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Abstract

We consider the problem of optimizing learning objectives with a regulariza-
tion penalty in high-dimensional settings. For several important learning prob-
lems, state-of-the-art optimization approaches such as proximal gradient algo-
rithms are difficult to apply and do not scale up to large datasets. We propose
new conditional-type algorithms, with theoretical guarantees, for penalized learn-
ing problems. Promising experimental results are presented on two large-scale
real-world datasets.

1 Introduction

We consider statistical learning problems that can be framed into convex optimization problems of
the form

min
x∈K

f(x) + κ‖x‖ (1.1)

wheref is a convex function with Lipschitz continuous gradient andK is a closed convex cone of
a Euclidean space. This encompasses supervised classification, regression, ranking, etc. with vary-
ing choices for the regularization penalty including regular ℓp-norms, as well as more structured
regularization penalties such as the group-lasso penalty or the trace-norm [15]. A wealth of con-
vex optimization algorithms was proposed to tackle such problems; see [15] for a recent overview.
Among them, the celebrated Nesterov optimal gradient method for smooth and composite minimiza-
tion [9, 10], and their stochastic approximation counterparts [8], are now state-of-the-art in machine
learning.

These algorithms enjoy the best possible theoretical complexity estimate. For instance, Nesterov’s
algorithm reaches a solution with accuracyǫ in O(D

√

L/ǫ), whereL is the Lipschitz constant of
the gradient of the smooth component of the objective, andD is the problem-domain parameter in
the norm‖ · ‖. However, these algorithms work by solving at each iteration a sub-problem which
involves the minimization of the sum of a linear form and a distance-generating function on the
problem domain. Most often, and this explains the popularity of this family of algorithms in the last
decade, exactly solving the sub-problem is computationally cheap [1].

However, in high-dimensional problems such as multi-task learning with a large number of tasks
and features, solving this sub-problem is computationallychallenging when the trace-norm regu-
larization is used for instance [7, 12]. These limitations recently motivated alternative approaches,
which do not require to solve hard sub-problems at each iteration, and triggered a renewed interest
in conditional gradient algorithms. Theconditional gradient algorithm [5, 3] (a.k.a. Frank-Wolfe
algorithms) works by minimizing a linear form on the problemdomain at each iteration, a simpler
subproblem than the one involved in proximal gradient algorithms. Instances of the conditional al-
gorithm were considered recently in the machine learning community [13, 14, 4], with new variants
proposed in [6]. However, the conditional gradient algorith allows to tackleconstrained formula-
tions of learning problems, whereaspenalized formulations are more widespread in applications.

The contributions of this work may be summarized as follows:
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• We discuss a new conditional gradient-type algorithm for penalized formulations of learn-
ing problems, with theoretical accuracy guarantees

• We present some experimental results on real-world datasets which show that the proposed
algorithms are also numerically valid – they outperform some state-of-the-art approaches
in large-scale settings

The proposed algorithms apply to a large spectrum of learning problems.

2 Problem statement

Throughout the paper, we shall assume thatK ⊂ E is a closed convex cone of Euclidean space
E; we do not loose anything by assuming thatK linearly spansE. We assume that‖ · ‖ is a norm
on E, andf is a convex function with Lipschitz continuous gradient, that is ‖f ′(x) − f ′(y)‖∗ ≤
Lf‖x − y‖ ∀x, y ∈ K, where‖ · ‖∗ denotes the dual norm dual of‖ · ‖. We consider two kinds of
problems, detailed below.

Penalized learning formulation We consider penalized learning problems of general form

Opt = min
x

{f(x) + κ‖x‖ : x ∈ K} . (2.2)

which we rewrite as

Opt= min
x,r

{F ([x; r]) = κr + f(x) : x ∈ K, ‖x‖ ≤ r} . (2.3)

We shall refer to (2.3) as the problem ofcomposite optimization (CO). Note that, thex-component
of anǫ-solution(xǫ, rǫ) to (2.3) is anǫ-solution to (2.2).

Minimization oracle We assume that for anyx ∈ E a first order “oracle” is available forf ,
namely, that a vectorw(x) is available such that‖w(x)−f ′(x)‖∗ ≤ υ, and the boundυ on the error
in gradient is known. We assume that an exact observation off(x) is available.1 We are going
to use the conditional gradient algorithm (CG) as our working horse. As it was already mentioned
in the introduction, utilizing CG hinges upon an inner problem, which consists in minimizing a
linear form on the problem domain. As soon as the minimization can be performed efficiently, CG
becomes an attractive alternative to proximal gradient algorithms. We state this as an assumption on
the existence of aminimization oracle, as detailed below.

