
No More Pesky Learning Rates

Tom Schaul Sixin Zhang

Courant Institute of Mathematical Sciences
New York University, 715 Broadway, 10003, New York

{schaul,zsx,yann}@cims.nyu.edu

Yann LeCun

1 Introduction

Large-scale learning problems require algorithms that scale benignly (e.g. sub-linearly) with the size
of the dataset and the number of trainable parameters. This has lead to a recent resurgence of inter-
est in stochastic gradient descent methods (SGD). Besides fast convergence, SGD has sometimes
been observed to yield significantly better generalization errors than batch methods [1]. In practice,
getting good performance with SGD requires some manual adjustment of the initial value of the
learning rate (or step size) for each model and each problem, as well as the design of an annealing
schedule for stationary data. The problem is particularly acute for non-stationary data.

The contribution of this paper is a novel method to automatically adjust learning rates (possibly
different learning rates for different parameters), so as to minimize some estimate of the expectation
of the loss at any one time. The performance of the methods obtained without any manual tuning are
reported on a variety of convex and non-convex learning models and tasks. They compare favorably
with an “ideal SGD”, where the best possible learning rate was obtained through systematic search,
as well as previous adaptive schemes.

2 Background

SGD methods have a long history in adaptive signal processing, neural networks, and machine
learning, with an extensive literature (see [2, 1] for recent reviews). While the practical advantages
of SGD for machine learning applications have been known for a long time [3], interest in SGD
has increased in recent years due to the ever-increasing amounts of streaming data, to theoretical
optimality results for generalization error [4], and to competitions being won by SGD methods,
such as the PASCAL Large Scale Learning Challenge [5], where Quasi-Newton approximation of
the Hessian was used within SGD. Still, practitioners need to deal with a sensitive hyper-parameter
tuning phase to get top performance: each of the PASCAL tasks used very different parameter
settings.

Learning rates in SGD are generally decreased according a schedule of the form η(t) = η0(1 +
γt)−1. Originally proposed as η(t) = O(t−1) in [6], this form was recently analysed in [7, 8]
from a non-asymptotic perspective to understand how hyper-parameters like η0 and γ affect the
convergence speed.

A promising first step towards adaptive learning rates was introduced in [9], in an approach called
‘ADAGRAD ’, where the learning rate takes the form ηi(t) =

ηa√∑t
s=0∇

(s)
θi

,for each problem dimen-

sion i, where ∇(s)
θi

is gradient of the ith parameter at iteration s.

3 Optimal Adaptive Learning Rates

In this section, we derive an optimal learning rate schedule, using an idealized quadratic and separa-
ble loss function. We show that using this learning rate schedule preserves convergence guarantees
of SGD. In the following section, we find how the optimal learning rate values can be estimated
from available information, and describe a couple of possible approximations.

1



The samples, indexed by j, are drawn i.i.d. from a data distribution P . Each sample contributes a
per-sample loss L(j)(θ) to the expected loss:

J (θ) = Ej∼P
[
L(j)(θ)

]
(1)

where θ ∈ Rd is the trainable parameter vector, whose optimal value is denoted θ∗ =

argminθ J (θ). The SGD parameter update formula is of the form θ(t+1) = θ(t) − η(t)∇(j)
θ ,

where ∇(j)
θ = ∂

∂θL
(j)(θ) is the gradient of the the contribution of example j to the loss, and the

learning rate η(t) is a suitably chosen sequence of positive scalars (or positive definite matrices).

We assume that the per-sample loss functions are smooth around minima, and can be locally ap-
proximated by a quadratic function. We also assume that the minimum value of the per-sample loss
functions are zero:

L(j)(θ) =
1

2

(
θ − c(j)

)>
H(j)

(
θ − c(j)

)
∇(j)

θ = H(j)
(
θ − c(j)

)
where Hi is the Hessian matrix of the per-sample loss of sample j, and c(j) is the optimum for that
sample. The distribution of per-sample optima c(j) has mean θ∗ and variance Σ.

To simplify the analysis, we assume for the remainder of this section that the Hessians of the per-
sample losses are identical for all samples, and that the problem is separable, i.e., the Hessians are di-
agonal, with diagonal terms denoted {h1, . . . , hi, . . . , hd}. Further, we will ignore the off-diagonal
terms of Σ, and denote the diagonal {σ2

1 , . . . , σ
2
i , . . . , σ

2
d}. Then, for any of the d dimensions, we

thus obtain a one-dimensional problem (all indices i omitted).

