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Abstract
Although ADAM is a very popular algorithm for optimizing the weights of neural networks, it
has been recently shown that it can diverge even in simple convex optimization examples. Several
variants of ADAM have been proposed to circumvent this convergence issue. In this work, we study
the ADAM algorithm for smooth nonconvex optimization under a boundedness assumption on the
adaptive learning rate. The bound on the adaptive step size depends on the Lipschitz constant of
the gradient of the objective function and provides safe theoretical adaptive step sizes. Under this
boundedness assumption, we show a novel first order convergence rate result in both deterministic
and stochastic contexts. We further establish convergence rates of the function value sequence
using the Kurdyka-Łojasiewicz property.

1. Introduction

Consider the unconstrained optimization problem minx∈Rd f(x),where f : Rd → R is a differen-
tiable map and d is an integer. Gradient descent is one of the most classical algorithms to solve this
problem. Since the seminal work Robbins and Monro [33], its stochastic counterpart became one of
the most popular algorithms to solve machine learning problems (see Bottou et al. [9] for a recent
survey). Recently, a class of algorithms called adaptive algorithms which are variants of stochastic
gradient descent became very popular in machine learning applications. Using a coordinate-wise
step size computed using past gradient information, the step size is adapted to the function to op-
timize and does not follow a predetermined step size schedule. Among these adaptive algorithms,
ADAM [18] is very popular for optimizing the weights of neural networks. However, recently,
Reddi et al. [32] exhibited a simple convex stochastic optimization problem over a compact set
where ADAM fails to converge because of its short-term gradient memory. Moreover, they pro-
posed an algorithm called AMSGRAD to fix the convergence issue of ADAM . This work opened the
way to the emergence of other variants of ADAM to overcome its convergence issues (PADAM[39],
YOGI[38], ADABOUND[25], ADASHIFT [40], NADAM [13], QHADAM [26], RADAM [23] etc., see
Appendix A for a detailed review). In this work, under a bounded step size assumption, we propose
a theoretical analysis of ADAM for nonconvex optimization.

Contributions.

• We establish a convergence rate for ADAM in the deterministic case for nonconvex optimization
under a bounded step size. This algorithm can be seen as a deterministic clipped version of ADAM
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which guarantees safe theoretical step sizes. More precisely, we show aO(1/n) convergence rate
by introducing a suitable Lyapunov function.

• We show a similar convergence result to Zaheer et al. [38, Thm. 1] for nonconvex stochastic op-
timization up to the limit of the variance of stochastic gradients under an almost surely bounded
step size. In comparison to the literature, we relax the hypothesis of the boundedness of the gradi-
ents and improve the dependency of the convergence result on the dimension d of the parameters.

• We propose a convergence rate analysis of the objective function of the algorithm using the
Kurdyka-Łojasiewicz (KŁ) property. To the best of our knowledge, this is the first time such
a result is established for an adaptive optimization algorithm.

2. A Momentum Algorithm with Adaptive Step Size

Notations. All operations between vectors of Rd are to read coordinatewise. The vector of ones of
Rd is denoted by 1. When a scalar is added to a vector, it is added to each one of its coordinates.
Inequalities are also to be read coordinatewise. If x ∈ Rd, x ≤ λ ∈ R means that each coordinate
of x is smaller than λ.
We investigate the following algorithm defined by two sequences (xn) and (pn) in Rd:{

xn+1 = xn − an+1pn+1

pn+1 = pn + b (∇f(xn)− pn)
(1)

where ∇f(x) is the gradient of f at point x, (an) is a sequence of vectors in Rd with positive
coordinates, b is a positive real constant and x0, p0 ∈ Rd.
Algorithm (1) includes the classical Heavy-ball method as a special case, but is much more general.
Indeed, we allow the sequence of step sizes (an) to be adaptive : an ∈ Rd may depend on the
past gradients gk := ∇f(xk) and the iterates xk for k ≤ n. We stress that the step size an is a
vector of Rd and that the product an+1pn+1 in (1) is read componentwise (this is equivalent to the
formulation with a diagonal matrix preconditioner applied to the gradient [2, 16, 27]). This vector
step size formulation includes all adaptive step size algorithms as special cases. In particular, ADAM

[18] defined by the iterates : 
xn+1 = xn − a

ε+
√
vn+1

pn+1

pn+1 = pn + b (∇f(xn)− pn)

vn+1 = vn + c (∇f(xn)2 − vn)

(2)

for constants a ∈ R+, b, c ∈ [0, 1], can be seen as an instance of this algorithm by setting an =
a

ε+
√
vn

where the vector vn, as defined above, is an exponential moving average of the gradient
squared. For simplification, we omit bias correction steps for pn+1 and vn+1.
We introduce the main assumption on the objective function which is standard in gradient-based
algorithms analysis.

