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Abstract

We consider optimization problems whose parameters arevikramly approx-
imately, based on a noisy sample. Of particular interedtashigh-dimensional
regime, where the number of samples is roughly equal to theiionality of the
problem, and the noise magnitude may greatly exceed theitndgrof the signal
itself. This setup falls far outside the traditional scoferobust and Stochas-
tic optimization. We propose three algorithms to addreissdétting, combining
ideas from statistics, machine learning, and robust opétion. In the important
case where noise artificially increases the dimensionefithe parameters, we
show that combining robust optimization and dimensiopaétiuction can result
in high-quality solutions at greatly reduced computati@ost.

1 Introduction

Optimization has become a corner stone of machine learmisgarch and practice. Indeed, the
machine learning community has benefited from theory (iti@#ar convex duality, e.g. [7, 10]),
algorithm (e.g., [11, 6]), and software [8, 13], of optintism. On the other hand, insights and
algorithms from machine learning have yet to make a sigmifizapact on optimization. This paper
pursues precisely this avenue, harnessing recent adviarttigh-dimensional statistics.

We consider solving an optimization problem where its patams are known only through poten-
tially noisy observation. Many problems fall under this geal setting, particularly as optimization
is increasingly used to deal with large-scale problems détta-driven constraints. A large class of
such problems arises from user satisfaction tasks, wheobj@ative is maximized subject to the
constraints of keeping as many users’ perceived performahove a threshold, as possible. User
preferences are typically observed through very noisy ggses, such as user surveys or collabo-
rative filtering, and while typically soft constraints, as#en modeled as hard constraints in opti-
mization problems. Many problems in engineering sharelaimgualities. Of particular relevance
is the vast family of problems where the system behaviord hemce optimization constraints, are
only learned via observation through many noisy or potéintimreliable sensors. Environmental
monitoring, multiple-object tracking, and related prahkeall fall under this general umbrella. This
paper attempts to bring to the table tools from statisticsraachine learning, to study precisely this
problem: how can we approach an optimization problem whossteaints are highly corrupted.

Optimization with noisy or corrupted parameters tradigitynfalls under the purview of stochastic
and robust optimization [1, 3, 5]. Consequently, technigiuem both fields of optimization have
seen significant impact in statistics and machine learnir#j. [ On the other hand, the focus of
machine learning on over-fitting, and the arsenal of toolehbped, have not seen commensurate
influence on optimization. Indeed, robust optimizatioretln uncertainty set as a primitive, es-
sentially overlooking the issue of data altogether; stetithaptimization often assumes (partial)



knowledge of the distribution (e.qg., the distribution ifser perhaps some of its moments), and thus
has not explored issues of sample complexity to the degnee ilanachine learning.

In this paper, we consider optimization under uncertaintyhe data-driven antligh dimensional
regimewhere our knowledge of the constraint parameters comesd$emples, the dimensionality
of the problem and hence the noise is very high, and hence gigmitnde of the noise can greatly
exceed the magnitude of the true parameters. Ignoringdssueverfitting and dimensionality in
such a setting can present potentially catastrophic caresexps for both the solution of the problem,
as well as computational complexity. Reversing the typacedws of influence, we leverage results
from statistics and machine learning, to inform optimiaati

2 Problem Setup

The general problem we consider is the following: we wishdlvesthe convex problem
Minimize:xex fo(x)
Subjectto:  f(x,a;) <0, ¢=1,...m.

where X is a known convex feasible set representing structuraltcaings, f and f, are convex,
but where the parametefs;} are known only through noisy samples, hence representitey da
driven constraints. That is, we obseré } |, generated according & = a; + n;, wherea; are
unknown parameters, amg are iid Gaussian nois& (0, o2I). We are particularly interested in the
high-dimensional regime where the dimensionajitys approximately equal to.

We focus on the case of linear optimization, and without fsgenerality, consider only uncertain
constraints:a, x < b;. Form; ~ N(0,0%I), |n;]| = ©(,/po), hence the magnitude of the
corrupting noise may dwarf the magnitude of the true paramet

Given this setting, estimating or even approximating eagh tonstraint parametar is hopeless.
The contribution of this paper is to show that nevertheldsse is a way forward. We propose
three distinct formulations that approximate this prohlexive give bounds on the performance
of each. Our third formulation, is geared to the setting \ehitye true parametefs; } lie in a
low-dimensional space, but this special structure is otegtby the added noise. In this case, our
approach combines robust optimization and dimensionadwyction, and provides drastic improve-
ments in computation time.

The first formulation, which we call theominal methogdtakes a (surprisingly) naive approach: it
simply replaces the unknown true parameter with its noiseolation. Thus, one solves

Minimizexexr c'x
Subject to: a'x<b, i=1,...m.

(1)

We show that the optimal solutio;;, to the nominal method will not violate the majority of the
true constraints with a large gap and hence is already amabhkocandidate solution. Note that
under this guarantee, it is still possible thgt violates most or all constraints, with a small gap.
Thus, if the decision maker is less sensitive to the gap ottimstraint violation, but instead cares
more about the number of constraints satisfied, the nomieti@d may not be appropriate.

Nominal Method: {

The second formulation, which we call thebust methodborrows an idea borrowed frombust
optimization[2, 4, 14] to address exactly this setup. The basic idea t®&inis a noisy copy of the
true parameter, we require the constraint to hold for alapaaters “close” t&,. This leads to the
following formulation for fixedy > 0.

