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1 Introduction
In recent years, minimizing composite objective functions have been widely studied in machine
learning [11, 6, 5]. Formally, composite objective minimization problem has the following form:

min
w∈Ω

h(w) , f(w) + g(w) , (1)

where f, g are convex functions and Ω is a convex set. Provided it is easy to compute the
(sub)gradients of both functions, a simple method to solve (1) is (sub)gradient descent,

wt+1 = Πw∈Ω

[
wt −

1

η
h′(wt)

]
, (2)

where η > 0 is the step size, h′(wt) is the (sub)gradient at wt, and Πw∈Ω(v) = argmin
w∈Ω

1
2∥w−v∥22

denotes the projection onto the feasible set Ω in terms of the Euclidean distance. Alternatively,
gradient descent can be reformulated in the form of a proximal gradient method [4]:

wt+1 = argmin
w∈Ω

⟨h′(wt),w⟩+ η

2
∥w −wt∥22 , (3)

where η > 0 is the step size and h′(wt) is the (sub)gradient at wt. If there exists efficient algorithm
for the projection, gradient descent is an efficient and has been successfully applied in large scale
optimization. However, the use of Euclidean distance as a proximal function may be unsuitable
for certain functions and constraint sets, yielding inefficient updates. For example, for loss func-
tions based on entropy with constraint set being the unit simplex, a KL-divergence based proximal
function is more appropriate. To accommodate such underlying structures in the problem, general
proximal functions based on Bregman divergences are used in mirror descent algorithms (MDA) [1],
where the updates are given by:

wt+1 = argmin
w∈Ω

⟨h′(wt),w⟩+ ηBϕ(w,wt) , (4)

where Bϕ is a Bregman divergence [1]. In particular, if Bϕ is the KL-divergence, MDA leads to
exponentiated gradient or multiplicative update algorithms [10] in contrast to additive update in
gradient descent. Mirror descent can be considered a variant of the proximal method with Bregman
divergence or D-function (PMD) [3]:

wt+1 = argmin
w∈Ω

h(w) + ηBϕ(w,wt) . (5)

For composite objective with a differentiable function and a simple nonsmooth function, compos-
ite objective mirror descent (COMID) [5] only linearizes the differentiable function fand includes
forward-backward splitting (FOBOS) [6] as a special case where the Bregman divergence is a
quadratic function. For simple enough constraints, MDA may be able to yield efficient projections
by carefully choosing the Bregman divergence. In general, however, the full projection requires an
inner loop algorithm, leading to a double loop algorithm for solving (1) [12].

In this paper, we consider the composite objective optimization subject to an equality constraint such
that

min
x∈X ,z∈Z

f(x) + g(z) s.t. Ax+Bz = c , (6)
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where A ∈ Rm×n1 ,B ∈ Rm×n2 , c ∈ Rm, x ∈ X ∈ Rn1×1, z ∈ Z ∈ Rn2×1, X and Z are con-
vex sets. Compared to (1), the equality constraint introduces splitting variables and thus splits the
functions and the constraints set Ω into simpler constraints X ,Z . Our algorithms basically solve the
following two subproblems: (1) x-update involving f(x) and X ; (2) z-update involving g(x) and
Z . If the two subproblems can be solved efficiently, we can avoid the full projection in MDA and
COMID which involves both the composite objective and the intersection of X and Z , i.e., Ω. The
divide-and-conquer strategy is particularly useful for composite objective with different structures,
e.g., entropy loss function plus nonsmooth function, and constraints set which is an intersection of
simple constraints, e.g., linear constraints and doubly stochastic matrix constraints. The full projec-
tion onto linear constraints in MDA requires solving a linear program in each iteration. However,
if introducing a slack variable to separate linear inequality from linear equality, the projection onto
either of them is trivial [2]. For doubly stochastic matrix, the full projection requires alternating pro-
jections like Sinkhorn algorithm [13], but the projection-free updates can be obtained using splitting
variables which will show in Section 3.

(6) can be solved by the well known alternating direction method (ADM) [2], which has been shown
to have a O(1/T ) convergence rate [14, 8, 7]. In ADM, both x and z updates amount to solving
proximal minimization problems using the quadratic penalty term, thereby preventing the full uti-
lization of the structures underlying the function and constraints set. In this paper, we propose
Bregman ADMs where Bregman divergences can be used as proximal functions in ADM updates.
Thus, Bregman ADMs generalize ADMs similar to how proximal methods generalize gradient de-
scent. In Bregman ADMs, x and z updates can take the form of MDA (4) or PMD (5). In particular,
Bregman ADM updates become alternating additive updates when using quadratic penalty and al-
ternating multiplicative updates when using KL divergence. As an illustrative example, we consider
minimization problems over doubly stochastic matrices and show that Bregman ADMs lead to an
efficient single-loop algorithm for such problems.

2 Alternating Direction Methods with Bregman Divergences
In each iteration, ADM consists of the following three updates:

xt+1 = argminx∈X f(x) + ⟨yt, Ax+Bzt − c⟩+ ρ

2
∥Ax+Bzt − c∥2 , (7)

zt+1 = argminz∈Zg(z) + ⟨yt, Axt+1 +Bz− c⟩+ ρ

2
∥Axt+1 +Bz− c∥2 , (8)

yt+1 = yt + τρ(Axt+1 +Bzt+1 − c) . (9)

where y is dual variable and ρ > 0 is penalty parameter. The x and z updates resemble proximal
minimization problem using quadratic term, which limits ADM to exploit the underlying structures.
Similar to MDA, Bregman ADM will replace the quadratic terms in ADM by a Bregman divergence
term. More specifically, one version of Bregman ADM simply linearizes the objective and adds a
Bregman divergence in (7) and/or (8), leading to the following updates:

