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Abstract

We propose a randomized block-coordinate variant of the classic Frank-Wolfe
algorithm for convex optimization with block-separable constraints. Despite its
lower iteration cost, we show that it achieves the same convergence rate as the
full Frank-Wolfe algorithm. We also show that, when applied to the dual struc-
tural support vector machine (SVM) objective, this algorithm has the same low
iteration complexity as primal stochastic subgradient methods. However, unlike
stochastic subgradient methods, the stochastic Frank-Wolfe algorithm allows us to
compute the optimal step-size and yields a computable duality gap guarantee. Our
experiments indicate that this simple algorithm outperforms competing structural
SVM solvers.

1 Introduction

Binary SVMs are an immensely popular classification method, and this has motivated substantial
interest in optimization solvers that are tailored to their specific problem structure. However, despite
its wider applicability, there has been much less work on solving the optimization problem associ-
ated with structural SVMs, which is the generalization of SVMs to structured outputs like graphs
and other combinatorial objects [1, 2]. This seems to be due to the difficulty of dealing with the ex-
ponential number of constraints in the primal problem, or the exponential number of variables in the
dual problem. Indeed, because they achieve an Õ(1/ε) convergence rate while only requiring a sin-
gle call to the so-called maximization oracle on each iteration, basic stochastic subgradient methods
are widely-used for training structural SVMs [3, 4]. However, these methods are often frustrating to
use for practitioners, because their performance is very sensitive to the sequence of step sizes, and
because it is difficult to decide when to terminate the iterations.

To solve the dual structural SVM problem, in this paper we consider the Frank-Wolfe [5] algorithm,
which has seen a recent surge of interest in machine learning and signal processing [6, 7, 8, 9],
including in the context of binary SVMs [10, 11]. A key advantage of this algorithm is that the
iterates are sparse, and we show that this allows us to efficiently apply it to the dual structural SVM
objective even though there are an exponential number of variables. A second key advantage of
this algorithm is that the iterations only require optimizing linear functions over the constrained
domain, and we show that this is equivalent to the maximization oracle used by subgradient and
cutting-plane [12, 13] methods. Thus, the Frank-Wolfe algorithm has the same wide applicability as
subgradient methods, and can be applied to problems such as low-treewidth graphical models [1],
graph matchings [14], and associative Markov networks [15]. In contrast, other approaches must
use more expensive oracles, such as doing a Bregman projection onto the space of structures [16],
or computing marginals over labels [17, 18] which is intractable in some of these cases. Interest-
ingly, for structural SVMs we also show that existing deterministic-subgradient and cutting-plane
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methods are special cases of Frank-Wolfe algorithms, and this leads to stronger and simpler O(1/ε)
convergence rate guarantees for these existing algorithms.

As in other structural SVM solvers like cutting-plane methods [12, 13] and the excessive gap tech-
nique [18], each Frank-Wolfe iteration unfortunately requires calling the appropriate oracle once
for all training examples, unlike the single oracle call needed by stochastic subgradient methods.
This can be prohibitive for data sets with a large number of training examples. To reduce this cost,
we propose a novel randomized block-coordinate version of the Frank-Wolfe algorithm for problems
with block-separable constraints. We show that this algorithm still achieves theO(1/ε) convergence
rate of the full Frank-Wolfe algorithm, and in the context of structural SVMs it only requires a single
call to the maximization oracle. Although the stochastic subgradient and the novel block-coordinate
Frank-Wolfe algorithms have a similar iteration cost and theoretical convergence rate for solving the
structural SVM problem, the new algorithm has several important advantages for practitioners:

• The optimal step-size can be efficiently computed in closed-form, so no step-size needs to
be selected.
• The algorithm yields a duality gap guarantee, and (at the cost of computing the primal

objective) we can compute the duality gap as a proper stopping criterion.
• The convergence rate holds even when using approximate maximization oracles.

Further, our experimental results show that the optimal step-size leads to a significant advantage
during the first few passes through the data, and a systematic (but smaller) advantage in later passes.