Assumption 2.1 The mapping f : Rd → R satisfies the following
(i) f is continuously differentiable and its gradient∇f is L−Lipschitz continuous,

(ii) f is bounded from below, i.e., infx∈Rd f(x) > −∞ .

2



3. First Order Convergence Rate

3.1. Deterministic setting

Let (Hn)n≥0 be a sequence defined for all n ∈ N by Hn := f(xn) + 1
2b〈an, p

2
n〉 .

We further assume the following step size growth condition.

Assumption 3.1 There exists α > 0 s.t. an+1 ≤ an
α .

Note that this assumption is satisfied for ADAM with α =
√

1− c where c is the parameter in (2).
Unlike in AMSGRAD [32], the step size is not necessarily nonincreasing.
We now establish a key lemma which will give us a descent property under mild assumptions. We
provide a proof of this result in Appendix B.1.

Lemma 1 Let Assumptions 2.1 and 3.1 hold true. Then, for all n ∈ N, for all u ∈ R+,

Hn+1 ≤ Hn − 〈an+1p
2
n+1, An+1〉 −

b

2
〈an+1(∇f(xn)− pn)2, B1〉 , (3)

where An+1 := 1− an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
and B := 1− |b− (1− α)|u

b
− (1−α)

We can now state a sublinear convergence rate for the minimum of the gradients norms until time
n.

Theorem 2 Let Assumptions 2.1 and 3.1 hold true. Suppose that 1 − α < b ≤ 1. Let ε > 0 s.t.
asup := 2

L

(
1− (b−(1−α))2

2bα − 1−α
2b − ε

)
is nonnegative. Let δ > 0 s.t. for all n ∈ N,

δ ≤ an+1 ≤ min
(
asup,

an
α

)
. (4)

(i) The sequence (Hn) is nonincreasing and
∑

n ‖pn‖2 <∞.
In particular, limxn+1 − xn → 0 and lim∇f(xn)→ 0 as n→ +∞.

(ii) For all n ≥ 1, min0≤k≤n−1 ‖∇f(xk)‖2 ≤ 4
nb2

(
H0−inf f

δε + ‖p0‖2
)

.

Unlike most of the theoretical results for variants of ADAM [10, 25, 32, 39, 41], we remark that
the bound (ii) does not depend on the dimension d of the parameter xk. Moreover, remark that
the step size bound almost matches the classical 2/L upperbound on the step size of gradient de-
scent. Perhaps, the closest idea to our algorithm is the recent ADABOUND [25] which considers a
dynamic learning rate bound. Our approach is different : we propose a static bound on the adap-
tive learning rate which depends on the Lipschitz constant of the objective function. In particular,
this bound stems naturally from our theoretical derivations and is not to be chosen by the user (see
Appendix A.4 for a discussion).

3.2. Stochastic setting

We establish a similar bound in the stochastic setting. Consider the problem of finding a local
minimizer of the expectation F (x) := E(f(x, ξ)) w.r.t. x ∈ Rd, where f : Rd × Ξ → R is a mea-
surable map and f( . , ξ) is a possibly nonconvex function depending on some random variable ξ.
The distribution of ξ is assumed to be unknown, but revealed online by the observation of iid copies
(ξn : n ≥ 1) of the r.v. ξ. For a fixed value of ξ, the mapping x 7→ f(x, ξ) is supposed to be
differentiable, and its gradient w.r.t. x is denoted by ∇f(x, ξ). We study a stochastic version of
Algorithm (1) by replacing the deterministic gradient∇f(xn) by∇f(xn, ξn+1).
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Theorem 3 Let Assumption 2.1 (for F ) and Assumption 3.1 hold true. Assume the following bound
on the variance in stochastic gradients: E‖∇f(x, ξ) − ∇F (x)‖2 ≤ σ2 for all x ∈ Rd. Suppose
moreover that 1−α < b ≤ 1. Let ε > 0 s.t. āsup := 1

L

(
1− (b−(1−α))2

bα − 1−α
b − ε

)
is nonnegative.

Let δ > 0 s.t. for all n ≥ 1, almost surely,

δ ≤ an+1 ≤ min
(
āsup,

an
α

)
. (5)

Then,

E[‖∇F (xτ )‖2] ≤ 4

nδb2α

(
H0 − inf f

ε
+ ‖
√
a0p0‖2 +

nāsupσ
2

2ε

)
,

where xτ is an iterate uniformly randomly chosen from {x0, · · · , xn−1}.

