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Abstract

The purpose of this paper is to develop new efficient approach based on DC (Dif-
ference of Convex functions) programming and DCA (DC Algorithm) for cluster-
ing using weighted dissimilarity measures which is formulated as a hard combi-
natorial optimization problem. DC reformulation technique and exact penalty in
DC programming are developed to build an appropriate equivalent DC program
which leads to an explicit DCA scheme. Numerical results on real word datasets
show the efficiency, the scalability of DCA and its superiority with respect to
standard algorithm.

1 Introduction

Clustering, which aims at dividing a data set into groups or cluster containing similar data, is a
fundamental problem in unsupervised learning and has many applications in various domains.
Usually, the distance function involves all attributes of the data set. It is applicable if most at-
tributes are important to every cluster. However, the performance of clustering algorithms can
be significantly degraded if many irrelevant attributes are used. In the literature, various ap-
proaches have been proposed to address this problem. The first strategy is feature selection that
finds irrelevant features and removes them from the feature set before constructing a classifier.
Feature weighting is an extension of the feature selection where the features are assigned contin-
uous weights. Relevant features correspond to a high weight value, whereas a weight value close
to zero represent irrelevant features.

Let X := {x1, x2, ..., xn} be a data set of n entities in IRm and the known number of clusters k
(2 ≤ k ≤ n). Denote by Λ a k ×m matrix defined as Λ = (λl,i) where λl,i defines the relevance

of i-th feature to the cluster Cl. Let W = (wj,l) ∈ IRn×k with j = 1, . . . , n and l = 1, . . . , k be the
matrix defined by: wj,l := 1 if xj ∈ Cl; wj,l := 0 otherwise. We are to partition the set X into k
clusters in order to minimize the sum of squared distances from the entities to the centroid of their
cluster. The dissimilarity measure is defined by m weighted attributes. Then a straightforward
formulation of the clustering using weighted dissimilarity measures is (β is an exponent greater
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than 1):


















































minF (W, Z, Λ) :=
k
∑

l=1

n
∑

j=1

m
∑

i=1

wjlλ
β
li(zli − xji)

2

s.t :
k
∑

l=1

wjl = 1, j = 1..n,

m
∑

i=1
λli = 1, l = 1..k,

wjl ∈ {0, 1}, j = 1..n, l = 1..k,

λli ∈ [0, 1], l = 1..k, i = 1..m.

(1)

Problem (1) is a hard combinatorial optimization problem for which no efficient global algorithm
is available. The problem is difficult not only because it is combinatorial but also due to the
nonconvexity of the objective function. In [2], the authors consider a K-means type algorithm,
denoted WF-K-means, to solve the problem (1). At first, WF-K-means fixes Z, Λ and finds W to
minimize F (W, ., .). Then W, Λ are fixed for finding Z minimizing F (., Z, .). Finally, Λ is obtained
by minimizing F (., ., Λ) with W and Z fixed. The process is repeated until no more improvement
in the objective function can be made.

We investigate in this work, for solving the problem (1), an efficient nonconvex programming ap-
proach based on DC (Difference of Convex functions) programming and DCA (DC Algorithms)
that were introduced by Pham Dinh Tao in a preliminary form in 1985. They have been exten-
sively developed since 1994 by Le Thi Hoai An and Pham Dinh Tao and become now classic and
increasingly popular (see e.g. [3, 4] and the list of references in [6]).

The remainder of the paper is organized as follows. The solution of the problem (1) by DCA is
developed in Section 2. Finally, computational results are reported in the last section.

2 DCA for solving problem (1)

2.1 Outline of DC programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth nonconvex program-
ming and global optimization. They address the problem of minimizing a function f which is the

difference of two convex functions on the whole space IRd or on a convex set C ⊂ IRd. Generally
speaking, a DC program is an optimisation problem of the form :

α = inf{f(x) := g(x)− h(x) : x ∈ IRd} (Pdc)

where g, h are lower semi-continuous proper convex functions on IRd. The idea of DCA is simple:
each iteration l of DCA approximates the concave part −h by its affine majorization (that corre-
sponds to taking yl ∈ ∂h(xl)) and minimizes the resulting convex function (that is equivalent to
determining a point xl+1 ∈ ∂g∗(yl) with g∗ is the conjugate function of the convex function g).

The generic DCA scheme is shown below.

DCA scheme Initialization: Let x0 ∈ IRd be a best guess, r = 0.

Repeat

• Calculate yr ∈ ∂h(xr)

• Calculate xr+1 ∈ arg min{g(x)− h(xr) − 〈x− xr, yr〉 : x ∈ IRd} (Pl)

• r = r + 1

Until convergence of {xr}.