Minimizexer c'x @)
Subjectto: (él—i-(sl)TXS b, VH(SLHQ <7v, i=1,...m.

Note that largery leads to a solution that violates fewer constraints, at & of being more
conservative. Interestingly, while the noise satisfias||» = ©(,/po), we show that it is sufficient
to picky = ©(o) to guarantee that thmajority of constraints are satisfied’hat is, by protecting
against order-wise smaller protection, the robust metigdfecantly improves the feasibility of the
solution, even though the true parameters is not “closdi¢mbserved parameter.

Robust Method: {

The third method focuses on the setting where the true pdeasag, . . ., a,, lie on ad-dimensional
subspace where < p. We call this thedimensionality reduction methow/e first perform Principal



Component Analysis (PCA) [9], and let}, ..., w; be thed principal components di, ..., a,,.
Next we project; onto the span ofv], ..., w}, denoting the projection bg;. Then we solve the
following Robust Optimization problem.

Minimizexex c¢'x

PCA Method: { Subjectto:  (a; +0:)Tx <b;, Y[dill2<v; i=1,...,m. ©

The main advantage of this formulation is computationalrégucing the dimensionality, the com-
putational cost is reduced compared to the robust method.

Our work diverges in an important way from the traditionaligeof optimization under uncertainty
(e.g., [4, 5]). The classical setup (high-dimensionalitgd @oise magnitude aside) assume we ob-
serve parametees;, but then the solutiox* is judged against perturbed parametgrs- n;, thus
rendering the solutiomdependenbf the noise. We find this to be a poor model of reality, where
noise could potentially skew the solution itself, not jusgdade its performance. Indeed, in our
setting, in all methods presented, the solutiodépendendn the noise. In terms of the analysis, it
is this fact that presents the main technical challenges.

3 Technical Guarantees

In this section we provide technical guarantees for theetimethods mentioned. Due to space
constraints, all proofs are omitted. We first show that thinogd solution to the nominal problem,
x7, satisfies the following property: the number of constathit are violated with a large gap is
small.

Theorem 1. Letx} be an optimal solution to the nominal method, i.e., Formala{1). Then with
probability at leastl — 6, for anyc € R, the following holds"

1 sl (1 —2log6
LSyl > b ) < 0 VT TR0
m C

While Theorem 1 bounds the magnitude of the constraint tr@ait is still possible that the solution
of the nominal method violates every constraint (maybégliyy. In contrast, we next show that the
solution of the robust method is guaranteed to satisfy midtbieoconstraints.

Theorem 2. Fix v > 0. Letx} be an optimal solution to Formulation (2). Then we have with
probability at leastl — 6,

T 1 —2logh
3 1(alx; > by) < ZEVEE V2 I0R0/m)
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1
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Besides feasibility, conservatism of the solution is anadigiiimportant property of a formulation.
We next quantifies the conservatism of the robust approgoécifically we consider a solution to
the following problem assuming that are indeed known,

Minimize:  c¢'x (4)
Subiject to: sup (a; +68;) ' x<by; i=1,...,m.
16:]l2<7

Hence Formulation (4) can be regarded as an ideal formualatith an additional conservatisfn
The next theorem shows that a solution to Formulation (43féed the majority of constraints of the
robust approach, and hence the latter is not overly consezva

Theorem 3. Supposéy > ~, Letx be the optimal solution to Problem (4), then with probaiilit
1 — 6, we have

: Em: a X —log6
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Here and in the sequel, unless otherwise stated, the piitpabitaken over random realizations of the
observations.



If the true parameters, ..., a,, belong to a low-dimensional subspace, one can perform PCA
to approximately recover this space together with the patars, and solve an optimization prob-
lem based on the approximated paramefgts. ., a,,. We now analyze the performance of this
dimensionality-reduction based algorithm.

Theorem 4. Letx} is the optimal solution to Formulation (3), then with prolilétp 1 — ¢, we have

1 . v do?(1+ T+ ~3T0g0 2
EZ(ajxd>bi)§5\/ﬁ(1+ﬁ+\/W)_+ (1+ 7 7\2/7/).
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Supposgay, b1),. .., (am, b, ) are indeed iid sampling of an unknown distributiprsupported
on a d-dimensional subspace, then we can bound the prdpabdix; violates a new constraint,
randomly generated from the same distribution. We remaidibund only depends on the intrinsic
dimensionalityd.

Corollary 1. Letx}; be the optimal solution to Formulation (3), then with probip 1 — 260, we
have

. 4 2em o
Priap~u(a’xj >b) < \/E (d+ 1)1n(d+ 1) +1n(1))

ov  do*(1+ /T +\/—2logf/m)?
+5Vd(1 4+ /T + \/—210g9/m)?+ (+vr > /m)” (5)
We next investigate the conservatism of the dimensionaditiyiction approach.

Theorem 5. Fix 4 > ~ and letx be the optimal solution to Formulation (4). Then the followi
holds with probabilityl — 6:

1 & <
—Zl < sup (a+4;) x> bi>
maz \ldill2<y

< 5Vd(1 + 7 ++/—2logf/m) e inQ N do?(1 + Ji;—%y)—floT/my.
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