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Abstract

We consider the problem of optimizing learning objectivethva regulariza-

tion penalty in high-dimensional settings. For severalangnt learning prob-

lems, state-of-the-art optimization approaches such asimpal gradient algo-

rithms are difficult to apply and do not scale up to large dettasWe propose
new conditional-type algorithms, with theoretical gudess, for penalized learn-
ing problems. Promising experimental results are predenietwo large-scale
real-world datasets.

1 Introduction

We consider statistical learning problems that can be fcamt® convex optimization problems of
the form
i 1.1
min [ (z) + rl] (1.1)

wheref is a convex function with Lipschitz continuous gradient dfds a closed convex cone of

a Euclidean space. This encompasses supervised clagsifjgagression, ranking, etc. with vary-
ing choices for the regularization penalty including regul,-norms, as well as more structured
regularization penalties such as the group-lasso penaliyeotrace-norm[15]. A wealth of con-

vex optimization algorithms was proposed to tackle suclbleros; seel[15] for a recent overview.
Among them, the celebrated Nesterov optimal gradient nifithasmooth and composite minimiza-
tion [4,[10], and their stochastic approximation counteipf8], are now state-of-the-art in machine
learning.

These algorithms enjoy the best possible theoretical cexitplestimate. For instance, Nesterov's

algorithm reaches a solution with accuracin O(D+/L/¢), whereL is the Lipschitz constant of
the gradient of the smooth component of the objective, Rrid the problem-domain parameter in
the norm|| - ||. However, these algorithms work by solving at each itereéicsub-problem which
involves the minimization of the sum of a linear form and aalise-generating function on the
problem domain. Most often, and this explains the popuyladithis family of algorithms in the last
decade, exactly solving the sub-problem is computatigraiéap[i].

However, in high-dimensional problems such as multi-tasieding with a large number of tasks
and features, solving this sub-problem is computationetigllenging when the trace-norm regu-
larization is used for instancd [I7,]12]. These limitatioesantly motivated alternative approaches,
which do not require to solve hard sub-problems at eachtiteraand triggered a renewed interest
in conditional gradient algorithms. Theenditional gradient algorithm [ﬂq ] (a.k.a. Frank-Wolfe
algorithms) works by minimizing a linear form on the problelomain at each iteration, a simpler
subproblem than the one involved in proximal gradient athors. Instances of the conditional al-
gorithm were considered recently in the machine learnimgroanity [13[14[4], with new variants
proposed in[[6]. However, the conditional gradient algogtlows to tackleconstrained formula-
tions of learning problems, wheregsnalized formulations are more widespread in applications.

The contributions of this work may be summarized as follows:



e We discuss a new conditional gradient-type algorithm fargheed formulations of learn-
ing problems, with theoretical accuracy guarantees

e We present some experimental results on real-world datageth show that the proposed
algorithms are also numerically valid — they outperform smstate-of-the-art approaches
in large-scale settings

The proposed algorithms apply to a large spectrum of legminblems.

2 Problem statement

Throughout the paper, we shall assume that- E is a closed convex cone of Euclidean space
E; we do not loose anything by assuming tiiatinearly spanst. We assume thdt - || is a norm

on E, and f is a convex function with Lipschitz continuous gradiengttis || f/(x) — f/(y)]]« <
L¢||z — y|| Yo,y € K, where|| - ||.. denotes the dual norm dual pf ||. We consider two kinds of
problems, detailed below.

Penalized learning formulation We consider penalized learning problems of general form

Opt=min{f(z) + kl|z||: v € K} . (2.2)
which we rewrite as

Opt= min {F([x;r]) = rr+ f(x):x € K, |lz|]| <r}. (2.3)

We shall refer to [[2]13) as the problemanfimposite optimization (CO). Note that, the:-component
of ane-solution(z., r.) to Z3) is ane-solution to [Z-P).

