VALTAN

SoOMila tniveriie (Hh Stochastic Polyak Step-size for SGD:

\/\/

el * An Adaptive L ing R for F C
de Montréal n aptive Learning Rate for rast Convergence -
o . . . . . . <~ Mc(31ll
SRR IVADO Nicolas Loizou®  Sharan Vaswani® Issam Laradji® Simon Lacoste-Julien® G
N Gl e 'Mila, UdeM 2 University of Alberta 3 McGill, Element Al
The Problem Main Assumption Summary of Convergence Analysis Results
I n ) Finite optimal objective difference . . .
min | f(z) = l Z filz)| . (1) p et J Assumptions Quantity Convergence Neighborhood
zeR? | n i ] o = E;|fi(x") — f'] = fa") = E;|f/] < o0 (6) Strongly Convex El|z" — 2*[]? Linear X 7,, 0
~k * : : 2
We assume f and f; are smooth functions. This is a very weak assumption. Moreover when (1) is the training Convex D _f (5’5]) — f(7)| |sublinear: O(1/k) X Y, O 2
Depending on the model under study, the functions f and f; can problem of an over-parametrized model, each individual loss function Polyak-Lojasiewicz (PL) ELf(«") = f(z7) Linear XNy O
either be strongly-convex, convex, or non-convex. fi attains its minimum at 2%, and thus fi(z*) — fi = 0. In this NBD_COHVGX 2 min B[V f(2")[|* |sublinear: O(1/k) X Yy 0
’ ’ - - SR _ E[[V fi@)|IF] < plIVf()]["+ 9
y _ | interpolation setting, it follows that o = 0.
- X* C R to be the set of optimal points z* of (1) (X™* £ ()
. f* . minimum value of f Comparison to the variance z° = E[||V fi(x*)]|. . . . .
| | o If we assume that all function f; are u-strongly convex and L-smooth Experimental Evaluation: Synthetic experiment
« Foreach v € {1,...,n}: | f| = inf fi(x) functions then, 22 < o2 < izg
| Logistic L2 loss Logistic loss
- : Evaluating f’
SGD and the Stochastic Polyak Step-size i o |
. \“ 10—1.
. . . Standard unregularized surrogate loss functions have 8 o
SGD: 2" =a" — 3,V fi(z") (2) 1.5 =0 (Bartlett et al., 2006). Examples: é AN M AMA~
. g . A A,
Example ¢ € |n] is chosen uniformly at random and ~; > 0 is the - squared loss for regression, 101 W\a- Mg .
. . I A——
step-size. For step-size we propose to use the: = logistic loss for classification,
Stochastic Polyak Step-size (SPS): = exponential loss (Adaboost algorithm), o T 2 50 40 50 6 T 20 30 40 50
epoc epoc
FilzF) — 2 = hinge loss (support vector machines) —B- sps_max (1) === spsmax(5) —k— sps_max (100) sgd (1e-1) sgd (Le-2)
SPS: Yk = - (3)
c|[V fi(x")]|? ;. | Synthetic experiment to benchmark SPS against constant step-size SGD for binary classification using the (left) regularized and (right)
and its more conservative variant: " fgﬁigﬂm. unregularized logistic loss.
SPSpax @ |7k = min fila") — I Y (4) o : :
max c||V (k)27 " fiz) s Experiments for over-parametrized models
Here v, > 0 is a bound that restricts SPS from being very large and | | | “
is essential to ensure convergence to a small neighborhood around 0.5 QK . matrix fac (rank 4) 0.7, matrix fac (rank 10) - mushrooms - ijcnn
the solution. If v, = oo then SPS, . is equivalent to SPS. e R | 0.6 0.6
b bi (Ai,x) 0-6
05 0.5 0.5
Upper and Lower Bounds of SPS For the regularized case (e.g. {; regularization): 204 04 041
* can be pre-computed in closed form for each ¢ using: Eos . -
If functions f; in problem (1) are p;-strongly convex and L;-smooth, it canbe p P 5 0o 0.2] 0.2]
then: « Lambert W function (Corless et al., 1996). - 01! -
1 1 fi(x®) — fF 1 « or the more general r-Lambert function (Mezo and Baricz, 2017). 0.0 L‘*_"‘*‘“"“ — e " —— — o R | . s 0.0 | | |
< < /-yk — < : (5) 0 10 20e och30 40 50 0 10 20e OChBO 40 50 0 10 . OChZO 30 0 10 . OChZO 30
2¢Lyax — 2¢L; c||V fi(x®)||? = 2cuy i i i "
CIFAR1O - ResNet34 0.94 CIFAR1O - ResNet34 101 CIFAR1O - ResNet34
where Ly = max{L;}iL;. Convergence Analysis o
100} 931
Main Contributions 0.92]
Theorem 8107 0.911
« We propose a novel adaptive learning rate for SGD: Stochastic 8 0.90
Polyak Step-size (SPS), which is a stochastic variant of the Let f; be Li-smooth convex functions with at least one of them 5107 0.89
classical Polyak step-size (for GD) (Polyak, 1987). being a strongly convex function. 5GD with SPS5y. with ¢ > 0.8
Attractive choice for typical modern machine learning 1/2 converges as: 1073 .
applications. I ) N S ,  2v.0° |
E|lz° — z*||* < (1 — pa)” ||z — =™||* + ——, 7 - - - 0.86 - - - 107 - - -
- Convergence guarantees of SGD with SPS: Strongly convex, | I"< (1= pa)7] | e, (7) ° o A >0 Mooch 0 200 0 e
Convex and Non-convex functions. where o ‘= min{chl V. ), = E[w;] and Ly = max{L;}",. CIFAR100 - ResNet34 076 CIFAR100 - ResNet34 CIFAR100 - ResNet34
« Our results require very weak assumptions. In particular, we do The best convergence rate and the tightest neighborhood are 102.
not assume bounded second moment of the gradients for every x obtained for ¢ = 1/2. 10°- 0.741 1ot
or bounded variance. We rely on the Optimal Objective - 2 07
Difference (see (6)). %10_1 5
= Novel analysis for constant step-size SGD. Corollaries: (_;U -%0-70'
« For Over-parametrized models (Interpolation Condition is - Assume interpolation (o = 0). SGD with SPS with ¢ = 1/2 102 50_68_
satisfied), we guarantee: fast convergence to the true solution converges as: E||z* — z*||? < (1 — LL) |29 — x*]]%.
(like deterministic GD). = Ity < Ll = then method becomes 5GD with constant 107 | | | o | | | o5 | | |
= Fxtensive experimental evaluation. step-size 7 < L1 and converges as 0 50 Lo 150 200 50 10 190 200 0 50 Loo 150 200
- 9 9 —@— radam -l adam alig —4— lookahead =>é sls =—&— sps max
o
Ellz" — 2*|* < (1 — )" [|l2” — 2" + =~ | . | - | P .
f Comparing the performance of optimizers on deep matrix factorization (top left) and binary classification using kernels (top right) and

multi-class classification on CIFAR-10 and CIFAR-100 with ResNet34.