The proof is defered to the appendix. In the special case where there is no momentum in the
algorithm (i.e. RMSPROP) and assuming that the gradients are bounded, a similar convergence rate
is obtained in Zaheer et al. [38, Thm. 1] (see Appendix A.4).

4. Convergence rate analysis under the KŁ property

Historically introduced by the fundamental works of Łojasiewicz [24] and Kurdyka [19], the KŁ
inequality is the key tool of our analysis. We refer to Bolte et al. [6] for an in-depth presentation
of this property. The KŁ inequality is satisfied by a broad class of functions including nonsmooth
deep neural networks built from activation functions such as ReLU (max(0, t)) and pieces such
as quadratics t2 and log-exp (log(1 + et)) (see Bolte et al. [7, Appendix] for more examples of
functions). Indeed, this inequality is verified for the large class of functions which are definable in
an o-minimal structure [19], a class which is stable under all the typical functional operations in
optimization (e.g. sums, compositions, inf-projections).
The KŁ inequality has been used to show the convergence of several first-order optimization meth-
ods towards critical points [3–5, 7, 15, 21]. In this section, we use a methodology exposed in Bolte
et al. [8, Appendix] to show convergence rates based on the KŁ property. We modify it to encom-
pass momentum methods. Note that although this modification was initiated in Ochs [28], Ochs
et al. [29], we use a different separable Lyapunov function. To the best of our knowledge, this is the
first time such a KŁ-based analysis is proposed for an adaptive algorithm.
Consider the function H : Rd × Rd → R defined for all z = (x, y) ∈ Rd × Rd by

H(z) = H(x, y) = f(x) +
1

2b
‖y‖2 . (6)

Notice that Hn = f(xn) + 1
2b〈an, p

2
n〉 = H(xn, yn) where (yn)n∈N is a sequence defined for all

n ∈ N by yn =
√
anpn.

Assumption 4.1 f is coercive i.e. lim f(x) = +∞ as ‖x‖ → +∞.

Define [α < H < β] := {z ∈ R2d : α < H(z) < β} . Let η > 0 and define

Φη := {ϕ ∈ C0[0, η) ∩ C1(0, η) : ϕ(0) = 0 , ϕ concave andϕ′ > 0} .

where C0[0, η) is the set of continuous functions on [0, η) and C1(0, η) is the set of continuously
differentiable functions on (0, η) .
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Definition 4 (KŁ property, Bolte et al. [8, Appendix]) A proper and lower semicontinuous (l.s.c)
function H : R2d → (−∞,+∞] has the KŁ property locally at z̄ ∈ domH if there exist η > 0,
ϕ ∈ Φη and a neighborhood U(z̄) s.t. for all z ∈ U(z̄) ∩ [H(z̄) < H < H(z̄) + η] :

ϕ′(H(z)−H(z̄)) ‖∇H(z)‖ ≥ 1 . (7)

When H(z̄) = 0, we can rewrite Equation (7) as : ‖∇(ϕ ◦ H)(z)‖ ≥ 1 for suitable z points.
This means that H becomes sharp under a reparameterization of its values through the so-called
desingularizing function ϕ. Indeed, it transforms a region where the gradients are arbitrarily small
into a region where gradients are lowerbounded, away from zero. The function H is said to be a KŁ
function if it has the KŁ property at each point of the domain of its gradient.

Definition 5 (KŁ exponent) If ϕ can be chosen as ϕ(s) = c̄
θs
θ for some c̄ > 0 and θ ∈ (0, 1] in

Theorem 4, then we say that H has the KŁ property at z̄ with an exponent of θ 1. We say that H is
a KŁ function with an exponent θ if it has the same exponent θ at any z̄.

Furthermore, ifH is a proper closed semialgebraic function, thenH is a KŁ function with a suitable
exponent θ ∈ (0, 1] . The slope of ϕ around the origin informs about the "flatness" of a function
around a point. Hence, the KŁ exponent allows to obtain convergence rates. In the light of this
remark, we state one of the main results of this work.

Theorem 6 (Convergence rates) Let (zk)k∈N be the sequence defined for all k ∈ N by zk =
(xk, yk) where yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from a starting point z0. Let

Assumptions 2.1, 3.1 and 4.1 hold true. Assume that Condition (4) holds. Suppose moreover that H
is a KŁ function with KŁ exponent θ. Denote by f(x∗) the limit of the sequence (H(zk))k∈N where
x∗ is a critical point of f . Then, the following convergence rates hold:

(i) If θ = 1, then f(xk) converges in a finite number of iterations.
(ii) If 1/2 ≤ θ < 1, then f(xk) converges to f(x∗) linearly i.e. there exist q ∈ (0, 1), C > 0 s.t.

f(xk)− f(x∗) ≤ C qk .
(iii) If 0 < θ < 1/2 , then f(xk)− f(x∗) = O(k

1
2θ−1 ) .