Minimization oracle We assume that for any € E a first order “oracle” is available fof,
namely, that a vectan(z) is available such thaluw(z) — f/(z)]|« < v, and the bouna on the error

in gradient is known. We assume that an exact observatigi{:of is available.l We are going

to use the conditional gradient algorithm (CG) as our wagkiorse. As it was already mentioned
in the introduction, utilizing CG hinges upon an inner perhl which consists in minimizing a
linear form on the problem domain. As soon as the minimizatian be performed efficiently, CG
becomes an attractive alternative to proximal gradiergrétlgms. We state this as an assumption on
the existence of aninimization oracle, as detailed below.

(A) [Minimization oracle] Givem € E., we can find an optimal solutiorr] to the optimiza-
tion problem

min {(n,2) : 2] <1, = € K}.

We do not sacrifice anything by assuming that for evgry:[n] is either zero, or a vector of the
| - |[-norm equal to 1. To ensure this, it is unnecessary to compfig||. Indeed, it suffices to
compute(n, z[n]); if this product is 0, we can resefn] = 0, otherwise||z[n]| is just equal to 1.

3 Conditional-gradient-like algorithm for penalized learning problems

We assume that there is arpriori known upper bound* on ||z.||, .. being an optimal solution

to (Z2).

(B) [Upper bound] There exist® < oo such thater + f(z) < f(0) together with||z| < r
imply thatr < D. Further, we assume that a finite upper boiindon D is available.

1A close inspection of the proofs of the results below revéads the discussed algorithms are robust with
respect to errors in observation ffz). In other words, a bound on the error inf () results in an extra term
O(1)v in the corresponding accuracy bounds. However, to streantiie presentation we do not discuss this
modification here.



Further, there is another upper boubdn ||«.||, “induced by the problem data” (but not available
prior to solving [Z:R). An important property of the propdsegorithm is that its accuracy guaran-
tees, provided in Propositién_B.1 below, are expressedinstef D, but not in terms oD+ which
may be very loose.

We now describe our algorithm for solving_{R.3)
Opt=min {F([z;7]) = kr + f(x) :x € K, ||z|]| < r}.

LetEt = E x R,andK* = {[z;r] : = € K, r > ||z||}. In the remainder of the paper, we shall
use the notation := [x;r], and forz = [z;r] we putz(z) := z, r(z) := r. We also denot& ™[]
the set
K¥[p) = {[zip) € K*: ||a]| < p}.
Givenz = [z;r] € K™, let us look at the linear form
C=1[&p = (f'(@), &) + rp = (F'(2), ().
For everyp > 0, the minimum of this form o [p] is attained at the poirjpz|[f’(z)]; p]. Asp
varies, these points form a ray. Let
A(z) = {plz[f'(@)]:1] : 0<p< DT}
be the segment of this ray. By Assumption (A), giver: [z;r], we can identifyA(z) via a single
call to the first order oracle fof and a single call for the minimization oracté] for (K, || - ||). Now

let the pointz*(z) = [«*; r*] be a minimizer ofF'(-) over the convex hull ofA(z) andz, which is
itself the convex hull of the origin and the pointand D" [z[f’(x)]; 1]:

] = ADF[a[f/(@)):1] + e r], where
(A, ) € Argming {F()\D"'[x[f'(x)]; U4 plzr]): A+p <1, X>0,u>0,.
(3.4)

The iteration of the Conditional Gradient algorithm for qoosite optimization (COCG) algorithm
is defined according to

241 € Argmin{F(z) : z € Con0, z;, DT [z[f'(x(2:))]; 1]}, t=1,2,..., (3.5
where we put; = 0.

Let z, = [z.;7.] be an optimal solution to[{2.3), with, = F(z.).
Proposition 3.1. The algorithm based on the above recursion is a descent algorithm. In addition,

we have
F(z)— F. <8L;D*(t+1)7", k=2,3,...

