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Abstract

We consider optimization problems whose parameters are known only approx-
imately, based on a noisy sample. Of particular interest is the high-dimensional
regime, where the number of samples is roughly equal to the dimensionality of the
problem, and the noise magnitude may greatly exceed the magnitude of the signal
itself. This setup falls far outside the traditional scope of Robust and Stochas-
tic optimization. We propose three algorithms to address this setting, combining
ideas from statistics, machine learning, and robust optimization. In the important
case where noise artificially increases the dimensionalityof the parameters, we
show that combining robust optimization and dimensionality reduction can result
in high-quality solutions at greatly reduced computational cost.

1 Introduction

Optimization has become a corner stone of machine learning research and practice. Indeed, the
machine learning community has benefited from theory (in particular convex duality, e.g. [7, 10]),
algorithm (e.g., [11, 6]), and software [8, 13], of optimization. On the other hand, insights and
algorithms from machine learning have yet to make a significant impact on optimization. This paper
pursues precisely this avenue, harnessing recent advancesin high-dimensional statistics.

We consider solving an optimization problem where its parameters are known only through poten-
tially noisy observation. Many problems fall under this general setting, particularly as optimization
is increasingly used to deal with large-scale problems withdata-driven constraints. A large class of
such problems arises from user satisfaction tasks, where anobjective is maximized subject to the
constraints of keeping as many users’ perceived performance above a threshold, as possible. User
preferences are typically observed through very noisy processes, such as user surveys or collabo-
rative filtering, and while typically soft constraints, areoften modeled as hard constraints in opti-
mization problems. Many problems in engineering share similar qualities. Of particular relevance
is the vast family of problems where the system behaviors, and hence optimization constraints, are
only learned via observation through many noisy or potentially unreliable sensors. Environmental
monitoring, multiple-object tracking, and related problems all fall under this general umbrella. This
paper attempts to bring to the table tools from statistics and machine learning, to study precisely this
problem: how can we approach an optimization problem whose constraints are highly corrupted.

Optimization with noisy or corrupted parameters traditionally falls under the purview of stochastic
and robust optimization [1, 3, 5]. Consequently, techniques from both fields of optimization have
seen significant impact in statistics and machine learning [12]. On the other hand, the focus of
machine learning on over-fitting, and the arsenal of tools developed, have not seen commensurate
influence on optimization. Indeed, robust optimization takes an uncertainty set as a primitive, es-
sentially overlooking the issue of data altogether; stochastic optimization often assumes (partial)
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knowledge of the distribution (e.g., the distribution itself, or perhaps some of its moments), and thus
has not explored issues of sample complexity to the degree done in machine learning.

In this paper, we consider optimization under uncertainty,in the data-driven andhigh dimensional
regimewhere our knowledge of the constraint parameters comes fromsamples, the dimensionality
of the problem and hence the noise is very high, and hence the magnitude of the noise can greatly
exceed the magnitude of the true parameters. Ignoring issues of overfitting and dimensionality in
such a setting can present potentially catastrophic consequences for both the solution of the problem,
as well as computational complexity. Reversing the typicalarrows of influence, we leverage results
from statistics and machine learning, to inform optimization.

2 Problem Setup

The general problem we consider is the following: we wish to solve the convex problem

Minimize:x∈X f0(x)

Subject to: f(x, ai) ≤ 0, i = 1, . . .m.

whereX is a known convex feasible set representing structural constraints,f andf0 are convex,
but where the parameters{ai} are known only through noisy samples, hence representing data-
driven constraints. That is, we observe{ãi}mi=1, generated according tõai = ai + ni, whereai are
unknown parameters, andni are iid Gaussian noiseN (0, σ2I). We are particularly interested in the
high-dimensional regime where the dimensionality,p, is approximately equal tom.

