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Abstract

We present a stochastic setting for optimization problems with nonsmooth convex separable objec-
tive functions over linear equality constraints. To solve such problems, we propose a stochastic
Alternating Direction Method of Multipliers (ADMM) algorithm. Our algorithm applies to a more
general class of nonsmooth convex functions that does not necessarily have a closed-form solution
by minimizing the augmented function directly. We also demonstrate the rates of convergence for
our algorithm under various structural assumptions of the stochastic functions: O(1/

√
t) for convex

functions and O(log t/t) for strongly convex functions. Compared to previous literature, we estab-
lish the convergence rate of ADMM algorithm, for the first time, in terms of both the objective value
and the feasibility violation.

1 Introduction

The Alternating Direction Method of Multipliers (ADMM) [1, 2] is a very simple computational method for con-
strained optimization proposed in 1970s. The theoretical aspects of ADMM have been studied from 1980s to 90s and
its global convergence was established in the literature [3, 4, 5]. As reviewed in the comprehensive paper [6], with its
capacity of dealing with objective functions separately and synchronously, this method turned out to be a natural fit
in the field of large-scale data-distributed machine learning and big-data related optimization and therefore received
significant amount of attention in the last few years. Intensive theoretical and practical advances are conducted there-
after. On the theoretical hand, ADMM is recently shown to have a rate of convergence of O(1/N) [7, 8, 9, 10], where
N stands for the number of iterations. On the practical hand, ADMM has been applied to a wide range of applica-
tion domains, such as compressed sensing [11], image restoration [12], video processing and matrix completion [13].
Besides that, many variations of this classical method have been recently developed, such as linearized [13, 14, 15],
accelerated [13], and online [10] ADMM. However, most of these variants including the classic one implicitly assume
full accessibilty to true data values, while in reality one can hardly ignore the existence of noise. A more natural way
of handling this issue is to consider unbiased or even biased observations of true data, which leads us to the stochastic
setting.

1.1 Stochastic Setting for ADMM

In this work, we study a family of convex optimization problems in which our objective functions are separable and
stochastic. In particular, we are interested in solving the following linear equality-constrained stochastic optimization:

min
x∈X ,y∈Y

Eξθ1(x, ξ) + θ2(y) s.t. Ax+By = b, (1)
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where x ∈ Rd1 ,y ∈ Rd2 , A ∈ Rm×d1 , B ∈ Rm×d2 ,b ∈ Rm, X is a convex compact set, and Y is a closed convex
set. We are able to draw a sequence of identical and independent (i.i.d.) observations from the random vector ξ that
obeys a fixed but unknown distribution P . One can see that when ξ is deterministic, we can recover the traditional
problem setting for ADMM [6]. Denote the expectation function θ1(x) := Eξθ1(x, ξ). In our most general setting,
real-valued functions θ1(·) and θ2(·) are convex but not necessarily continuously differentiable.

Note that our stochastic setting of the problem is quite different from that of the Online ADMM proposed
in [10]. In Online ADMM, one does not assume ξ to be i.i.d., nor the objective to be stochastic, but in-
stead, a deterministic concept referred as regret is concerned: R

(
x[1:t]

)
:=

∑t
k=1 [θ1(xk, ξk) + θ2(yk)] −

infAx+By=b

∑t
k=1 [θ1(x, ξk) + θ2(y)].

1.2 Our Contributions

In this work, we propose a stochastic setting of the ADMM problem and design the Stochastic ADMM algorithm.
A key algorithmic feature of our Stochastic ADMM that distinguishes it from previous ADMM and variants is the
first-order approximation of θ1 that we use to modify the augmented Lagrangian. This simple modification not only
guarantees the convergence of our stochastic method, but also benefits to a more general class of convex objective
functions which might not have a closed-form solution in minimizing the augmented θ1 directly. For example, with
stochastic ADMM, we can derive close-form updates for the nonsmooth hinge loss function (used in support vector
machines). However, with deterministic ADMM, one has to call SVM solvers during each iteration [6], which is
indeed very time-consuming. One of our main contributions is that we develop the convergence rates of our algorithm
under various structural assumptions. For convex θ1(·), the rate is proved to be O(1/

√
t); for strongly convex θ1(·),

the rate is proved to be O(log t/t). To the best of our knowledge, this is the first time that convergence rates of
ADMM are established for both the objective value and the feasibility violation. By contrast, recent research [8, 10]
only shows the convergence of ADMM indirectly in terms of the satisfaction of variational inequalities. We have also
implemented novel applications and encouraging numerical examples to demonstrate the efficiency of our algorithm,
which are not presented here because of the very limited space. Interested readers can access the full length version of
this paper provided with detailed proofs via http://arxiv.org/abs/1211.0632.