Remarks The recursion can be modified to obtain a bundle version of GOt for somel/ €
N.,

o= { o DA O, DVl e ) for t < M,
t ConNV{0; 2¢—nrs1s oy 265 D[] f/ (2(2e—nr41)))5 1], ooy DY [2[f" (2(20))]; 1]}, fort é]gg

Fort =1,2,... set
zt41 € Argmin{F(z) : z € C:}. (3.7)

Results of Propositidn 3.1 still hold f@r; ).~ ».... defined in [ZB), [[317).

The basic implementation of the COCG requires solving adimoensional auxiliary problen(3.4)
at each iteration. To solve the problem one can utilize, istance, the ellipsoid method, the first
order information about[(3.4) being supplied by the firstesroracle forf.

4 Experiments

We conducted experiments on two real-world datasets quurebng resp. to our two working
examples, i.e., matrix completion with noise and multisslalassification with logistic loss: i)
MovieLens10M, ii) ImageNet dataset. On both datasets, wepeoed the proposed algorithm to
the accelerated version of the proximal gradient algorjttiemoted by the acronym Prox-Grad on
the figures.



| | Algo. | Time | Training error| Test error|

MovieLens10M| Prox-Grad| 42.37s 0.64 0.86
COoCG 19.15s 0.63 0.86

ImageNet Prox-Grad| 129.43hrs 0.51 0.63
COCG 47.94hrs 0.51 0.60

Table 1: Comparison of the COCG algorithm with the proxinraldient algorithm on the Movie-
Lens10M and the ILSVRC2010 ImageNet dataset. Performaneeeiasured in RMSE on the
MovieLens10M dataset and misclassification error on theVRR62010 ImageNet dataset. Note
that the time is measured saconds on the MovieLens10M dataset while it is measuretaarson
the ILSVRC2010 ImageNet dataset.

MovieLenslOM We utilise the COCG algorithm, described in Secfibn 3, onMloeieLens10M
dataset, corresponding167 ratings of 69878 users on 10677 movies. Same a in [6], wealefh
the sample for training. Note that, because of the inhepars#y of the problem, the matrix-vector
computations can be handled very efficiently. Yet, expenitsien this dataset are interesting, as they
show that our COCG approach is competitive with the statthefart proximal gradient algorithm.
A lower value of the objective is reached within a slightlyosier time than the proximal gradient
algorithm.

Imagenet We test the COCG algorithm on an image categorization agtdic. \We consider
the Pascal ILSVRC2010 ImageNet dataset and focus on théebf@ate-craniate” subset, yielding
2943 classes with and average df00 examples each. We comptitg, 000-dimensional visual de-
scriptors for each example using Fisher vector repredentfitl], a state-of-the-art feature vector
representation in image categorization. Note that, inreshto the previous experiment, this rep-
resentation yielddgense feature vectors. Hence making the matrix-vector comparatefficient is

a challenging task. We can leverage here one of the featunaroEOCG algorithm, that is, the
robustness of gradient computation which allows makingaeeobjective and gradient evaluations
on mini-batches of examples. In order to save enough RAMesgperform matrix-vector com-
putations at each iteration, we set the size of the miniHest¢ob = 5000. Note that the “raw”
batch proximal gradient algorithm is inappropriate fortsaclarge dataset, where no structure can
be leveraged to speed-up the computations. The straigf#fdr‘stochastic gradient” version of the
proximal algorithm is out of scope, as it would involve an SYBr example. Thus we use as a
contender the mini-batch version of the proximal gradiégoathm [2], and we use the same rea-
soning to set the mini-batch size of the proximal gradiegbathm. Results in Tablgl 1 show that
our COCG algorithm has an edge over the mini-batch proximadignt algorithm and manages to
achieve a similar value of the objective significantly faste

5 Conclusion

We discuss new conditional gradient-type algorithms forgbieed formulations of learning prob-
lems. These algorithms feature good theoretical guaraiatee promising experimental results.
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