We focus on the case of linear optimization, and without lossof generality, consider only uncertain
constraints:a⊤i x ≤ bi. For ni ∼ N (0, σ2I), ‖ni‖ = Θ(

√
pσ), hence the magnitude of the

corrupting noise may dwarf the magnitude of the true parameter.

Given this setting, estimating or even approximating each true constraint parameterai is hopeless.
The contribution of this paper is to show that nevertheless,there is a way forward. We propose
three distinct formulations that approximate this problem. We give bounds on the performance
of each. Our third formulation, is geared to the setting where the true parameters{ai} lie in a
low-dimensional space, but this special structure is obscured by the added noise. In this case, our
approach combines robust optimization and dimensionalityreduction, and provides drastic improve-
ments in computation time.

The first formulation, which we call thenominal method, takes a (surprisingly) naive approach: it
simply replaces the unknown true parameter with its noisy observation. Thus, one solves

Nominal Method:
{

Minimize:x∈X c
⊤
x

Subject to: ã
⊤
i x ≤ bi, i = 1, . . .m.

(1)

We show that the optimal solution,x∗
o, to the nominal method will not violate the majority of the

true constraints with a large gap and hence is already a reasonable candidate solution. Note that
under this guarantee, it is still possible thatx

∗
o violates most or all constraints, with a small gap.

Thus, if the decision maker is less sensitive to the gap of theconstraint violation, but instead cares
more about the number of constraints satisfied, the nominal method may not be appropriate.

The second formulation, which we call therobust method, borrows an idea borrowed fromrobust
optimization [2, 4, 14] to address exactly this setup. The basic idea is sinceãi is a noisy copy of the
true parameter, we require the constraint to hold for all parameters “close” tõai. This leads to the
following formulation for fixedγ > 0.

Robust Method:
{

Minimize:x∈X c
⊤
x

Subject to: (ãi + δi)
⊤
x ≤ bi, ∀‖δi‖2 ≤ γ, i = 1, . . .m.

(2)

Note that largerγ leads to a solution that violates fewer constraints, at the cost of being more
conservative. Interestingly, while the noise satisfies‖ni‖2 = Θ(

√
pσ), we show that it is sufficient

to pick γ = Θ(σ) to guarantee that themajority of constraints are satisfied. That is, by protecting
against order-wise smaller protection, the robust method significantly improves the feasibility of the
solution, even though the true parameters is not “close” to the observed parameter.

The third method focuses on the setting where the true parametersa1, . . . , am lie on ad-dimensional
subspace whered ≪ p. We call this thedimensionality reduction method. We first perform Principal
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Component Analysis (PCA) [9], and letw∗
1 , . . . ,w

∗
d be thed principal components of̃a1, . . . , ãm.

Next we project̃ai onto the span ofw∗
1 , . . . ,w

∗
d, denoting the projection bŷai. Then we solve the

following Robust Optimization problem.

PCA Method:
{

Minimize:x∈X c
⊤
x

Subject to: (âi + δi)
⊤
x ≤ bi, ∀‖δi‖2 ≤ γ; i = 1, . . . ,m.

(3)

The main advantage of this formulation is computational: byreducing the dimensionality, the com-
putational cost is reduced compared to the robust method.

Our work diverges in an important way from the traditional setup of optimization under uncertainty
(e.g., [4, 5]). The classical setup (high-dimensionality and noise magnitude aside) assume we ob-
serve parametersai, but then the solutionx∗ is judged against perturbed parametersai + ni, thus
rendering the solutionindependentof the noise. We find this to be a poor model of reality, where
noise could potentially skew the solution itself, not just degrade its performance. Indeed, in our
setting, in all methods presented, the solution isdependenton the noise. In terms of the analysis, it
is this fact that presents the main technical challenges.

3 Technical Guarantees

In this section we provide technical guarantees for the three methods mentioned. Due to space
constraints, all proofs are omitted. We first show that the optimal solution to the nominal problem,
x
∗
o, satisfies the following property: the number of constraints that are violated with a large gap is

small.