(A) [Minimization oracle] Givenη ∈ E∗, we can find an optimal solutionx[η] to the optimiza-
tion problem

min
x

{〈η, x〉 : ‖x‖ ≤ 1, x ∈ K} .

We do not sacrifice anything by assuming that for everyη, x[η] is either zero, or a vector of the
‖ · ‖-norm equal to 1. To ensure this, it is unnecessary to compute‖x[η]‖. Indeed, it suffices to
compute〈η, x[η]〉; if this product is 0, we can resetx[η] = 0, otherwise‖x[η]‖ is just equal to 1.

3 Conditional-gradient-like algorithm for penalized learning problems

We assume that there is ana priori known upper boundD+ on‖x∗‖, x∗ being an optimal solution
to (2.2).

(B) [Upper bound] There existsD < ∞ such thatκr + f(x) ≤ f(0) together with‖x‖ ≤ r
imply thatr ≤ D. Further, we assume that a finite upper boundD+ onD is available.

1A close inspection of the proofs of the results below revealsthat the discussed algorithms are robust with
respect to errors in observation off(x). In other words, a boundν on the error inf(x) results in an extra term
O(1)ν in the corresponding accuracy bounds. However, to streamline the presentation we do not discuss this
modification here.
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Further, there is another upper boundD on ‖x∗‖, “induced by the problem data” (but not available
prior to solving (2.2). An important property of the proposed algorithm is that its accuracy guaran-
tees, provided in Proposition 3.1 below, are expressed in terms ofD, but not in terms ofD+ which
may be very loose.

We now describe our algorithm for solving (2.3)

Opt= min
x,r

{F ([x; r]) = κr + f(x) : x ∈ K, ‖x‖ ≤ r} .

Let E+ = E × R, andK+ = {[x; r] : x ∈ K, r ≥ ‖x‖}. In the remainder of the paper, we shall
use the notationz := [x; r], and forz = [x; r] we putx(z) := x, r(z) := r. We also denoteK+[ρ]
the set

K+[ρ] =
{

[x; ρ] ∈ K+ : ‖x‖ ≤ ρ
}

.

Givenz = [x; r] ∈ K+, let us look at the linear form

ζ = [ξ; ρ] → 〈f ′(x), ξ〉 + κρ = 〈F ′(z), ζ〉.

For everyρ ≥ 0, the minimum of this form onK+[ρ] is attained at the point[ρx[f ′(x)]; ρ]. As ρ
varies, these points form a ray. Let

∆(z) = {ρ[x[f ′(x)]; 1] : 0 ≤ ρ ≤ D+}

be the segment of this ray. By Assumption (A), givenz = [x; r], we can identify∆(z) via a single
call to the first order oracle forf and a single call for the minimization oraclex[·] for (K, ‖·‖). Now
let the pointz∗(z) = [x∗; r∗] be a minimizer ofF (·) over the convex hull of∆(z) andz, which is
itself the convex hull of the origin and the pointsz andD+[x[f ′(x)]; 1]:

[x∗; r∗] = λ∗D
+[x[f ′(x)]; 1] + µ∗[x; r], where

(λ∗, µ∗) ∈ Argminλ,µ

{

F (λD+[x[f ′(x)]; 1] + µ[x; r]) : λ + µ ≤ 1, λ ≥ 0, µ ≥ 0

}

.

(3.4)
The iteration of the Conditional Gradient algorithm for composite optimization (COCG) algorithm
is defined according to

zt+1 ∈ Argmin
z

{F (z) : z ∈ Conv{0, zt, D+[x[f ′(x(zt))]; 1]}, t = 1, 2, ..., (3.5)

where we putz1 = 0.

Let z∗ = [x∗; r∗] be an optimal solution to (2.3), withF∗ = F (z∗).
Proposition 3.1. The algorithm based on the above recursion is a descent algorithm. In addition,
we have

F (zt) − F∗ ≤ 8LfD2(t + 1)−1, k = 2, 3, ...

Remarks The recursion can be modified to obtain a bundle version of COCG. Let for someM ∈
N+,

Ct =

{

Conv{0; D+[x[f ′(0)]; 1], ..., D+[x[f ′(x(zt))]; 1]}, for t ≤ M,
Conv{0; zt−M+1, ..., zt; D+[x[f ′(x(zt−M+1))]; 1], ..., D+[x[f ′(x(zt))]; 1]}, for t > M.

(3.6)
For t = 1, 2, ... set

zt+1 ∈ Argmin
z

{F (z) : z ∈ Ct}. (3.7)

Results of Proposition 3.1 still hold for(zt)t=1,2,... defined in (3.6), (3.7).

