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Abstract

Stochastic Gradient Descent (SGD) has become popular for solving large scale
supervised machine learning optimization problems such as SVM, due to their
strong theoretical guarantees. While the closely related Dual Coordinate Ascent
(DCA) method has been implemented in various software packages, it has so far
lacked good convergence analysis. We present a new analysis of Stochastic Dual
Coordinate Ascent (SDCA) showing that this class of methods enjoy strong theo-
retical guarantees that are comparable or better than SGD. This analysis justifies
the effectiveness of SDCA for practical applications. A long version of this paper
is available in [15].

1 Introduction

We consider the following generic optimization problem associated with regularized loss minimiza-
tion of linear predictors: Let x1, . . . , xn be vectors in Rd, let φ1, . . . , φn be a sequence of scalar
convex functions, and let λ > 0 be a regularization parameter. Our goal is to solve minw∈Rd P (w)
where

P (w) =

[
1

n

n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2

]
. (1)

For example, given labels y1, . . . , yn in {±1}, the SVM problem (with linear kernels and no bias
term) is obtained by setting φi(a) = max{0, 1 − yia}. Regularized logistic regression is obtained
by setting φi(a) = log(1+exp(−yia)). Regression problems also fall into the above. For example,
ridge regression is obtained by setting φi(a) = (a − yi)

2, regression with the absolute-value is
obtained by setting φi(a) = |a − yi|, and support vector regression is obtained by setting φi(a) =
max{0, |a− yi| − ν}, for some predefined insensitivity parameter ν > 0.

Let w∗ be the optimum of (1). We say that a solution w is εP -sub-optimal if P (w)− P (w∗) ≤ εP .
We analyze the runtime of optimization procedures as a function of the time required to find an
εP -sub-optimal solution.

A simple approach for solving SVM is stochastic gradient descent (SGD) [16, 13, 1]. SGD finds
an εP -sub-optimal solution in time Õ(1/(λεP )). This runtime does not depend on n and therefore
is favorable when n is very large. However, the SGD approach has several disadvantages. It does
not have a clear stopping criterion; It tends to be too aggressive at the beginning of the optimization
process, especially when λ is very small; While SGD reaches a moderate accuracy quite fast, it’s
convergence becomes rather slow when we are interested in more accurate solutions.

An alternative approach is dual coordinate ascent (DCA), which solves a dual problem of (1).
Specifically, for each i let φ∗i : R → R be the convex conjugate of φi, namely, φ∗i (u) =

1



maxz(zu− φi(z)). The dual problem is

max
α∈Rm

D(α) where D(α) =

 1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1
λn

n∑
i=1

αixi

∥∥∥∥∥
2
 . (2)

The dual objective in (2) has a different dual variable associated with each example in the training
set. At each iteration of DCA, the dual objective is optimized with respect to a single dual variable,
while the rest of the dual variables are kept in tact.

If we define

w(α) =
1

λn

n∑
i=1

αixi, (3)

then it is known that w(α∗) = w∗, where α∗ is an optimal solution of (2). It is also known that
P (w∗) = D(α∗) which immediately implies that for all w and α, we have P (w) ≥ D(α), and
hence the duality gap defined as

P (w(α))−D(α)

can be regarded as an upper bound of the primal sub-optimality P (w(α))− P (w∗).
We focus on a stochastic version of DCA, abbreviated by SDCA, in which at each round we choose
which dual coordinate to optimize uniformly at random. The purpose of this paper is to develop
theoretical understanding of the convergence of the duality gap for SDCA.

We analyze SDCA either for L-Lipschitz loss functions or for (1/γ)-smooth loss functions, which
are defined as follows.
Definition 1. A function φi : R→ R is L-Lipschitz if for all a, b ∈ R, we have

|φi(a)− φi(b)| ≤ L |a− b|.

A function φi : R → R is (1/γ)-smooth if it is differentiable and its derivative is (1/γ)-Lipschitz.
An equivalent condition is that for all a, b ∈ R, we have

φi(a) ≤ φi(b) + φ′i(b)(a− b) +
1

2γ
(a− b)2.

It is well-known that if φi(a) is (1/γ)-smooth, then φ∗i (u) is γ strongly convex: for all u, v ∈ R and
s ∈ [0, 1]:

−φ∗i (su+ (1− s)v) ≥ −sφ∗i (u)− (1− s)φ∗i (v) +
γs(1− s)

2
(u− v)2.

Our main findings are: in order to achieve a duality gap of ε,

• For L-Lipschitz loss functions, we obtain the rate of Õ(n+ L2/(λε)).

• For (1/γ)-smooth loss functions, we obtain the rate of Õ((n+ 1/(λγ)) log(1/ε)).
• For loss functions which are almost everywhere smooth (such as the hinge-loss), we can

obtain rate better than the above rate for Lipschitz loss. A precise statement is given in the
long version.

2 Related Work

DCA methods are related to decomposition methods [12, 5]. While several experiments have shown
that decomposition methods are inferior to SGD for large scale SVM [13, 6], Hsieh et al. [3] recently
argued that SDCA outperform the SGD approach in some regimes. For example, this occurs when
we need relatively high solution accuracy so that either SGD or SDCA has to be run for more than
a few passes over the data.