For a complete study of DC programming and DCA the reader is referred to [3, 4], and the refer-
ences therein.

2.2 A continuous reformulation of problem (1)

Since wj,l ∈ {0, 1} we can replace wj,l by w2
j,l and rewrite the objective function of (1) by

F (W, Z, Λ) :=
k
∑

l=1

n
∑

j=1

m
∑

i=1
w2

jlλ
β
li(zli − xji)

2.
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In the problem (1) the variables W and Λ are a priori bounded. One can also find a constraint for
bound the variable Z. Indeed, let αi := minj=1,...,n xj,i, γi := maxj=1,...,n xj,i. Hence zl ∈ Tl :=
Πm

i=1 [αi, γi] for all l = 1, ..., k. Finally, Z ∈ T := Πk
l=1Tl.

Let ∆l (resp. Cj) be the (m− 1)-simplex in IRm(resp. (k − 1)-simplex in IRk), for each l ∈ {1, ..., k}
(resp. for each j ∈ {1, ..., n}), defined by

∆l :=

{

Λl := (λl,i)l ∈ [0, 1]m :
m
∑

i=1
λl,i = 1

}

, Cj :=

{

Wj := (wj,l)j ∈ [0, 1]k :
k
∑

l=1

wj,l = 1

}

and C := Πn
j=1 Cj , T := Πk

l=1 Tl, ∆ := Πk
l=1∆l. The problem (1) can be rewritten as:

min
{

F (W, Z, Λ) : W ∈ C ∩ {0, 1}
n×k

, Z ∈ T , Λ ∈ ∆
}

. (2)

Consider the function p defined on IRn×k by p(W ) :=
n
∑

j=1

k
∑

l=1

wj,l(1− wj,l). Clearly that p is finite

concave on IRn×k, nonnegative on C, and

C ∩ {0, 1}n×k = {W ∈ C : p(W ) = 0} = {W ∈ C : p(W ) ≤ 0}.

F (W, Z, Λ) is a DC function (cf. 2.3), the feasible set is bounded convex, using the exact penalty
theorem [5], we can now write (1) in the form of the following nonconvex program in continuous
variables (t > t0 ≥ 0 is called penalty parameter):

min{F1(W, Z, Λ) := F (W, Z, Λ) + tp(W ) : W ∈ C, Z ∈ T , Λ ∈ ∆} , (3)

In the next section, we will develop DC programming and DCA for solving (3).

2.3 A DC decomposition of (3)

Proposition 1 There exists ρ > 0 such that the function h(u, v, y) := ρ
2

(

u2 + v2 + y2
)

− u2yβ(v − a)2

is convex on (u, v, y) ∈ [0, 1]× [α, γ]× [0, 1].

Using the above proposition, for u← wjl, v ← zli, y← λli, the function

hlij(wjl, zli, λli) =
ρ

2

(

w2
jl + z2

li + λ2
li

)

− w2
jlλ

β
li(zli − xji)

2 (4)

is convex on {wjl ∈ [0, 1], zli ∈ [αi, γi], λli ∈ [0, 1]}.

As a consequence, the function H(W, Z, Λ) defined by

H(W, Z, Λ) :=

k
∑

l=1

n
∑

j=1

m
∑

i=1

[ρ

2

(

w2
jl + z2

li + λ2
li

)

− w2
jlλ

β
li(zli − xji)

2
]

(5)

is convex on {W ∈ C, Z ∈ T , Λ ∈ ∆}. Finally, we can express our DC decomposition as follows:

F1(W, Z, Λ) := G1(W, Z, Λ)−H1(W, Z, Λ) (6)

with

G1(W, Z, Λ) :=
ρ

2

k
∑

l=1

n
∑

j=1

m
∑

i=1

(

w2
jl + z2

li + λ2
li

)

; H1(W, Z, Λ) := H(W, Z, Λ)− tp(W )

being clearly convex functions.

2.4 DCA applied to (3)

For designing a DCA applied to (3), we first need to compute (W̄ r, Z̄r, Λ̄r) ∈ ∂H1(W
r , Zr, Λr)

and then have to solve the convex program

min







ρ

2

k
∑

l=1

n
∑

j=1

m
∑

i=1

(

w2
jl + z2

li + λ2
li

)

− 〈(W, Z, Λ), (W̄ r, Z̄r, Λ̄r)〉 : W ∈ C, Z ∈ T , Λ ∈ ∆







. (7)
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The function H1 is differentiable and its gradient at the point (W r, Zr , Λr) is given by:

W̄ r = ∇WH1(W, Z, Λ) =

(

mρwjl −
m
∑

i=1

2wjlλ
β
li(zli − xji)

2 + t(2wjl − 1)

)l=1..k

j=1..n

,

Z̄r = ∇ZH1(W, Z, Λ) =

(

nρzli −
n
∑

j=1

2w2
jlλ

β
li(zli − xji)

)i=1..m

l=1..k

,

Λ̄r = ∇ΛH1(W, Z, Λ) =

(

nρλli −
n
∑

j=1

βw2
jlλ

β−1
li (zli − xji)

2

)i=1..m

l=1..k

.