xt+1 = argminx∈X ⟨F (xt),x⟩+ ηxBϕx(x,xt) , (10)
zt+1 = argminz∈Z⟨G(zt), z⟩+ ηzBϕz(z, zt) , (11)

where F (xt), G(zt) are linearizations of objectives in (7) and (8), i.e.,

F (xt) = f ′(xt) +AT {yt + ρ(Axt +Bzt − c)} ,
G(zt) = g′(zt) +BT {yt + ρ(Axt+1 +Bzt − c)} ,

and f ′(xt) ∈ ∂f(xt), g
′(zt) ∈ ∂g(zt). (10) and (11) are MDA updates, making Bregman ADM be-

have like alternating mirror descent. If both Bregman divergences are quadratic function, Bregman
ADM leads to the following alternating additive updates:

xt+1 = Πx∈X [xt −
1

ηx
F (xt)] , (12)

zt+1 = Πz∈Z [zt −
1

ηz
G(zt)] . (13)

If both Bregman divergences are KL divergence and X ,Z are unit simplex, Bregman ADM leads to
the following alternating multiplicative updates:
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xt+1,i =
xt,i exp(− 1

ηx
Fi(xt))∑n

i=1 xt,i exp(− 1
ηx
Fi(xt))

, (14)

zt+1,i =
zt,i exp(− 1

ηz
Gi(zt))∑n

i=1 zt,i exp(−
1
ηz
Gi(zt))

. (15)

If one is quadratic function and the other is KL-divergence, we have alternating additive-
multiplicative updates. The convergence rate of Bregman ADMs will be provided in the full paper.

3 Minimizing over Doubly Stochastic Matrices
In this section, as an illustrative example, we consider the problem of minimizing a loss function of
a doubly stochastic matrix, which has been studied in spectral clustering [15] and learning permuta-
tions [9]. The class of n× n doubly stochastic matrices is a convex polytope known as the Birkhoff
polytope Bn. In particular, we consider the following problem:

min f(P) s.t. P ∈ Bn , (16)

where Bn denotes the Birkhoff polytope such that P ≥ 0, eTP = e,Pe = e and e is a column
vector of ones. To solve this particular convex minimization problem, we can use MDA which has
the following update:

Pt+1 = argminP∈Bn
⟨f ′(Pt),P⟩+ ηBϕ(P,Pt) . (17)

In (17), simply choosing a Bregman divergence does not yield efficient projection onto the Birkhoff
polytope. Since Bn contains the structure of unit simplex (P ≥ 0, eTP = e), we use KL divergence
in (17) which yields a multiplicative update. As a result, MDA leads to a double-loop algorithm
which has the following two steps:

P
t+ 1

2
ij = Pt

ij exp(−
1

η
Lij) , (18)

Pt+1 = ΠBn(P
t+ 1

2 ) . (19)

where L = f ′(Pt) and ΠBn denotes the projection back onto Birkhoff polytope which can be solved
using Sinkhorn algorithm [13, 9].

The projection in (19) normalizes column and row to 1 repeatedly and alternatively until conver-
gence. We now show this iterative step can be simply replaced by two additional O(n2) steps. We
split Bn into an unit simplex Bc

n = {Pc|Pc ≥ 0, eTPc = e} and an equality constraint Pre = e.
(16) can be rewritten in the ADM form:

min f(Pc) s.t. Pc ∈ Bc
n,Pre = e,Pc = Pr . (20)

We use updates (10) and (8). Let the Bregman divergence be KL divergence in (10), we have
Pt+1

c =argminPc∈Bc
n
⟨A,Pc⟩+ ηKL(Pc,P

t
c) , (21)

Pt+1
r =argminPre=e⟨Qt,−Pr⟩+

ρ

2
∥Pt+1

c −Pr∥22 , (22)

Qt+1 = Qt + τρ(Pt+1
c −Pt+1

r ) . (23)

where A = L + Qt + ρ(Pt
c − Pt

r) and L = f ′(Pt
c). (21) yields a multiplicative update given in

(24).

We now show (22) has a closed-form solution. The Lagrangian for (22) is

L(Pr,R) = ⟨Qt,−Pr⟩+
ρ

2
∥Pt+1

c −Pr∥22 + ⟨R,Pre− e⟩ .

Setting the derivative with respect to Pr to zero gives Pr = M−ReT /ρ, where M = Pt+1
c +Qt/ρ.

Multiplying both sides by e gives R = (ρ(In −M)e))/n. Substituting R back yields (25).

Overall, Bregman ADM yields a single-loop algorithm which has the following updates:

Pt+1
c,ij =

Pt
c,ij exp(−

Aij

η )∑n
i=1 P

t
c,ij exp(−

Aij

η )
, (24)

Pt+1
r = M− (In −M)eeT /n , (25)
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Figure 1: (a): Running time. (b): the objective value. (c): The sum of row of doubly stochastic
matrix for n = 100. BADM runs much faster than MDA without the loss of performance.

where M = Pt+1
c +Qt/ρ. The three updates can be done in O(n2).

The following experiment compares BADM and MDA in minimizing a linear function over doubly
stochastic matrix. Let f(P) = Tr(LTP), where L ∈ Rn×n is randomly generated from uniform
distribution. We set η = 1 in MDA and ρ = 0.5, η = 1, τ = 1 in BADM. Both algorithms are run
20 times for n = 100, 500, 1000 and the average results are reported. The running time is plotted
in Figure 1(a) and objective value is plotted in Figure 1(b). In both BADM and MDA, the sum of
column of doubly stochastic matrix is always equal to 1. We plot the sum of row of doubly stochastic
matrix for n = 100 in Figure 1(c), which shows the matrices in BADM and MDA are almost row
stochastic. BDAM runs much faster than MDA while maintaining the same performance as MDA.
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