However, our theoretical understanding of SDCA is not satisfying. Several authors (e.g. [10, 3])
proved a linear convergence rate for solving SVM with DCA (not necessarily stochastic). The basic
technique is to adapt the linear convergence of coordinate ascent that was established by Luo and
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Tseng [9]. The linear convergence means that it achieves a rate of (1 − ν)k after k passes over the
data, where ν > 0. This convergence result tells us that after an unspecified number of iterations,
the algorithm converges faster to the optimal solution than SGD.

However, there are two problems with this analysis. First, the linear convergence parameter, ν,
may be very close to zero and the initial unspecified number of iterations might be very large. In
fact, while the result of [9] does not explicitly specify ν, an examine of their proof shows that ν is
proportional to the smallest nonzero eigenvalue of X>X , where X is the n × d data matrix with
its i-th row be the i-th data point xi. For example if two data points xi 6= xj becomes closer and
closer, then ν → 0. This dependency is problematic in the data laden domain, and we note that such
a dependency does not occur in the analysis of SGD.

Second, the analysis only deals with the sub-optimality of the dual objective, while our real goal is
to bound the sub-optimality of the primal objective. Given a dual solution α ∈ Rn its corresponding
primal solution is w(α) (see (3)). The problem is that even if α is εD-sub-optimal in the dual, for
some small εD, the primal solution w(α) might be far from being optimal. For SVM, [4, Theorem
2] showed that in order to obtain a primal εP -sub-optimal solution, we need a dual εD-sub-optimal
solution with εD = O(λε2P ); therefore a convergence result for dual solution can only translate into
a primal convergence result with worse convergence rate. Such a treatment is unsatisfactory, and
this is what we will avoid in the current paper.

Some analyses of stochastic coordinate ascent provide solutions to the first problem mentioned
above. For example, Collins et al [2] analyzed an exponentiated gradient dual coordinate ascent
algorithm for SVM and logistic regression. The algorithm analyzed there (exponentiated gradient)
is different from the standard DCA algorithm which we consider here, and the proof techniques are
quite different. Consequently their results are not directly comparable to results we obtain in this
paper. Nevertheless we note that for SVM, their analysis shows a convergence rate of O(n/εD)
in order to achieve εD-sub-optimality (on the dual) while our analysis shows a convergence of
O(n log log n + 1/λε) to achieve ε duality gap; for logistic regression, their analysis shows a con-
vergence rate of O((n + 1/λ) log(1/εD)) in order to achieve εD-sub-optimality on the dual while
our analysis shows a convergence of O((n+ 1/λ) log(1/ε)) to achieve ε duality gap.

In addition, [14], and later [11] have analyzed randomized versions of coordinate descent for uncon-
strained and constrained minimization of smooth convex functions. [3, Theorem 4] applied these
results to the dual SVM formulation. However, the resulting convergence rate is O(n/εD) which is,
as mentioned before, inferior to the results we obtain here. Furthermore, neither of these analyses
can be applied to logistic regression due to their reliance on the smoothness of the dual objective
function which is not satisfied for the dual formulation of logistic regression. We shall also point
out again that all of these bounds are for the dual sub-optimality, while as mentioned before, we are
interested in the primal sub-optimality.

In this paper we derive new bounds on the duality gap (hence, they also imply bounds on the primal
sub-optimality) of SDCA. These bounds are superior to earlier results, and our analysis only holds
for randomized (stochastic) dual coordinate ascent. As we will see from our experiments, random-
ization is important in practice. In fact, the practical convergence behavior of (non-stochastic) cyclic
dual coordinate ascent (even with a random ordering of the data) can be slower than our theoretical
bounds for SDCA, and thus cyclic DCA is inferior to SDCA. In this regard, we note that some of
the earlier analysis such as [9] can be applied both to stochastic and to cyclic dual coordinate as-
cent methods with similar results. This means that their analysis, which can be no better than the
behavior of cyclic dual coordinate ascent, is inferior to our analysis.

Recently, [7] derived a stochastic coordinate ascent for structural SVM based on the Frank-Wolfe
algorithm. Specifying one variant of their algorithm to binary classification with the hinge loss,
yields the SDCA algorithm for the hinge-loss. The rate of convergence [7] derived for their algorithm
is the same as the rate we derive for SDCA with a Lipschitz loss function.

Another relevant approach is the Stochastic Average Gradient (SAG), that has recently been an-
alyzed in [8]. There, a convergence rate of Õ(n log(1/ε)) rate is shown, for the case of smooth
losses, assuming that n ≥ 8

λ γ . This matches our guarantee in the regime n ≥ 8
λ γ .

3



The following table summarizes our results in comparison to previous analyses. Note that for SDCA
with Lipschitz loss, we observe a faster practical convergence rate, which is explained with our
refined analysis in the long version of this paper.

Lipschitz loss
Algorithm type of convergence rate
SGD primal Õ( 1

λε )

online EG [2] (for SVM) dual Õ(nε )

SDCA primal-dual Õ(n+ 1
λε ) or faster

Smooth loss
Algorithm type of convergence rate
SGD primal Õ( 1

λε )

online EG [2] (for logistic regression) dual Õ((n+ 1
λ ) log

1
ε )

SDCA primal-dual Õ((n+ 1
λ ) log

1
ε )
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