Sketch of the proof. The proof consists of two main steps. The first one is to show that the iterates
enter and stay in a region where the KŁ inequality holds. More precisely, this region will be the set
of limit points of the sequence (zk) which we show is included in the set of critical points of the
functionH . This first step of the proof is achieved using the properties of the limit set (Theorem 11)
and the uniformized KŁ property (Theorem 12). Then, the second step is to exploit this inequality
in order to derive the sought convergence results. We defer the complete proof to Appendix C.3.
It is possible to derive a convergence rate on the objective function values under a KŁ assumption
on this same function f instead of an assumption on the Lyapunov function H (see Appendix C.4).

1. α := 1− θ is also defined as the KŁ exponent in other papers [20].
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Appendix A. Appendix A : Related works

A.1. The Heavy-Ball Algorithm.

Adaptive algorithms as Heavy Ball. Thanks to its small per-iteration cost and its acceleration
properties (at least in the strongly convex case), the Heavy-ball method, also called gradient descent
with momentum, recently regained popularity in large-scale optimization [35]. This speeding up
idea dates back to the sixties with the seminal work of Polyak [31]. In order to tackle nonconvex
optimization problems, Ochs et al. [29] proposed iPiano, a generalization of the well known heavy-
ball in the form of a forward-backward splitting algorithm with an inertial force for the sum of a
smooth possibly nonconvex and a convex function. In the particular case of the Heavy-ball method,
this algorithm writes for two sequences of reals (αn) and (βn):

xn+1 = xn − αn∇f(xn) + βn(xn − xn−1) . (8)

We remark that Algorithm (1) can be written in a similar fashion by choosing step sizes αn = ban+1

and inertial parameters βn = (1 − b)an+1/an. Ochs et al. [29] only consider the case where
αn and βn are real-valued. Moreover, the latter does not consider adaptive step sizes, i.e step
sizes depending on past gradient information. We can show some improvement with respect to
Ochs et al. [29] with weaker convergence conditions in terms of the step size of the algorithm (see
Appendix A.2) while allowing adaptive vector-valued step sizes an (see Proposition 7).
It is shown in Ochs et al. [29] that the sequence of function values converges and that every limit
point is a critical point of the objective function. Moreover, supposing that the Lyapunov function
has the KŁ property at a cluster point, they show the finite length of the sequence of iterates and its
global convergence to a critical point of the objective function. Similar results are shown in Wu and
Li [37] for a more general version than iPiano [29] computing gradients at an extrapolated iterate
like in Nesterov’s acceleration.

Convergence rate. Ochs et al. [29] determines a O(1/n) convergence rate (where n is the num-
ber of iterations of the algorithm) with respect to the proximal residual which boils down to the
gradient for noncomposite optimization. Furthermore, a recent work introduces a generalization of
the Heavy-ball method (and Nesterov’s acceleration) to constrained convex optimization in Banach
spaces and provides a non-asymptotic hamiltonian based analysis with O(1/n) convergence rate
[12]. In the same vein, in Section 3, we establish a similar convergence result for an adaptive step
size instead of a fixed predetermined step size schedule like in the Heavy-ball algorithm (see Theo-
rem 2).

Convergence rates under the Kurdyka-Łojasiewicz property. The KŁ property is a powerful
tool to analyze gradient-like methods. We elaborate on this property in Section 4. It is for example
possible to derive convergence rates assuming that the objective function satisfies this geometric
property. Indeed, some recent progress has been made to study convergence rates of the Heavy-ball
algorithm in the nonconvex setting. Ochs [28] establishes local convergence rates for the iterates
and the function values sequences under the KŁ property. The convergence proof follows a gen-
eral method that is often used in non-convex optimization convergence theory. This framework
was used for gradient descent [1], for proximal gradient descent (see Attouch and Bolte [3] for
an analysis with the Łojasiewicz inequality) and further generalized to a class of descent methods
called gradient-like descent algorithms [5](see also for ex. Bolte et al. [8, Appendix]). KŁ-based
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asymptotic convergence rates were established for constant Heavy-ball parameters [28]. Asymp-
totic convergence rates based on the KŁ property were also shown [17] for a general algorithm
solving nonconvex nonsmooth optimization problems called Multi-step Inertial Forward-Backward
splitting [22] which has iPiano and Heavy-ball methods as special cases. In this work, step sizes
and momentum parameter vary along the algorithm run and are not supposed constant. However,
specific values are chosen and consequently, their analysis does not encompass adaptive step sizes
i.e. stepsizes that can possibly depend on past gradient information. In the present work, we es-
tablish similar convergence rates for methods such as ADAM under a bounded step size assumption
(see Theorem 6). We also mention [21] which analyzes the accelerated proximal gradient method
for nonconvex programming (APGnc) and establishes convergence rates of the function value se-
quence by exploiting the KŁ property. This algorithm is a descent method i.e. the function value
sequence is shown to decrease over time. In the present work, we analyze adaptive algorithms which
are not descent methods. Note that even Heavy-ball is not a descent method. Hence, our analysis re-
quires additional treatments to exploit the KŁ property : we introduce a suitable Lyapunov function
which is not the objective function.