(8)

The solution of the auxiliary problem (7) is explicitly computed as (Proj stands for the projection)

(W r+1)j = ProjCj

(

1
mρ

(W̄ r)j

)

j = 1, ...n; (Zr+1)li = Proj[αi,γi ]

(

1
nρ

(Z̄r)li

)

l = 1, .., k, i = 1, ...m;

(Λr+1)l = Proj∆l

(

1
nρ

(Λ̄r)l

)

l = 1, ...k.

(9)

The algorithm can be described as follows.

WF-DCA: DCA applied to (3)

• Initialization: Choose W 0, Z0 and Λ0. Let ε > 0 be sufficiently small, r = 0.

• Repeat

◦ Compute (W̄ r , Z̄r, Λ̄r) via (8).

◦ Compute (W r+1 , Zr+1, Λr+1) via (9).

◦ r = r + 1

• Until ‖(W r+1, Zr+1, Λr+1) − (W r , Zr, Λr)‖ ≤ ε or |F (W r+1, Zr+1, Λr+1) −
F (W r, Zr, Λr)| ≤ ε.

3 Numerical experiments

Numerical experiments were performed on 7 real-world datasets: Breast Cancer Wiscosin, Iono-
sphere, Wine, Vote, Wave form, Pima and Magic taken from UCI Machine Learning Repository. All
algorithms clustering was implemented in the Visual C++ 2008, and performed on a PC Intel i5
CPU650, 3.2 GHz of 4GB RAM. The information about data sets is summarized in Table 1.

The following criteria were used to compare the performances of algorithms: the percentage of
well classified points (PWCO), the CH value and the CPU time in seconds.

The PWCO is measured by the clustering accuracy defined as:

PWCO :=
1

n

k
∑

j=1

aj ∗ 100%

where aj is the number of instances occurring in both cluster j and its corresponding generated
cluster label. Good clustering is distinguished by large value of PWCO.

The CH value, introduced by Calinski and Harabasz ([7, 1]), is expressed as follows:

CH(k) :=
[traceB/(k − 1)]

[traceW/(n− k)]

where

traceB :=

k
∑

i=1

|Ci| ‖Ci − x‖2; traceW :=

k
∑

i=1

∑

j∈Ci

‖xj − Ci‖
2

with |Ci| is the number of objects assigned to the cluster Ci (i = 1, . . . , k); Ci = 1
|Ci|

∑

j∈Ci

xj and

x = 1
n

n
∑

i=1

xi.
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Table 1: Comparative results between WF-DCA and WF-K-means
Data WF-K-means WF-DCA

n m k PWCO CH Time PWCO CH Time

Breast Cancer 683 9 2 95,01% 979 0,04 96,43% 1007 0,08
Ionosphere 351 34 2 64,76% 21 0,03 72,65% 157 0,30
Wine 178 13 3 92,98% 80 0,03 95,06% 81 0,05
Vote 435 16 2 84,94% 149 0,04 87,84% 157 0,07
Wave 5000 40 3 49,49% 885 14,90 60,03% 1705 4,47
Pima 768 8 2 64,06% 11 0,09 71,09% 502 0,02
Magic 19020 3 2 55,31% 1266 4,22 65,29% 9348 13,68
Average 72,34% 498 2,78 78,14% 1845 2,90

We report in Table 1, the average results (of ten executions) of WF-DCA and WF-K-means([2])
algorithms.

From the numerical results, we observe that: in all experiments, WF-DCA gives better solutions
(not only by the value PWCO, but also by the value CH) without a big increase in the CPU time.

Conclusion: we have rigorously studied the DC programming and DCA for clustering using
weighted feature. Based on the reformulation technique and exact penalty in DC programming,
the hard combinatorial optimization model has been recast as a DC program. It fortunately turns
out that the corresponding DCA consists in computing, at each iteration, the projection of points
onto a simplex and/or a rectangle, that all are given in the explicit form. Computational exper-
iments show the efficiency and the superiority of DCA with respect to the standard algorithm
WF-K-means([2]).
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