1.3 Notations

Throughout this paper, we denote the subgradients of θ1 and θ2 as θ′1 and θ′2. When they are differentiable, we will
use∇θ1 and∇θ2 to denote the gradients. We use the notation θ1 both for the instance function value θ1(x, ξ) and for
its expectation θ1(x). We denote by θ(u) := θ1(x) + θ2(y) the sum of the stochastic and the deterministic functions.
For simplicity and clarity, we will use the following notations to denote stacked vectors or tuples:

u :=

(
x
y

)
, w :=

 x
y
λ

 , wk :=

 xk

yk

λk

 , W :=

 X
Y
Rm

 ,

ūk :=

(
1
k

∑k−1
i=0 xi

1
k

∑k
i=1 yi

)
, w̄k :=

 1
k

∑k
i=1 xi

1
k

∑k
i=1 yi

1
k

∑k
i=1 λi

 , F (w) :=

 −ATλ

−BTλ
Ax + By − b

 .

(2)

For a positive semidefinite matrix G ∈ Rd1×d1 , we define the G-norm of a vector x as ∥x∥G := ∥G1/2x∥2 =
√
xTGx.

We use ⟨·, ·⟩ to denote the inner product in a finite dimensional Euclidean space. When there is no ambiguity, we often
use ∥ · ∥ to denote the Euclidean norm ∥ · ∥2. We assume that the optimal solution of (1) exists and denote it as u∗ :=(
xT
∗ ,y

T
∗
)T

. The following quantity appear frequently in our convergence analysis: δk := θ′1(xk−1, ξk) − θ′1(xk−1).
In addition, we define parameters DX := supxa,xb∈X ∥xa − xb∥ and Dy∗,B := ∥B(y∗ − y0)∥.

1.4 Assumptions

Before presenting the algorithm and convergence results, we list the assumptions that will be used in our statements.

Assumption 1. For all x ∈ X , E
[
∥θ′1(x, ξ)∥2

]
≤M2.

Assumption 2. For all x ∈ X , E
[
exp

{
∥θ′1(x, ξ)∥2/M2

}]
≤ exp{1}.

Assumption 3. For all x ∈ X , E
[
∥θ′1(x, ξ)− θ′1(x)∥2

]
≤ σ2.
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2 Stochastic ADMM Algorithm

Directly solving problem (1) can be nontrivial even if ξ is deterministic and the equality constraint is as simple as
x− y = 0. For example, using the augmented Lagrangian method, one has to minimize the augmented Lagrangian:

min
x∈X ,y∈Y

Lβ(x,y, λ) := min
x∈X ,y∈Y

θ1(x) + θ2(y)− ⟨λ, Ax+By − b⟩+ β

2
∥Ax+By − b∥2,

where β is a pre-defined penalty parameter. This problem is at least not easier than solving the original one. The (de-
terministic) ADMM (Alg.1) solves this problem in a Gauss-Seidel manner: minimizing Lβ w.r.t. x and y alternatively
given the other fixed, followed by a penalty update over the Lagrangian multiplier λ.

Algorithm 1 Deterministic ADMM
0. Initialize y0 and λ0 = 0.

for k = 0, 1, 2, . . . do

1. xk+1 ← argminx∈X

{
θ1(x) +

β
2

∥∥∥(Ax + Byk − b)− λk
β

∥∥∥2
}

.

2. yk+1 ← argminy∈Y

{
θ2(y) +

β
2

∥∥∥(Axk+1 + By − b)− λk
β

∥∥∥2
}

.

3. λk+1 ← λk − β (Axk+1 + Byk+1 − b).
end for

A variant deterministic algorithm named linearized ADMM replaces Line 1 of Alg.1 by

xk+1 ← argmin
x∈X

{
θ1(x) +

β

2
∥(Ax+Byk − b)− λk/β∥2 +

1

2
∥x− xk∥2G

}
, (3)

where G ∈ Rd1×d1 is positive semidefinite. This variant can be regarded as a generalization of the original ADMM.
When G = 0, it is the same as Alg.1. When G = rId1 − βATA, it is equivalent to the following linearized proximal
point method:

xk+1 ← argmin
x∈X

{
θ1(x) + β(x− xk)

T
[
AT (Axk +Byk − b− λk/β)

]
+

r

2
∥x− xk∥2

}
.

Note that the linearization is applied only to the quadratic function ∥(Ax+ Byk − b)− λk/β∥2, but not to θ1. This
approximation helps when Line 1 of Alg.1 does not produce a closed-form solution given the quadratic term. For
example, let θ1(x) = ∥x∥1 and A not identity.

As shown in Alg.2, we propose a Stochastic Alternating Direction Method of Multipliers (Stochastic ADMM) algo-
rithm. Our algorithm shares some features with the classical and the linearized ADMM. One can see that Line 2 and
3 are essentially the same as before. However, there are two major differences in Line 1. First, we replace θ1(x) with
a first-order approximation of θ1(x, ξk+1) at xk: θ1(xk) + xT θ′1(xk, ξk+1). This approximation has the same flavour
of the stochastic mirror descent [16] used for solving a one-variable stochastic convex problem. Second, similar to the
linearized ADMM (3), we add an l2-norm prox-function ∥x − xk∥2 but scale it by a time-varying stepsize ηk+1. As
we will see in Section 3, the choice of this stepsize is crucial in guaranteeing a convergence.

