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The implicit regularization effects of
using a large learning rate in SGD can be

introduced explicitly by regularizing the
trace of the Fisher Information Matrix.

Introduction

Implicit regularization in gradient-based
training of deep neural networks (DNNs)
remains relatively poorly understood
despite being considered a critical
component in their empirical success

Our main contribution is to show that the
implicit regularization effect of using a
large learning rate or a small batch size
can be modeled as an implicit
penalization of the trace of the FIM.
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Figure 1. The catastrophic Fisher
explosion phenomenon demonstrated for
Wide ResNet trained using SGD on the
TinylmageNet dataset. Training is done with
either a learning rate optimized using grid
search, or a small learning rate. Training with
the latter leads to large overfitting (top) and
a sharp increase in Tr(F) (bottom).

Fisher Penalty

To regularize Tr(F), we add the following term to
the loss function:
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Fisher Penalty resembles implicit
regularization in SGD

First, we use a learning rate 10-30x smaller than the
optimal one, which incurs up to 9% degradation in
test accuracy and results in large value of Tr(F).
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Figure 2. Fisher Penalty applied to VGG11 trained
on CIFAR-100. Left: Training using small learning rate
and Fisher Penalty can result in better generalization
than training with large learning rate. Right: Using
Fisher Penalty results in achieving smaller Tr(F).

Fisher Penalty reduces memorization

We also investigated the impact of penalizing Tr(F)
on learning on data with noisy labels.
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Figure 3. Fisher Penalty applied to VGG11
trained on CIFAR-100 with 20% random labels.
Training speed on noisy examples (dotted line) is
disproportionally more affected by Fisher Penalty
than training speed on clean examples (solid line).