A.2. Comparison to Ochs et al. [29]

We recall the conditions satisfied by αn and βn in Ochs et al. [29] in order to traduce them in terms
of the algorithm (1) at stake. Define :

δn :=
1

αn
− L

2
− βn

2αn
γn := δn −

βn
2αn

.

Conditions of Ochs et al. [29] write: αn ≥ c1 βn ≥ 0 δn ≥ γn ≥ c2 where c1, c2 are positive
constants and (δn) is monotonically decreasing.

One can remark that algorithm (1) can be written as (8) with step sizes αn = ban+1 and inertial
parameters βn = (1 − b)an+1

an
. Conditions on these parameters can be expressed in terms of an.

Supposing c2 = 0, the condition γn ≥ c2 is equivalent to

an+1

an
≤ 2

2− b(2− anL)
. (9)

Note that the classical condition an ≤ 2/L shows up consequently. Moreover, the condition on (δn)
is equivalent to

1

an+1
≤ 3− b

2

1

an
− 1− b

2an−1
for n ≥ 1. (10)

Note that we get rid of condition (10) while allowing adaptive step sizes an (see Proposition 7).

A.3. Vector step size formulation

We present in the following table how to recover some of the famous algorithms with a vector step
size formulation:

10



Algorithm Effective step size an+1 Momentum
SGD
[34]

an+1 ≡ a
b = 1

(no momentum)
ADAGRAD

[14]
an+1 = a

(∑n
i=0 g

2
i

)−1/2
b = 1

RMSPROP

[36]
an+1 = a

[
ε+

(
c
∑n

i=0(1− c)n−ig2
i

)1/2]−1
b = 1

ADAM

[18]
an+1 = a

[
ε+

(
c
∑n

i=0(1− c)n−ig2
i

)1/2]−1 0 ≤ b ≤ 1
(close to 0)

A.4. Variants of ADAM
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Discussion of theoretical results. The first type of convergence results uses the online optimiza-
tion framework which controls the convergence rate of the average regret. This framework was
adopted for AMSGRAD, ADAMNC [32], ADABOUND and AMSBOUND [25]. In this setting, it is
assumed that the feasible set containing the iterates is bounded by adding a projection step to the
algorithm if needed. We do not make such an assumption in our analysis. [32] establishes a regret
bound in the convex setting. The second type of theoretical results is based on the control of the
norm of the (stochastic) gradients. We remark that some of these results depend on the dimension
of the parameters. Zhou et al. [39] improves this dependency in comparison to Chen et al. [10].
The convergence result in De et al. [11] is established under quite specific values of an+1, bn and ε.
Zaheer et al. [38] show a O(1/n) convergence rate for an increasing mini-batch size. However, the
proof is provided for RMSPROP and seems difficult to adapt to ADAM which involves a momentum
term. Indeed, unlike RMSPROP, ADAM does not admit the objective function as a Lyapunov func-
tion. Although we assume boundedness of the step size by Condition (5), we do not suppose that
a1 ≤ ε

2L (see table in Appendix A.4) which can impose a very small step size and result in a slow
convergence. The step size assumption a1 ≤ ε

2L imposes a very small step size which may result in
a slow convergence. We also remark that all the available theoretical results assume boundedness
of the (stochastic) gradients. We do not make such an assumption. Furthermore, we do not add any
decreasing 1/

√
n factor in front of the adaptive step size as it is considered in Luo et al. [25], Reddi

et al. [32] and Chen et al. [10]. Although constant hyperparameters b and c are used in practice,
theoretical results are often established for non constant bn and cn [25, 32]. We also mention that
most of the theoretical bounds depend on the dimension of the parameter [10, 25, 32, 39, 41].