Algorithm 2 Stochastic ADMM
0. Initialize x0,y0 and λ0 = 0.

for k = 0, 1, 2, . . . do

1. xk+1 ← argminx∈X

{⟨
θ′
1(xk, ξk+1),x

⟩
+ β

2

∥∥∥(Ax + Byk − b)− λk
β

∥∥∥2
+

∥x−xk∥2
2ηk+1

}
.

2. yk+1 ← argminy∈Y

{
θ2(y) +

β
2

∥∥∥(Axk+1 + By − b)− λk
β

∥∥∥2
}

.

3. λk+1 ← λk − β (Axk+1 + Byk+1 − b).
end for

3 Main Results of Convergence Rates

In this section, we will show that our Stochastic ADMM given in Alg.2 exhibits a rate O(1/
√
t) of convergence in

terms of both the objective value and the feasibility violation: E[θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥2] = O(1/
√
t).

We extend the main result if more structural information of θ1 is available.
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Before we address the main theorem on convergence rates, we first present an upper bound of the variation of the
Lagrangian function and its first order approximation based on each iteration points.
Lemma 1. ∀w ∈ W, k ≥ 1, we have

θ1(xk) + θ2(yk+1)− θ(u) + (wk+1 −w)TF (wk+1) ≤
ηk+1∥θ′1(xk, ξk+1)∥2

2

+
1

2ηk+1

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
+

β

2

(
∥Ax+Byk − b∥2 − ∥Ax+Byk+1 − b∥2

)
+ ⟨δk+1,x− xk⟩+

1

2β

(
∥λ− λk∥22 − ∥λ− λk+1∥22

)
.

(4)

Utilizing this lemma we are able to obtain our main result shown as below. We present our main theorem of the
convergence in two fashions, both in terms of expectation and probability satisfaction.

Theorem 1. Let ηk = DX
M
√
2k
, ∀k ≥ 1 and ρ > 0.

(i) Under Assumption 1, we have ∀t ≥ 1,

E[θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥] ≤M1(t) +M2(t) :=

√
2DXM√

t
+

βD2
y∗,B

+ ρ2/β

2t
, (5)

(ii) Under Assumption 1 and 2, we have for any Ω > 0,

Prob
{
θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥ >

(
1 +

1

2
Ω + 2

√
2Ω

)
M1(t) +M2(t)

}
≤ 2 exp{−Ω}, (6)

Remark 1. Adapting our proof techniques to the deterministic case where no noise takes place, we are able to obtain
a similar result for deterministic ADMM:

∀ρ > 0, t ≥ 1, θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥2 ≤
βD2

y∗,B

2t
+

ρ2

2βt
, (7)

While resulting in a O(1/t) convergence rate same as the existing literature [8, 9, 10], the above finding is actually
a significant advance in the theoretical aspects of ADMM. For the first time, the convergence of ADMM is proved
in terms of objective value and feasibility violation. By contrast, the existing literature [8, 9, 10] only shows the
convergence of ADMM in terms of the satisfaction of variational inequalities, which is not a direct measure of how
fast an algorithm reaches the optimal solution.

3.1 Extension: Strongly Convex θ1

When function θ1(·) is strongly convex, the convergence rate of Stochastic ADMM can be improved to O
(

log t
t

)
.

Theorem 2. When θ1 is µ-strongly convex with respect to ∥ · ∥, taking ηk = 1
kµ in Alg.2, under Assumption 1,

∀ρ > 0, t ≥ 1 we have E [θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥2] ≤ M2 log t
µt +

µD2
X

2t +
βD2

y∗,B

2t + ρ2

2βt .

3.2 Extension: Lipschitz Smooth θ1

Since the bounds given in Theorem 1 are related to the magnitude of subgradients, they do not provide any intuition
of the performance in low-noise scenarios. With a Lipschitz smooth function θ1, we are able to obtain convergence
rates in terms of the variations of gradients, as stated in Assumption 3. Besides, under this assumption we are able to
replace the unusual definition of ūk in (2) with ūk :=

(
1
k

∑k
i=1 x

T
i ,

1
k

∑k
i=1 y

T
i

)T
.

Theorem 3. When θ1(·) is L-Lipschitz smooth with respect to ∥ · ∥, taking ηk = 1
L+σ

√
2k/DX

in Alg.2, under Assump-

tion 3, ∀ρ > 0, t ≥ 1 we have E [θ(ūt)− θ(u∗) + ρ∥Ax̄t +Bȳt − b∥2] ≤
√
2DXσ√

t
+

LD2
X

2t +
βD2

y∗,B

2t + ρ2

2βt .
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4 Summary and Future Work

In this paper, we have proposed the stochastic setting for ADMM along with our stochastic ADMM algorithm. Based
on a first-order approximation of the stochastic function, our algorithm is applicable to a very broad class of problems
even with functions that have no closed-form solution to the subproblem of minimizing the augmented θ1. We have
also established convergence rates under various structural assumptions of θ1: O(1/

√
t) for convex functions and

O(log t/t) for strongly convex functions. We are working on integrating Nesterov’s optimal first-order methods [17] to
our algorithm, which will help in achieving optimal convergence rates. More interesting and challenging applications
will be carried out in our future work.
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