2 Structural Support Vector Machines

In structured prediction, the goal is to predict a structured object y ∈ Y(x) (such as a sequence
of tags) for a given input x ∈ X . In the standard approach [1, 2], a structured feature map φ :
X × Y → Rd encodes the relevant information for input/output pairs, and a linear classifier with
parameter w is defined by hw(x) = argmaxy∈Y(x)〈w,φ(x,y)〉. Given a labelled training set
D = {(xi,yi)}ni=1, w is estimated by solving

min
w

p(w) :=
λ

2
‖w‖2 +

1

n

n∑
i=1

max
y∈Yi

{L(yi,y)︸ ︷︷ ︸
=:Li(y)

−〈w,φ(xi,yi)− φ(xi,y)︸ ︷︷ ︸
=:ψi(y)

〉}. (1)

Here Li(y) denotes the task-dependent structured error of predicting y instead of the observed out-
put yi, and this is typically a Hamming distance between the two labels. Despite the combinatorial
nature of Y , as discussed in the introduction solving the inner maximization in (1) for an individual
example i can be done efficiently in many settings. A sub-routine that solves this problem is called
a maximization oracle, and having such a sub-routine allows us to apply subgradient methods to the
problem. We can also write this non-smooth optimization problem as a quadratic program with an
exponential number of constraints, and by taking the Lagrange dual of this problem, we obtain

max
α∈M

d(α) := bTα− λ
2 ‖Aα‖

2
. (2)

The number of elements m of α is
∑
i |Yi|, so this is a quadratic program with an exponential

number of variables or potential “support vectors”. The matrixA ∈ Rd×m consists of them columns
A :=

{
1
λnψi(y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

, we define b :=
(
1
nLi(y)

)
i∈[n],y∈Yi

, and the domain
M ⊂ Rm is the product of n probability simplices,M := ∆|Y1| × . . . ×∆|Yn|. The primal-dual
correspondence between w and α obtained from the KKT conditions is simply w = Aα.

3 Frank-Wolfe Algorithms

Projected-gradient methods are a natural approach for optimizing over the product of probability
simplices. However, in each iteration these methods must optimize a quadratic function over the
constraint set, and the exponential number of variables makes this intractable for (2). In contrast,
the Frank-Wolfe algorithm [5] (also known as the conditional-gradient method) only requires op-
timizing linear functions over M, and in particular computing argmins∈M 〈s,∇f(α)〉. In the
extended version of this paper [19], we show that a maximization oracle yields a solution to this
problem that has only a single non-zero element, allowing us to efficiently apply the Frank-Wolfe
algorithm to the structural SVM dual problem. We also show that this is equivalent to applying
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the deterministic subgradient method (though the Frank-Wolfe perspective allows us to use a more
clever choice of step-size within the method), and that existing cutting-plane methods are equivalent
to the “fully-corrective” variant of the Frank-Wolfe algorithm [7]. By using existing results from
the Frank-Wolfe literature [7, 8], this allows us to show that the Frank-Wolfe algorithm, as well as
deterministic subgradient and cutting-plane methods, achieve a duality gap less than ε after at most
O(1/ε) iterations for training structural SVMs.

4 Block-Coordinate Frank-Wolfe Algorithm

When applied to the structural SVM problem, the Frank-Wolfe algorithm requires n calls to the
maximization oracle on each iteration. This can make the algorithm impractical in cases where the
number of training examples n is large. In this section we consider a randomized block-coordinate
generalization of the Frank-Wolfe algorithm, where at each iteration the algorithm chooses a block i
uniformly at random and applies a Frank-Wolfe update to the block. Algorithm 1 gives the new
method, which can be applied to any convex optimization problem of the form

min
α∈M(1)×...×M(n)

f(α), (3)

where the domain has the structure of a Cartesian product M = M(1) × . . . × M(n) ⊆ Rm
over n ≥ 1 blocks (with each block convex and compact). The algorithm can be interpreted as a
variant of Nesterov’s “huge-scale” coordinate descent method [20, Section 4], where the projected-
gradient step is replaced by a Frank-Wolfe step.

Algorithm 1: Block-Coordinate Frank-Wolfe

Let α(0) ∈M =M(1) × . . .×M(n)

for k = 0 . . .K do
Pick i ∈u.a.r. [n]

Find s(i) := argmin
s′
(i)
∈M(i)

〈
s′(i),∇(i)f(αk)

〉
Set γ := 2n

k+2n , or find the optimal γ
Update αk+1

(i) := αk(i) + γ
(
s(i) −αk(i)

)
end

The block-coordinate Frank-Wolfe method can
have much cheaper iterations than the classical
Frank-Wolfe method, since each update only af-
fects a single variable block. In the context of
structural SVMs, this method only requires a sin-
gle call to the maximization oracle on each itera-
tion. Despite this, our convergence results show
that afterO(1/ε) iterations, Algorithm 1 still ob-
tains an ε-small duality gap (as in the full Frank-
Wolfe algorithm). Below, we present a special-
ization of our result to the case of structural
SVMs, where we use R := maxi,y{‖ψi(y)‖}
and Lmax := maxi,y{Li(y)}.
Theorem 1. If λn ≤ 2R2

Lmax
, then Algorithm 1 obtains an expected duality gap E[p(wk)−d(αk)] ≤ ε

after at most O
(
R2

λε

)
iterations for the primal-dual pair (1) and (2).