Other variants of ADAM . Recently, several other algorithms were proposed in the literature to
enhance ADAM . Although these algorithms lack theoretical guarantees, they present interesting
ideas and show good practical performance. For instance, ADASHIFT [40] argues that the con-
vergence issue of ADAM is due to its unbalanced step sizes. To solve this issue, they propose to
use temporally shifted gradients to compute the second moment estimate in order to decorrelate it
from the first moment estimate. NADAM [13] incorporates Nesterov’s acceleration into ADAM in
order to improve its speed of convergence. Moreover, originally motivated by variance reduction,
QHADAM [26] replaces both ADAM’s moment estimates by quasi-hyperbolic terms and recovers
ADAM , RMSPROP and NADAM as particular cases (modulo the bias correction). Guided by the
same variance reduction principle, RADAM [23] estimates the variance of the effective step size of
the algorithm and proposes a multiplicative variance correction to the update rule.

Step size bound. Perhaps, the closest idea to our algorithm is the recent ADABOUND [25] which
considers a dynamic learning rate bound. Luo et al. [25] show that extremely small and large learn-
ing rates can cause convergence issues to ADAM and exhibit empirical situations where such an issue
shows up. Inspired by the gradient clipping strategy proposed in Pascanu et al. [30] to tackle the
problem of vanishing and exploding gradients in training recurrent neural networks, Luo et al. [25]
apply clipping to the effective step size of the algorithm in order to circumvent step size instability.
More precisely, authors propose dynamic bounds on the learning rate of adaptive methods such as
ADAM or AMSGRAD to solve the problem of extreme learning rates which can lead to poor per-
formance. Initialized respectively at 0 and∞, lower and upper bounds both converge smoothly to
a constant final step size following a predetermined formula defined by the user. Consequently, the
algorithm resembles an adaptive algorithm in the first iterations and becomes progressively similar
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to a standard SGD algorithm. Our approach is different : we propose a static bound on the adaptive
learning rate which depends on the Lipschitz constant of the objective function. This bound stems
naturally from our theoretical derivations.

Appendix B. Appendix B: proofs of Section 3

B.1. Proof of Theorem 1

Supposing that ∇f is L−Lipschitz, using Taylor’s expansion and the expression of pn in the algo-
rithm, we obtain the following inequality:

f(xn+1) ≤ f(xn)− 〈∇f(xn), an+1pn+1〉+
L

2
‖an+1pn+1‖2 (11)

Moreover,

1

2b
〈an+1, p

2
n+1〉 −

1

2b
〈an, p2

n〉 =
1

2b
〈an+1, p

2
n+1 − p2

n〉+
1

2b
〈an+1 − an, p2

n〉. (12)

Observing that p2
n+1 − p2

n = −b2(∇f(xn) − pn)2 + 2bpn+1(∇f(xn) − pn), we obtain after
simplification :

Hn+1 ≤ Hn+
L

2
‖an+1pn+1‖2−

b

2
〈an+1, (∇f(xn)−pn)2〉−〈an+1pn+1, pn〉+

1

2b
〈an+1−an, p2

n〉.
(13)

Using again pn = pn+1 − b(∇f(xn)− pn), we replace pn :

Hn+1 ≤ Hn +
L

2
‖an+1pn+1‖2 −

b

2
〈an+1, (∇f(xn)− pn)2〉

− 〈an+1, p
2
n+1〉+ b〈an+1pn+1,∇f(xn)− pn〉+

1

2b
〈an+1 − an, p2

n〉.

Under Assumption 3.1, we write: 〈an+1 − an, p
2
n〉 ≤ (1 − α)〈an+1, p

2
n〉 and using p2

n =
p2
n+1 + b2(∇f(xn)− pn)2 − 2bpn+1(∇f(xn)− pn), it holds that:

Hn+1 ≤ Hn − 〈an+1, p
2
n+1〉 −

b

2
〈an+1, (∇f(xn)− pn)2〉

+
L

2
‖an+1pn+1‖2 + (b− (1− α))〈an+1pn+1,∇f(xn)− pn〉

+
1− α

2b
〈an+1, p

2
n+1〉+

b(1− α)

2
〈an+1, (∇f(xn)− pn)2〉.

Using the classical inequality xy ≤ x2

2u + uy2

2 , we have :

(b−(1−α))an+1pn+1(∇f(xn)−pn) ≤ |b− (1− α)|
2u

〈an+1, p
2
n+1〉+

|b− (1− α)|u
2

〈an+1, (∇f(xn)−pn)2〉.
(14)

Hence, after using this inequality and rearranging the terms, we derive the following inequality:
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Hn+1 ≤ Hn − 〈an+1p
2
n+1, 1−

an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉

− b

2
〈an+1(∇f(xn)− pn)2,

(
1− |b− (1− α)|u

b
− (1− α)

)
1〉.

This concludes the proof.