J(θ) = Ei∼P
[
1

2
h(θ − c(j))2

]
=

1

2
h
[
(θ − θ∗)2 + σ2

]
(2)

The gradient components are∇(j)
θ = h

(
θ − c(j)

)
, with

E[∇θ] = h(θ − θ∗) V ar[∇θ] = h2σ2 (3)

and we can rewrite the SGD update equation as

θ(t+1) = θ(t) − ηh
(
θ(t) − c(j)

)
= (1− ηh)θ(t) + ηhθ∗ + ηhσξ(j) (4)

where the ξ(j) are i.i.d. samples from a zero-mean and unit-variance Gaussian distribution. Inserting
this into equation 2, we obtain the expected loss after an SGD update

E
[
J
(
θ(t+1)

)
| θ(t)

]
=

1

2
h ·
[
(1− ηh)2(θ(t) − θ∗)2 + η2h2σ2 + σ2

]
We can now derive the optimal (greedy) learning rates for the current time t as the value η∗(t) that
minimizes the expected loss after the next update

η∗(t)= argmin
η

[
(1− ηh)2(θ(t) − θ∗)2 + σ2 + η2h2σ2

]
=

1

h
· (θ(t) − θ∗)2

(θ(t) − θ∗)2 + σ2
(5)

In the classical (noiseless or batch) derivation of the optimal learning rate, the best value is simply
η∗(t) = h−1. The above formula inserts a corrective term that reduces the learning rate whenever
the sample pulls the parameter vector in different directions, as measured by the gradient variance
σ2. The reduction of the learning rate is larger near an optimum, when (θ(t) − θ∗)2 is small relative
to σ2. In effect, this will reduce the expected error due to the noise in the gradient. Overall, this
will have the same effect as the usual method of progressively decreasing the learning rate as we get
closer to the optimum, but it makes this annealing schedule automatic.

4 Algorithm

In practice, we are not given the quantities σi, hi and (θ
(t)
i − θ∗i )2. However, based on equation 3,

we can estimate them from the observed samples of the gradient:

η∗i =
1

hi
· (E[∇θi ])

2

(E[∇θi ])
2
+ V ar[∇θi ]

=
1

hi
· (E[∇θi ])

2

E[∇2
θi
]

(6)

2



M0
0.07

M1
0.02

M2
0.02

0.02

0.04

0.06

0.08

0.10

0.12

Te
st

er
ro

r

MNIST classification

SGD
adagrad
vSGD -l
vSGD-b
vSGD-g

C0
0.61

C1
0.57

0.60

0.65

0.70

0.75

Te
st

er
ro

r

CIFAR-10 classification

CR
10.2

10

15

20

25

30

Te
st

er
ro

r

CIFAR-10 reconstruction

Figure 1: Final performance on test set, on all the practical learning problems (after six epochs) using
architectures trained using SGD, ADAGRAD or vSGD. We show all 28 SGD settings (green circles),
and 11 ADAGRAD settings (yellow circles), in contrast to tables 1 and 2, where we only compare the
best SGD with the vSGD variants. SGD runs (green circles) vary in terms of different learning rate
schedules, and the vSGD variants correspond to the local-global approximation choices described
in section 4. Symbols touching the top boundary indicate runs that either diverged, or converged
too slow to fit on the scale. Note how SGD tuning is sensitive, and the adaptive learning rates
are typically competitive with the best-tuned SGD, and sometimes better. See also Figure 4 in the
supplementary material for the corresponding figure on the training set.

The optimal learning rate is decomposed into two factors, one term which is the inverse curvature
(as is the case for batch second-order methods), and one novel term that depends on the noise in
the gradient, relative to the expected squared norm of the gradient. Below, we approximate these
terms separately. For the investigations below, when we use the true values instead of a practical
algorithm, we speak of the ‘oracle’ variant.

We use an exponential moving average with time-constant τ (the approximate number of samples
considered from recent memory) for online estimates of the quantities in equation 6. We want the
size of the memory to increase when the steps taken are small (increment by 1), and to decay quickly
if a large step is taken, which is obtained naturally, by the following update

τi(t+ 1) =

(
1− gi(t)

2

vi(t)

)
· τi(t) + 1

There exist a number of methods for obtaining an online estimates of the diagonal Hessian. We
adopt the “bbprop” method, which computes positive estimates of the diagonal Hessian terms for a
single sample h(j)i , using a back-propagation formula [3].

The simplest version of the method views each component in isolation. This form of the algorithm
will be called “vSGD” (for “variance-based SGD”). In realistic settings with high-dimensional pa-
rameter vector, it is not clear a priori whether it is best to have a single, global learning rate (that
can be estimated robustly), “vSGD-g”, a set of local, dimension-specific rates, “vSGD-l”, or block-
specific learning rates (whose estimation will be less robust), “vSGD-b”.

5 Experiments

We test the new algorithm on two widely used standard datasets to test the different algorithms; the
MNIST digit recognition dataset [10], and the CIFAR-10 small natural image dataset [11], both to
learn image classification and reconstruction. We use four different architectures (convex and non-
convex) of feed-forward neural networks, MLPs with 0,1, or 2 hidden layers for classification, and
an autoencoder architecture for regression.