If λn > 2R2

Lmax
, then using γ = 2n

k+2n requires an additionalO
(
nLmax
ε

)
steps to obtain this guarantee,

and optimally setting γ requires an additional 2n log
(
λnLmax
2R2

)
steps.

In terms of ε, the O(1/ε) convergence rate above is the same as existing stochastic subgradient and
cutting-plane methods. However, unlike cutting-plane methods which require O(n) oracle calls per
iteration, this rate is achieved “online” using only a single oracle call per iteration. Further, unlike
stochastic subgradient methods, the stochastic Frank-Wolfe method does not require setting a step-
size (we can use the structure of (2) to efficiently solve for the optimal γ in closed-form), obtains
duality gap guarantees, and allows us to compute the current duality gap in order to aid in deciding
when to terminate the algorithm (at the cost of an extra pass through the data).

5 Experiments

We compare our novel Frank-Wolfe approach to existing algorithms for training structural SVMs
on the OCR dataset (n = 6251, d = 4028) from [1] and the CoNLL dataset (n = 8936, d = 1643026)
from [21]. Both datasets are sequence labeling tasks, where the loss-augmented decoding problem
can be solved exactly by the Viterbi algorithm. Our third application is a word alignment problem
between sentences in different languages in the setting of [16] (n = 5000, d = 82).

The methods in our comparison are the batch Frank-Wolfe algorithm with line-search (FW) and
our novel block-coordinate Frank-Wolfe (BCFW) method with line-search, the cutting plane al-
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(a) OCR dataset, λ = 0.01.
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(b) OCR dataset, λ = 0.001.
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(c) OCR dataset, λ = 1/n.
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(d) CoNLL dataset, λ = 1/n.
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(e) Test error for λ = 1/n on CoNLL.
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(f) Matching dataset, λ = 0.001.

Figure 1: The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and
best objective achieved in 10 randomized runs. The top row compares the suboptimality achieved by different
solvers for different regularization parameters λ. For large λ (a), the stochastic algorithms (BCFW and SSG)
perform considerably better than the batch solvers (cutting plane and FW). For a small λ (c), even the batch
solvers achieve a lower objective earlier on than SSG. Our proposed BCFW algorithm achieves a low objective
in both settings. (d) shows the convergence for CoNLL with the first passes in more details. Here BCFW
already results in a low objective even after seeing only few datapoints. The same can be observed for the test
error in (e). Finally, (f) compares the stochastic methods for the matching prediction task.

gorithm implemented in SVMstruct [12] with its default options, the online exponentiated gradient
(online-EG) method of [17], the stochastic subgradient method (SSG) with step-size chosen as in the
“pegasos” version of [4], and the optimal stochastic subgradient (SSG-tavg) method of [22] which
is the same as SSG but the second half of the iterates are averaged (yielding a faster convergence
rate ofO(1/k) instead ofO (log k/k)). Analogously, BCFW-tavg uses averaging in the second half.
The performance of the different algorithms according to several criteria is visualized in Figure 1.
Additional experiments and a more detailed discussion can be found in the full version of this pa-
per [19]. In most of the experiments, the randomized block-coordinate Frank-Wolfe dominates all
competitors. The superiority is especially striking for the first few iterations, and when using a small
regularization strength λ, which is often needed in practice.

6 Discussion

Related Work There has been substantial work on dual coordinate ascent for SVMs, including
the original SMO algorithm, but few of these lead to rate guarantees in the structured case. The
SMO algorithm was generalized to structural SVMs [15, Chapter 6], but this requires something
equivalent to an expectation oracle and its convergence rate seems to scale badly with the size of the
output space. [23] consider optimizing one training example at a time using multiple Frank-Wolfe
updates, but do not obtain any rate guarantees. Our stochastic Frank-Wolfe algorithm is equivalent
to the method of [24] in the degenerate binary SVM case. [24] shows a local linear convergence
rate in the dual, and our result complements this result by providing duality gap guarantees for their
algorithm. Another generalization of [24] to the structured case is [25], but without rate guarantees.
Approximate Maximization Oracles Interestingly, our convergence rates still hold for appropri-
ately defined approximate maximization oracles. For structural SVMs, this significantly improves
the applicability to large-scale problems, where in some cases exact maximization may be too costly
but approximate maximization is possible.
Kernelized Algorithms Our Algorithm 1 can directly be used with kernels by maintaining the
sequence of sparse dual variables αk. We note that this leads to the currently best known upper
bound on the number of support vectors, since we are guaranteed an ε accuracy using only O(R

2

λε )
support vectors.
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