B.2. An additional proposition

Proposition 7 Let Assumption 2.1 hold true. Suppose moreover that 1− α < b ≤ 1. Let ε > 0 s.t.
asup := 2

L

(
1− (b−(1−α))2

2bα − 1−α
2b − ε

)
is nonnegative. Let δ > 0 s.t. for all n ∈ N,

an+1 ≤ min
(
asup,

an
α

)
.

Then, for all n ≥ 1,

n−1∑
k=0

〈ak+1,∇f(xk)
2〉 ≤ 4

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉
)

Proof This is a consequence of Theorem 1. Conditions An+1 ≥ ε and B ≥ 0 write as follow :

an+1 ≤
2

L

(
1− b− (1− α)

2u
− 1− α

2b
− ε
)

and u ≤ αb

b− (1− α)
.

We get the assumption made in the proposition by injecting the second condition into the first one
and adding the assumption an+1

an
≤ α made in the lemma. Under this assumption, we sum over

0 ≤ k ≤ n− 1 Equation (3), rearrange it and use An+1 ≥ ε, B ≥ 0 to obtain :

n−1∑
k=0

ε 〈ak+1, p
2
k+1〉 ≤ H0 −Hn ,

Then, observe that Hn ≥ f(xn) ≥ inf f . Therefore, we derive :

n−1∑
k=0

〈ak+1, p
2
k+1〉 ≤

H0 − inf f

ε
. (15)

Moreover, from the Algorithm 1 second update rule, we get∇f(xk) = 1
bpk+1− 1−b

b pk. Hence,
we have for all k ≥ 0 :

∇f(xk)
2 ≤ 2

(
1

b2
p2
k+1 +

(1− b)2

b2
p2
k

)
≤ 2

b2
(p2
k+1 + p2

k) .
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We deduce that :

n−1∑
k=0

〈ak+1,∇f(xk)
2〉 ≤ 2

b2

n−1∑
k=0

〈ak+1, p
2
k+1 + p2

k〉

=
2

b2

n−1∑
k=0

〈ak+1, p
2
k+1〉+

2

b2

n−1∑
k=0

〈ak+1, p
2
k〉

≤ 2

b2

n−1∑
k=0

〈ak+1, p
2
k+1〉+

2

b2α

n−1∑
k=0

〈ak, p2
k〉

≤ 2

b2α

(
2
n−1∑
k=1

〈ak, p2
k〉+ 〈an, p2

n〉+ 〈a0, p
2
0〉

)

≤ 4

b2α

n∑
k=0

〈ak, p2
k〉

≤ 4

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉
)
.

B.3. Proof of Theorem 2

This is a consequence of Theorem 1. Conditions An+1 ≥ ε and B ≥ 0 write as follow :

an+1 ≤
2

L

(
1− b− (1− α)

2u
− 1− α

2b
− ε
)

and u ≤ αb

b− (1− α)
.

We get the assumption made in the proposition by injecting the second condition into the first one
and adding the assumption an+1

an
≤ α made in the lemma. Under this assumption, we sum over

0 ≤ k ≤ n− 1 Equation (3), rearrange it and use An+1 ≥ ε, B ≥ 0 and ak+1 ≥ δ to obtain :

n−1∑
k=0

δ ε ‖pk+1‖2 ≤ H0 −Hn ,

Then, observe that Hn ≥ f(xn) ≥ inf f . Therefore, we derive :

n−1∑
k=0

‖pk+1‖2 ≤
H0 − inf f

δε
. (16)

Moreover, from the algorithm 1 second update rule, we get∇f(xk) = 1
bpk+1 − 1−b

b pk. Hence,
we have for all k ≥ 0 :

‖∇f(xk)‖2 ≤ 2

(
1

b2
‖pk+1‖2 +

(1− b)2

b2
‖pk‖2

)
≤ 2

b2
(‖pk+1‖2 + ‖pk‖2) .
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We deduce that :

n−1∑
k=0

‖∇f(xk)‖2 ≤
2

b2

n−1∑
k=0

(‖pk+1‖2+‖pk‖2) =
2

b2

(
2
n−1∑
k=1

‖pk‖2 + ‖pn‖2 + ‖p0‖2
)
≤ 4

b2

n∑
k=0

‖pk‖2 .

(17)
Finally, using Equations (16) and (17), we have :

min
0≤k≤n−1

‖∇f(xk)‖2 ≤
1

n

n−1∑
k=0

‖∇f(xk)‖2 ≤
4

nb2

(
H0 − inf f

δε
+ ‖p0‖2

)

B.4. A convergence result for gradient descent in the nonconvex setting.

