problems to which our framework can be applied.

Consider a binary classification with n instances {(xi, yi)}i∈L, where xi is the input vector,
yi ∈ {−1, 1} is the binary class label, and L := {1, . . . , n}. For simplicity, we consider lin-
ear decision function f(x) = w0 + w>x. The SVM is formulated as a convex optimization
problem: minf

1
2 ||w||

2
2 + C

∑
i∈L[1 − yif(xi)]+, where C is the regularization parameter and

[h]+ := max(0, h) is the hinge-loss.

In semi-supervised learning, we also have unlabeled instances {x̂i}i∈U , where U stands for the
unlabeled instance set. The S3VM is SVM-like semi-supervised classification algorithm [3]. It is
formulated as minimization w.r.t. the decision function f and the predicted labels ŷi ∈ {−1, 1}, i ∈
U , for the unlabeled instances:

min
f,ŷ

J(f, ŷ) ≡ 1
2
‖w‖22 + C

∑
i∈L

[1− yif(xi)]+ + θC
∑
i∈U

[1− ŷif(x̂i)]+ s.t. ŷif(x̂i) ≥ 0, i ∈ U ,

where θ ∈ [0, 1] controls the relative amount of influences of the unlabeled instances on f ; θ = 0
indicates no influence (the standard SVM), while θ = 1 indicates the same amount of influences as
the labeled instances. The constraints in (1) require that the predicted labels ŷ should be consistent
with the decision function f . The problem (1) is a non-convex optimization problem since ŷif(x̂i)
is written as |f(x̂i)| under the constraints ŷif(x̂i) ≥ 0, i ∈ U (see Figure 1 (left)).

To formulate S3VM as a disjunctive program, for each z ∈ {−1, 1}|U|, define a convex polytope

pol(z) := {(f, ŷ)|zif(x̂i) ≥ 0, ŷi = zi,∀i ∈ U}. (1)

Then, S3VM is formulated as minimization over the union of the convex polytopes:

min
f,ŷ

J(f, ŷ) s.t. (f, ŷ) ∈ ∪
z∈{−1,1}|U|

pol(z). (2)
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Figure 1: Convex hinge loss for labeled instances
(left) and non-convex symmetric hinge loss for
unlabeled instances (right) in S3VM.

Figure 2: The conditionally optimal solution f∗
ŷ

in the interior is local optimal (left), but f∗
ŷ at the

boundary is NOT local optimal (right).

3 Homotopy algorithm for S3VM

As we saw, the search spaces of S3VM and robust SVM are represented as a union of convex
polytopes. In this section, we develop a homotopy-type algorithm for S3VM by exploiting the
disjunctive structure. Similar algorithms for robust SVM or other non-convex problems that can be
formulated as similar disjunctive programs can be constructed in the same way.
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Local optimality conditions Let us start from rewriting the problem (2) as follows:

min
ŷ

{
min

f
J(f, ŷ) s.t. f ∈ polF (ŷ)

}
, (3)

where polF (ŷ) := {f |ŷif(x̂i) ≥ 0,∀i ∈ U} is a convex polytope obtained by projecting pol(z)
onto the space of f after fixing z = ŷ, i.e., polF (ŷ) is the feasible region of f when ŷ is fixed. The
next definition states that we have a convex optimization problem over each polF (ŷ).

Definition 1 (conditionally optimal solution f∗
ŷ) The inner optimization problem in (3) is convex,

and we call its optimal solution f∗
ŷ := arg minf J(f, ŷ) s.t. f ∈ polF (ŷ) as a conditionally

optimal solution for ŷ.

Note that there are 2|U| conditionally optimal solutions for each ŷ ∈ {−1, 1}|U|. By examining the
necessary and sufficient conditions for the local optimality, we can characterize which conditionally
optimal solutions are local optimal solutions of the original problem (3) (see Figure 2).

Theorem 2 For each ŷ, if the conditionally optimal solution f∗
ŷ is in the strict interior of the convex

polytope polF (ŷ), then (f∗
ŷ , ŷ) is a local optimal solution of (3). On the other hand, if f∗

ŷ is at the
boundary of the convex polytope polF (ŷ), then (f∗

ŷ , ŷ) is NOT a local optimal solution.

In case a conditionally optimal solution is located at the boundary of the current convex polytope, we
must move to another convex polytope for finding a local optimal solution. The following theorem
tells us which convex polytope we should move to.

Theorem 3 Suppose that the conditionally optimal solution f∗
ŷ for ŷ is at the boundary of the convex

polytope polF (ŷ), i.e., ŷif(x̂i) = 0 for at least one i ∈ U . If we define

ŷ′
i :=

{
−ŷi, if ŷif(x̂i) = 0,

ŷi, if ŷif(x̂i) > 0,
(4)

then, (f∗
ŷ′ , ŷ′) is a strictly better feasible solution of the original problem (3) than (f∗

ŷ , ŷ), i.e.,
J(f∗

ŷ′ , ŷ′) < J(f∗
ŷ , ŷ).

