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Abstract

In this paper, we present a large-scale distributed implementation of the accuracy
at the top algorithm, which is a new notion of classification accuracy based on
the top τ -quantile values of a scoring function. Our implementation approach
is based on the Alternating Direction Method of Multipliers (ADMM) consen-
sus framework, written in Pregel (a unified framework for performing large-scale
graph computations, [6]) and meant for solving large scale convex optimization
problems in a distributed fashion.

1 Introduction

The learning problem we consider is that of maximizing the accuracy at the top, which consists
of achieving the ordering of all items so that items whose scores are among the top τ -quantile are
as accurate as possible. Thus, ideally, all non-preferred items are ranked below the quantile. This
problem is crucial for many information retrieval systems such as search engines or recommendation
systems, since most users of these systems browse or consider only the top selected items.

As discussed in [4], different criteria have been introduced in the past to measure the quality of
getting the ’top’ items, including the precision at k (Precision@k), the normalized discounted cu-
mulative gain (NDCG) and other variants of DCG, or the mean reciprocal rank (MRR) when the rank
of the most relevant document is critical. In this regard, several machine learning algorithms have
been recently designed to optimize these criteria and other related ones [5, 11, 10, 16, 7, 13, 12]. A
general algorithm inspired by the structured prediction technique SVMStruct [17] was incorporated
in an algorithm by [14] which can be used to optimize a convex upper bound on the number of errors
among the top k items. The algorithm seeks to solve a convex problem with exponentially many
constraints via several rounds of optimization with a smaller number of constraints, augmenting the
set of constraints at each round with the most violating one. Another algorithm, also based on struc-
tured prediction ideas, is proposed in an unpublished manuscript of [15] and covers several criteria,
including Precision@k and NDCG. A regression-based solution is suggested by [9] for DCG in the
case of large sample sizes. Some other methods have also been proposed to optimize a smooth ver-
sion of a non-convex cost function in this context [8]. [1] discusses an optimization solution for an
algorithm seeking to minimize the position of the top irrelevant item.

In [4], we propose an algorithm, called AATP, that optimizes accuracy in some top fraction of scores
returned by a real-valued hypothesis. The desired objective is to learn a linear scoring function that
is as accurate as possible for the items whose scores are above the top τ -quantile. Our algorithm
optimizes a convex surrogate of the corresponding loss in the case of linear scoring functions. We
show that the solution of this problem can be obtained exactly by solving several, independent,
convex optimization problems in parallel. More specifically, each optimization problem corresponds
to a single quadratic program (QP) that minimizes the convex loss function subject to the assumption
that the particular item k’s score corresponds to the τ th quantile of the resulting scoring function
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(QP k):

min
w

m∑
i=1

(
fi(w, q

∗(w)) + f ′i(w, q
∗(w))

)
(1)

s.t. q∗(w) = w · zk,
where zk ∈ {x1, . . . ,xm,x

′
1, . . . ,x

′
m}, and

fi(w, q
∗(w)) = (w · xi − q∗(w) + 1)+ + C/(2m)‖w‖2,

and
f ′i(w, q

∗(w)) = (q∗(w)−w · xi + 1)+ + C/(2m)‖w‖2.
Then, if wk denotes the solution of the problem QP k, the resulting solution of this sequence of
problems equals to wk for which kth score corresponds to the τ -quantile of the scoring function
with the minimum achievable loss value. An interested reader is referred to [4] for more details.

Solving the set of independent QPs suggests distributed implementation executed in parallel. In
addition, the separability of the objective function and very large training sets in real life applications
led to the implementation approach that is based on Alternating Direction Method of Multipliers
(ADMM) (see [2] for more details). The method is particularly suited for solving large scale convex
optimization problems that arise in (but are not limited to) areas of statistics and machine learning.
Most commonly, these problems appear in application domains where data sets are extremely large,
high-dimensional, and stored in a distributed manner. In the rest of this write-up, we present a brief
overview of our implementation approach and overall methodology, which can easily be generalized
to solving any convex (constrained and non-constrained) optimization problem.

2 Implementation Approach

The implementation of the AATP algorithm is based on the ADMM consensus framework, written
in Pregel (a unified framework for performing large-scale graph computations, [6]) and meant for
solving convex optimization problems in a distributed fashion. The framework consists of a data
model and a library of solvers that together permit the representation and solution of virtually any
convex optimization problem. In general, solving a specific problem comes down to distributing the
objective(s) and constraint(s) over nodes in a connected graph, in particular:

• Picking a topology for a connected graph;
• Encapsulating the data for the function at each node in a proto;
• Specifying the proximal step solver for each node.

ADMM is a simple, provably converging, algorithm that uses a decomposition-coordination pro-
cedure, in which solutions to small local subproblems are coordinated to find a solution to a large
global problem.

In the context of the AATP, each QP in (1) corresponds to a single connected component in a graph
(see Figure 1 for clarity). Each connected component is a directed graph, where a single node,
say i, optimizes fi(w, q∗(w)) or f ′i(w, q

∗(w)), depending on the term in the objective function it
corresponds to. Graph nodes exchange messages in each superstep of the consensus algorithm, and
the problem variables are updated in a strictly set order. Once the ADMM consensus converges to
the optimal solution, all nodes in the connected component store the optimal values of the primal
and dual variables.

The used framework allows us to train on large data sets with millions of nodes and thousands of fea-
tures. Connected components are distributed across workers in a cloud. By careful optimization of
the number of nodes per worker and sparse representation of the input data, we increase the training
capacity. The restrictions of the current implementation stem mainly from the Pregel’s limitations.
However, with the continuous improvements of the Pregel framework, we expect enhancements in
capabilities of our implementation as well.

There are several parameters that impact the speed of convergence of the ADMM consensus and
are tunable. One is the graph topology: the larger the connectivity of components, the faster is
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q∗(w) = w · x1

fi(w, q
∗(w))

f ′i(w, q
∗(w))

q∗(w) = w · x2 q∗(w) = w · x′m

QP 1 QP 2 QP 2m

Figure 1: Consensus graph with its connected components organized in tree topology.
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Figure 2: Iterative sampling of candidate components for optimization runs.

the convergence. Another parameter is the positive factor in the augmented Lagrangian term which
plays a significant role in updating the variables. Finally, having some prior knowledge of the primal
variables is exploited in the form of the warm start of the optimization run.

In order to further increase the potential size of the training set, we implement an iterative opti-
mization procedure, that randomly selects a small subset of candidate graph components and, using
the obtained results, eliminates connected components that are unlikely candidates for the optimal
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scoring function. Thus, instead of running a full-blown optimization where the number of connected
components equals to the number of the input instances, we run a small number of optimizations
at a time, and learn unlikely candidates. After each optimization run, we update the best quantile
candidate, and using its weights, warm-start the next iteration (see Figure 2).
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