Theorem 1. Letx∗
o be an optimal solution to the nominal method, i.e., Formulation (1). Then with

probability at least1− θ, for anyc ∈ R
+, the following holds:1

1

m

∑

1(a⊤i x
∗
o > bi + c) ≤ σ‖x∗

o‖2(1 +
√
τ +

√

−2 log θ/m)

c
.

While Theorem 1 bounds the magnitude of the constraint violation, it is still possible that the solution
of the nominal method violates every constraint (maybe slightly). In contrast, we next show that the
solution of the robust method is guaranteed to satisfy most of the constraints.

Theorem 2. Fix γ > 0. Let x∗
r be an optimal solution to Formulation (2). Then we have with

probability at least1− θ,

1

m

m
∑

i=1

1(a⊤i x
∗
r > bi) ≤

σ(1 +
√
τ +

√

−2 log θ/m)

γ
.

Besides feasibility, conservatism of the solution is an equally important property of a formulation.
We next quantifies the conservatism of the robust approach. Specifically we consider a solution to
the following problem assuming thatai are indeed known,

Minimize: c
⊤
x (4)

Subject to: sup
‖δi‖2≤γ̃

(ai + δi)
⊤
x ≤ bi; i = 1, . . . ,m.

Hence Formulation (4) can be regarded as an ideal formulation with an additional conservatism̃γ.
The next theorem shows that a solution to Formulation (4) satisfies the majority of constraints of the
robust approach, and hence the latter is not overly conservative.

Theorem 3. Supposeγ > γ, Let x be the optimal solution to Problem (4), then with probability
1− θ, we have

1

m

m
∑

i=1

1( sup
‖δi‖2≤γ

(ãi + δi)
⊤
x > bi) ≤ 1− Φ((γ − γ)/σ) +

√

− log θ

2m
.

1Here and in the sequel, unless otherwise stated, the probability is taken over random realizations of the
observations.
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If the true parametersa1, . . . , am belong to a low-dimensional subspace, one can perform PCA
to approximately recover this space together with the parameters, and solve an optimization prob-
lem based on the approximated parametersâ1, . . . , âm. We now analyze the performance of this
dimensionality-reduction based algorithm.
Theorem 4. Letx∗

d is the optimal solution to Formulation (3), then with probability 1− θ, we have

1

m

m
∑

i=1

(a⊤i x
∗
d > bi) ≤ 5

√
d(1 +

√
τ +

√

−2 log θ/m)
σν

γ2
+

dσ2(1 +
√
τ +

√

−2 log θ/m)2

γ2
.

Suppose(a1, b1), . . . , (am, bm) are indeed iid sampling of an unknown distributionµ supported
on a d-dimensional subspace, then we can bound the probability thatx∗

d violates a new constraint,
randomly generated from the same distribution. We remark that bound only depends on the intrinsic
dimensionalityd.
Corollary 1. Let x∗

d be the optimal solution to Formulation (3), then with probability 1 − 2θ, we
have

Pr(a,b)∼µ(a
⊤
x
∗
d > b) ≤

√

4

m

(

d+ 1) ln(
2em

d+ 1
) + ln(

δ

4
)
)

+5
√
d(1 +

√
τ +

√

−2 log θ/m)
σν

γ2
+

dσ2(1 +
√
τ +

√

−2 log θ/m)2

γ2
. (5)

We next investigate the conservatism of the dimensionalityreduction approach.
Theorem 5. Fix γ̃ > γ and letx be the optimal solution to Formulation (4). Then the following
holds with probability1− θ:

1

m

m
∑

i=1

1

(

sup
‖δ̂i‖2≤γ

(â+ δ̂i)
⊤
x > bi

)

≤ 5
√
d(1 +

√
τ +

√

−2 log θ/m)
σν

(γ̃ − γ)2
+

dσ2(1 +
√
τ +

√

−2 log θ/m)2

(γ̃ − γ)2
.
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