Sketches of the proofs of Theorems 2 and 3 We can prove Theorem 2 by comparing the KKT
optimality conditions of the two convex optimization problems defined over polF (ŷ) and polF (ŷ′).
From these optimality conditions, we can show that, if the conditionally optimal solution f∗

ŷ is at the
boundary of polF (ŷ), it is a primal feasible suboptimal solution of the latter problem defined over
polF (ŷ′) by the fact that f∗

ŷ does not satisfy the KKT optimality of the latter convex problem. It
suggests that the latter convex problem defined over polF (ŷ′) has a strictly better feasible solution
than f∗

ŷ , i.e., f∗
ŷ is not a local optimal solution of the original problem. Theorem 3 is a direct

consequence of the above discussion. When f∗
ŷ is at the boundary of polF (ŷ), f∗

ŷ′ , the conditionally
optimal solution of the convex problem obtained by flipping the labels as in (4), is strictly better than
f∗

ŷ .

Non-convex homotopy algorithm for S3VM Our homotopy algorithm for the disjunctive pro-
gram (2) consists of two steps: the continuous path (CP) step and the discrete jump (DJ) step. In
the CP-step, a path of local solutions is computed within a single convex polytope. Since the inner
problem of (3) is a convex parametric QP, we can efficiently compute the solution path by exploiting
its piecewise-linearity [2]2 If the piecewise-linear solution path within the current convex polytope
intersects with one of its boundaries, we go to the DJ-step. In the DJ-step, we use Theorem 3 for
determining which convex polytope we should jump to. Thanks to the strict improvement property
in Theorem 3, a path of local optimal solutions for the entire range of θ ∈ [0, 1] can be computed
with a finite number of iterations (see Algorithm 1).

2In adverse circumstances, parametric QP has exponential number of steps (as in the simplex method in
LP). However, it has been empirically demonstrated in many past studies that the number of steps is of linear
order in the number of variables.
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Algorithm 1 S3VM Homotopy
Inputs: Labeled and unlabeled instances {(xi, yi)}i∈L and {x̂i}i∈U , regularization parameter C;
Initialize: θ ← 0; f ← the standard SVM solution; ŷi ← sgn(f(x̂i)), i ∈ U ;
while θ < 1

Compute S ← {i ∈ U | ŷif(x̂i) = 0};
if S = ∅ then Execute the CP-step;
else Execute the DJ-step;

Outputs: Local optimal solution path for θ ∈ [0, 1].

4 Numerical experiments for S3VM

Here, we compare our homotopy-type algorithm for S3VM (S3VMhomo) with S3VMlight [3], de-
terministic annealing (DA) [6], and CCCP [5] on four UCI benchmark data sets: DIGIT1 (#D1),
Breast Cancer Diagnostic (#D2), USPS2 (#D3), and ESET2 (#D4) as summarized in Table 1.

First, we compare the optimization performances based on the objective values J(f, ŷ), where f
is obtained by each algorithm and ŷi = sgn(f(x̂i)), i ∈ U . Figure 3 shows the results for #D1
and #D2. These plots imply that our algorithm tends to find better local optimal solutions. Next,
we compare the computation time of each algorithm. Figure 4 shows the results for #D3 and #D4.
In semi-supervised learning, the amount of unlabeled data influence θ ∈ [0, 1] must be chosen
by model selection. The horizontal axis in the two plots indicate the number of model selection
candidates on θ. Since our algorithm can compute the path of solutions for all θ ∈ [0, 1], we
gain a computational advantage when the number of candidates is large. Finally, we compare the
generalization performance on unlabeled and test instances. Table 1 shows the results. We see that
our algorithm provides slightly better performances than others.
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Figure 3: Objective Values (#D1 and #D2)
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Figure 4: Computational Costs (#D3 and #D4)

Table 1: Data set descriptions and the average mis-classification performances on unlabeled and
test instances. For each data set, d/n/`/u/v/t indicates input dimension(d), the numbers of total(n),
labeled(`), unlabeled(u), validation(v), and test(t) instances, respectively. Boldface indicates the
best (and those not significantly different from the best) performance based on t-test (p < 0.05).

Data d/n/`/u/v/t
SVM S3VMlight DA CCCP S3VMhomo

u/t u/t u/t u/t u/t
#D1 241/1500/45/1200/70/185 9.2/9.2 9.8/8.9 13.3/12.3 9.0/9.1 7.5/7.4
#D2 30/569/20/350/10/189 11.9/12.5 9.1/9.8 10.5/9.0 9.2/8.6 8.1/7.1
#D3 241/1500/150/1000/80/270 9.2/8.6 9.0/8.2 8.7/7.8 8.2/7.4 7.2/6.6
#D4 617/2700/80/1200/60/1360 13.1/12.9 9.7/9.0 10.7/10.6 10.3/9.8 8.3/8.3
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