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Abstract

We study inexact proximal Newton-type methods to solve convex optimization
problems in composite form:

minimize
x∈Rn

f(x) := g(x) + h(x),

where g is convex and continuously differentiable and h : Rn → R is a convex but
not necessarily differentiable function whose proximal mapping can be evaluated
efficiently. Proximal Newton-type methods require the solution of subproblems
to obtain the search directions, and these subproblems are usually solved using
first-order methods or coordinate descent methods, which converge to the solu-
tion linearly. In this paper, we analyze the convergence rate of inexact proximal
Newton method, which solves the subproblems inexactly.

1 Introduction

Many problems of relevance in machine learning, signal processing, and high dimensional statistics
can be posed in composite form:

minimize
x∈Rn

f(x) := g(x) + h(x), (1)

where g : Rn → R is a convex, continuously differentiable loss function and h : Rn → R is a
convex, continuous, but not necessarily differentiable penalty function. Such problems include: (i)
the lasso [1] (ii) multitask learning [2] and (iii) trace-norm matrix completion [3].

We assume g : Rn → R is a closed and proper convex, continuously differentiable function and its
gradient∇g is Lipschitz continuous with constant L; i.e.

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖
for all x, y ∈ Rn. h : Rn → R is a closed and proper convex but not necessarily everywhere
differentiable function whose proximal mapping can be evaluated efficiently. We also assume the
optimal value, f∗, is attained at some optimal solution x?, not necessarily unique.

1.1 Proximal Newton-type methods

Proximal Newton-type methods were previously studied in [4, 5, 6]. The Newton and quasi-Newton
variants converges to an optimal solution Q-quadratically and Q-superlinearly subject to standard
assumptions. We refer the reader to [6] for the convergence analysis of these methods.
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At every iteration, proximal Newton-type methods must solve a subproblem to obtain the search
direction ∆x

∆xk = arg min
∆x

∇g(xk)T∆x+
1

2
∆xTH∆x+ h(xk + ∆x)

= arg min
∆x

Qk(xk + ∆x) + h(xk + ∆x).

Hk is a positive definite matrix that approximates the Hessian ∇2g(xk). To ensure the global con-
vergence, a backtracking line search is typically used to select a step length t that satisfies a sufficient
descent condition.

1.2 Inexact proximal Newton-type methods

In most cases, the proximal Newton subproblem is solved inexactly to reduce computational ex-
pense [7, 8, 9]. The popular methods GLMNET [8] (l1-regularized multiclass logistic regression),
LIBLINEAR [7] (l1-regularized logistic regression), and QUIC [9] (sparse inverse covariance es-
timation) are special cases of proximal Newton-type methods. [6] and [5] both contain empirical
results about the affect of solving the subproblem inexactly. They vary the number of iterations
performed on the subproblem to see the affect on the overall convergence rate.

Inexact solutions to the subproblem yield viable descent directions empirically [6, 5]. In this paper,
we analyze how these errors affect the convergence behavior of the proximal Newton iteration. We
call these methods inexact proximal Newton-type methods.

To simplify notation, we shall drop the subscripts and say x+ = x + t∆xε in lieu of xk+1 =
xk + tk∆xεkk when discussing a single iteration.

1.3 Related work

Rockafellar analyzed the convergence behavior inexact proximal point algorithm [10]. Recently
there has been renewed interest in the convergence behavior the inexact proximal gradient method
and accelerated proximal gradient methods [11, 12, 13]. These papers establish the fact that inexact
algorithms maintain the convergence rates of O(1/k) and O(1/k2) in the non-strongly convex case,
subject to certain summability conditions on the sequence of errors {εk}. If the objective function is
strongly convex, then these inexact methods attain the same linear convergence as the exact method.

Patriksson proves the inexact proximal Newton-type methods are globally convergent [4]. However,
this analysis does not generalize to proximal quasi-Newton methods and does not reveal the rates of
convergence. We present a classical analysis similar to [4], but yields convergence rates.

If the objective function is smooth, the seminal work of [14] analyzes the rates of convergence for
inexact Newton methods. Subsequent work [15] studies various choices of stopping criterion for the
Newton system and how they affects the convergence behavior of inexact Newton methods.

2 Convergence analysis

We assume the inexact solutions to the proximal Newton subproblems are accurate enough to ensure
global convergence; i.e. the sequence {xk} eventually enters a neighborhood of the optimal solution
x?. These assumptions are also made by Dembo et. al. in their classic analysis of inexact Newton
methods for smooth optimization [14].
Definition 1. Let yεk denote an εk inexact solution to the kth subproblem; i.e.