3



best-tuned SGD best-tuned adagrad vSGD -l vSGD-b vSGD-g
CIFAR classif. (C0) 54.78% 54.36% 45.61% 52.45% 56.16%
CIFAR classif. (C1) 47.12% 45.20% 33.16% 45.14% 54.91%
CIFAR regression (CR) 9.77 9.80 10.64 10.13 15.37
MNIST classif. (M0) 7.05% 6.97% 6.72% 7.63% 8.20%
MNIST classif. (M1) 0.30% 0.58% 0.18% 0.78% 3.50%
MNIST classif. (M2) 0.46% 0.41% 0.05% 0.33% 2.91%

Table 1: Final classification error (and reconstruction error for CIFAR-2R) on the training set, ob-
tained after 6 epochs of training, and averaged over ten random initializations. Variants are marked
in bold if they are not statistically significantly from the best one (p = 0.05) Note that the both the
SGD tuning parameter, and the ADAGRAD tuning parameters are different for each setup. We ob-
serve the best results with the full element-wise learning rate adaptation (‘vSGD-l’), almost always
significantly better than the best-tuned SGD or best-tuned ADAGRAD .

best-tuned SGD best-tuned adagrad vSGD -l vSGD-b vSGD-g
CIFAR classif. (C0) 61.06% 61.25% 66.05% 61.70% 61.10%
CIFAR classif. (C1) 58.85% 58.67% 57.72% 59.55% 60.62%
CIFAR regression (CR) 10.29 10.33 11.05 10.57 15.71
MNIST classif. (M0) 7.60% 7.52% 7.50% 7.89% 8.20%
MNIST classif. (M1) 2.34% 2.70% 2.42% 2.44% 4.14%
MNIST classif. (M2) 2.16% 2.34% 2.16% 2.05% 3.65%

Table 2: As Table 1, but on the test set. The outcome is more balanced, with vSGD-l being better
or statistically equivalent to the best-tuned SGD in 4 out of 6 cases. The main outlier (C0) is a case
where the more aggressive element-wise learning rates led to overfitting.

SGD is one of the most common training algorithms in use for (large-scale) neural network train-
ing. The experiments in this section compare the three vSGD variants introduced above with
SGD and ADAGRAD . We exhaustively search for the best hyper-parameter settings among
η0, ηa ∈ {10−4, 3 ∗ 10−4, 10−3, 3 ∗ 10−3, 10−2, 3 ∗ 10−2, 10−1, 3 ∗ 10−1, 100, 3 ∗ 100, 101},
γ ∈ {0, 1/3, 1/2, 1}/#traindata, as determined by their lowest test error.

Figure 1 illustrates the sensitivity to hyper-parameters of both SGD and ADAGRAD , while very
similar performance is achieved using the tuning-free vSGD variants. For each benchmark, ten
independent runs are averaged and reported in Table 1 (training set) and Table 2 (test set). They
show that the best vSGD variant, across the board, is vSGD-l, which most aggressively adapts one
learning rate per dimension. It is almost always significantly better than the best-tuned SGD or best-
tuned ADAGRAD in the training set, and better or statistically equivalent to the best-tuned SGD in 4
out of 6 cases on the test set.

6 Conclusion

Starting from the idealized case of quadratic loss contributions from each sample, we derived a
method to compute an optimal learning rate at each update, and (possibly) for each parameter, that
optimizes the expected loss after the next update. The method relies on the square norm of the expec-
tation of the gradient, and the expectation of the square norm of the gradient. We showed different
ways of approximating those learning rates in linear time and space in practice. The experimental
results confirm the theoretical prediction: the adaptive learning rate method completely eliminates
the need for manual tuning of the learning rate, or for systematic search of its best value.

Given the successful validation on a variety of classical large-scale learning problems, we hope that
this enables for SGD to be a truly user-friendly ‘out-of-the-box’ method.

4



References
[1] Bottou, L and Bousquet, O. The tradeoffs of large scale learning. In Sra, S, Nowozin, S, and

Wright, S. J, editors, Optimization for Machine Learning, pages 351–368. MIT Press, 2011.
[2] Bottou, L. Online algorithms and stochastic approximations. In Saad, D, editor, Online Learn-

ing and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.
[3] LeCun, Y, Bottou, L, Orr, G, and Muller, K. Efficient backprop. In Orr, G and K., M, editors,

Neural Networks: Tricks of the trade. Springer, 1998.
[4] Bottou, L and LeCun, Y. Large scale online learning. In Thrun, S, Saul, L, and Schölkopf, B,

editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA,
2004.

[5] Bordes, A, Bottou, L, and Gallinari, P. Sgd-qn: Careful quasi-newton stochastic gradient
descent. Journal of Machine Learning Research, 10:1737–1754, July 2009.

[6] Robbins, H and Monro, S. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[7] Xu, W. Towards optimal one pass large scale learning with averaged stochastic gradient de-
scent. ArXiv-CoRR, abs/1107.2490, 2011.

[8] Bach, F and Moulines, E. Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. In Advances in Neural Information Processing Systems (NIPS), 2011.

[9] Duchi, J. C, Hazan, E, and Singer, Y. Adaptive subgradient methods for online learning and
stochastic optimization. 2010.

[10] LeCun, Y and Cortes, C. The mnist dataset of handwritten digits. 1998.
http://yann.lecun.com/exdb/mnist/.

[11] Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, De-
partment of Computer Science, University of Toronto, 2009.

5