The basic implementation of the COCG requires solving a two-dimensional auxiliary problem (3.4)
at each iteration. To solve the problem one can utilize, for instance, the ellipsoid method, the first
order information about (3.4) being supplied by the first-order oracle forf .

4 Experiments

We conducted experiments on two real-world datasets corresponding resp. to our two working
examples, i.e., matrix completion with noise and multi-class classification with logistic loss: i)
MovieLens10M, ii) ImageNet dataset. On both datasets, we compared the proposed algorithm to
the accelerated version of the proximal gradient algorithm, denoted by the acronym Prox-Grad on
the figures.
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Algo. Time Training error Test error

MovieLens10M Prox-Grad 42.37s 0.64 0.86
COCG 19.15s 0.63 0.86

ImageNet Prox-Grad 129.43hrs 0.51 0.63
COCG 47.94hrs 0.51 0.60

Table 1: Comparison of the COCG algorithm with the proximal gradient algorithm on the Movie-
Lens10M and the ILSVRC2010 ImageNet dataset. Performance is measured in RMSE on the
MovieLens10M dataset and misclassification error on the ILSVRC2010 ImageNet dataset. Note
that the time is measured inseconds on the MovieLens10M dataset while it is measured inhours on
the ILSVRC2010 ImageNet dataset.

MovieLens10M We utilise the COCG algorithm, described in Section 3, on theMovieLens10M
dataset, corresponding to107 ratings of 69878 users on 10677 movies. Same as in [6], we use half of
the sample for training. Note that, because of the inherent sparsity of the problem, the matrix-vector
computations can be handled very efficiently. Yet, experiments on this dataset are interesting, as they
show that our COCG approach is competitive with the state-of-the-art proximal gradient algorithm.
A lower value of the objective is reached within a slightly shorter time than the proximal gradient
algorithm.

Imagenet We test the COCG algorithm on an image categorization application. We consider
the Pascal ILSVRC2010 ImageNet dataset and focus on the “Vertebrate-craniate” subset, yielding
2943 classes with and average of1000 examples each. We compute65, 000-dimensional visual de-
scriptors for each example using Fisher vector representation [11], a state-of-the-art feature vector
representation in image categorization. Note that, in contrast to the previous experiment, this rep-
resentation yieldsdense feature vectors. Hence making the matrix-vector computations efficient is
a challenging task. We can leverage here one of the feature ofour COCG algorithm, that is, the
robustness of gradient computation which allows making inexact objective and gradient evaluations
on mini-batches of examples. In order to save enough RAM space to perform matrix-vector com-
putations at each iteration, we set the size of the mini-batches tob = 5000. Note that the “raw”
batch proximal gradient algorithm is inappropriate for such a large dataset, where no structure can
be leveraged to speed-up the computations. The straightforward “stochastic gradient” version of the
proximal algorithm is out of scope, as it would involve an SVDper example. Thus we use as a
contender the mini-batch version of the proximal gradient algorithm [2], and we use the same rea-
soning to set the mini-batch size of the proximal gradient algorithm. Results in Table 1 show that
our COCG algorithm has an edge over the mini-batch proximal gradient algorithm and manages to
achieve a similar value of the objective significantly faster.

5 Conclusion

We discuss new conditional gradient-type algorithms for penalized formulations of learning prob-
lems. These algorithms feature good theoretical guarantees and promising experimental results.
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[6] M. Jaggi and M. Sulovský. A simple algorithm for nuclearnorm regularized problems. In
ICML, 2010.

[7] S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. InICML, 2009.

[8] G. Lan. An optimal method for stochastic composite optimization. Math. Program., 2012.

[9] Y. Nesterov.Introductory lectures on convex optimization. A basic course. Kluwer, 2004.

[10] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Re-
port 76, CORE Discussion Paper, 2007.

[11] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In
CVPR, 2006.

[12] T. K. Pong, S. J. Paul Tseng, and J. Ye. Trace norm regularization: Reformulations, algorithms,
and multi-task learning.SIAM J. Optimization, 20(6):3465–3489, 2010.

[13] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-
rank constraint. InICML, 2011.

[14] C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive semidefinite metric learning using
boosting-like algorithms.JMLR, 2012.

[15] S. Sra, S. Nowozin, and S. J. Wright.Optimization for Machine Learning. MIT Press, 2010.

5


	Introduction
	Problem statement
	Conditional-gradient-like algorithm for penalized learning problems
	Experiments
	Conclusion