‖proxh(yεk −∇Qk(yεk))− yεk‖ ≤ εk.
We say ∆xεkk = yεk − xk is an εk inexact proximal Newton search direction.

We first prove a lemma that quantifies the difference between the exact and inexact proximal Newton
steps.
Lemma 2. Let ∆xε denote an ε search direction and ∆x denote the exact search direction. Then
these two search directions satisfy

‖∆xε −∆x‖ ≤
(

1 +
1 + L

m

)
ε.
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Proof. Let y? denote the optimal solution to the subproblem; i.e. ∆x = y? − x. We invoke a result
due to Nesterov (Lemma 2 in [16]):

‖ proxh(yε −∇Q(yε))− y?‖ ≤ 1 + L

m
‖ proxh(yε −∇Q(yε))− yε‖.

The difference ‖∆xε −∆x‖ can be bounded in terms of ‖ proxh(yε −∇Q(yε))− y?‖:

‖∆xε −∆x‖ = ‖yε − y?‖
= ‖yε − proxh(yε −∇Qk(yεk)) + proxh(yε −∇Qk(yεk))− y?‖
≤ ‖y? − proxh(yε −∇Qk(yεk))‖+ ‖ proxh(yε −∇Qk(yεk))− yε‖.

We combine these two inequalities to obtain

‖∆xε −∆x‖ ≤
(

1 +
1 + L

m

)
‖proxh(yε −∇Q(yε))− yε‖.

∆xε is an ε search direction so

‖∆xε −∆x‖ ≤
(

1 +
1 + L

m

)
ε.

We now establish the local convergence of inexact proximal Newton methods
Theorem 3. Suppose {xk} eventually enters a neighborhood of the optimal solution x?, where an
exact proximal Newton-type method accepts step length one and {εk} → 0. Then the pure inexact
proximal Newton iteration

xk+1 = xk + ∆xεkk , (2)

∆xεkk := proxHk

h

(
xk −H−1

k ∇g(xk)
)
− xk, (3)

converges to x?.

Proof. In this neighborhood of x?, the exact proximal Newton-type method accepts step length one.
Let ∆xexk denote the iterates and search directions generated by an exact proximal Newton-type
method. By assumption, the iteration

xexk+1 = xexk + ∆xexk

converges if x0 is within this neighborhood. Therefore, the sequence of exact search directions
{∆xex} must approach zero.

‖xk+1 − x?‖ = ‖xk + ∆xex − x?‖+ ‖∆xεk −∆xex‖

The sequence of errors also approaches zero by assumption so ‖∆xεk − ∆xex‖ → 0. Therefore,
‖xk+1− x?‖ = ‖xk+1− x?‖ so the iterates generated by the inexact proximal Newton method also
converges.

We now analyze how the sequence of errors affect the rate of convergence of the proximal Newton
method.
Theorem 4. Suppose {xexk } are the iterates generated by an exact proximal Newton-type method
that converges to an optimal solution x?. The inexact proximal Newton-type method achieves the
same convergence rate if {εk} = O(‖xexk+1 − x?‖).

Proof. We can split ‖xk+1 − x?‖ into two terms:

‖xk+1 − x?‖ ≤ ‖xk + ∆xexk − x?‖+ ‖∆xk −∆xexk ‖

=
∥∥xexk+1 − x?

∥∥ +

(
1 +

1 + L

m

)
εk.

If {εk} = O(‖xexk+1 − x?‖), then convergence rate of the exact method is attained.
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Theorem 4 says the sequence of errors {εk} must decay quadratically and superlinearly to recover
the quadratic and superlinear convergence rates of proximal Newton and proximal quasi-Newton
methods.
Corollary 5. The inexact proximal Newton method with Hk = ∇2g(xk) converges quadratically if
εk = O(‖xk − x∗‖2).

Corollary 6. The inexact quasi-proximal Newton method with Hk satisfying∥∥(Hk −∇2g(x?)
)

(xk+1 − xk)
∥∥

‖xk+1 − xk‖
→ 0

converges superlinearly if εk = o(‖xk − x∗‖).

3 Future work

In this paper, we analyze the convergence behavior of inexact proximal Newton-type methods. We
prove that such methods are locally convergent and that they attain the same convergence rates
as their exact counterparts, subject to reasonable assumptions about the sequence of errors. In the
future, we hope to generalize our analysis to the global setting via a line search strategy and establish
global convergence and rates of convergence.
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