Consider the gradient descent algorithm defined by : xk+1 = xk − γ∇f(xk). Assume that γ > 0
and 1− γL

2 > 0.
Supposing that ∇f is L−Lipschitz, using Taylor’s expansion and regrouping the terms, we

obtain the following inequality:

f(xk+1) ≤ f(xk)− γ
(

1− γL

2

)
‖∇f(xk)‖22.

Then, we sum the inequalities for 0 ≤ k ≤ n− 1, lower bound the gradients norms in the sum
by their minimum and we obtain :

min
0≤k≤n−1

‖∇f(xk)‖22 ≤
f(x0)− inf f

nγ(1− γL
2 )

.

Comparison of Theorem 2 to gradient descent. A similar result holds for deterministic gradient
descent. If γ is a fix step size for gradient descent and there exist δ > 0, ε > 0 s.t. γ > δ and
1− γL

2 > ε, then ( see Appendix B.4) for all n ≥ 1:

min
0≤k≤n−1

‖∇f(xk)‖2 ≤
f(x0)− inf f

nγ(1− γL
2 )
≤ f(x0)− inf f

nδε
.

When p0 = 0 (this is the case for ADAM ), the bound in Theorem 2 coincides with the gradient
descent bound, up to the constant 4/b2. We mention however that ε for Algorithm (1) is defined by
a slightly more restrictive condition than for gradient descent : when b = 1, there is no momentum
and asup = 1

L(1 − 2ε) < 2/L. Hence, under the boundedness of the effective step size, the
algorithm has a similar convergence guarantee to gradient descent. Remark that the step size bound
almost matches the classical 2/L upperbound on the step size of gradient descent. As it is already
known for gradient descent, a large step size, even if it is adaptive, can harm the convergence of the
algorithm.

B.5. Proof of Theorem 3

The proof of this proposition mainly follows the same path as its deterministic counterpart. How-
ever, due to stochasticity, a residual term (the last term in Equation (18)) quantifying the difference
between the stochastic gradient estimate and the true gradient of the objective function (compare
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Equation (18) to Theorem 1). Following the exact same steps of Appendix B.1, we obtain by re-
placing the deterministic gradient∇f(xn) by its stochastic estimate∇f(xn, ξn+1) :

Hn+1 ≤ Hn − 〈an+1p
2
n+1, 1−

an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉

− b

2
〈an+1(∇f(xn, ξn+1)− pn)2,

(
1− |b− (1− α)|u

b
− (1− α)

)
1〉

+ 〈∇f(xn, ξn+1)−∇F (xn), an+1pn+1〉 . (18)

Using the classical inequality xy ≤ x2

2 + y2

2 and the almost sure boundedness of the step size
an+1, we get :

〈∇f(xn, ξn+1)−∇F (xn), an+1pn+1〉 ≤ 〈
1

2
(∇f(xn, ξn+1)−∇F (xn))2 +

1

2
p2
n+1, an+1〉

≤ asup

2
‖∇f(xn, ξn+1)−∇F (xn)‖2 +

1

2
〈an+1, p

2
n+1〉 .

Therefore, taking the expectation and using the boundedness of the variance, we obtain from
Equation (18) :

E[Hn+1]− E[Hn] ≤ −E
[
〈an+1p

2
n+1, 1−

an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉
]

+
asupσ

2

2
.

Then, the proof follows the lines of Appendix B.2. Hence, we have

E[Hn+1]− E[Hn] ≤ −E
[
〈an+1p

2
n+1, ε1〉

]
+
asupσ

2

2
.

We sum these inequalities for k = 0, · · · , n− 1 and rearrange the terms to obtain

E

[
n−1∑
k=0

〈ak+1, p
2
k+1〉

]
≤ H0 − inf f

ε
+
nasupσ

2

2ε
.

Then following the derivations in Appendix B.2 using ∇f(xk, ξk+1) = 1
bpk+1 − 1−b

b pk, we
establish the following inequality

E

[
n−1∑
k=0

〈ak+1,∇f(xk, ξk+1)2〉

]
≤ 4

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉+

nasupσ
2

2ε

)
.

Finally, we apply Jensen’s inequality to ‖ · ‖2, we inject the assumption an+1 ≥ δ and we divide
the previous inequality by n to obtain the sought result

1

n

n−1∑
k=0

E
[
‖∇F (xk)‖2

]
≤ 4

nδb2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉+

nasupσ
2

2ε

)
.
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Appendix C. Appendix C: proofs of Section 4

C.1. Conditions similar to "gradient-like descent sequences" conditions [8, Appendix][29]

We introduce a lemma which will be useful in our analysis later.

Lemma 8 Let (zk)k∈N be the sequence defined for all k ∈ N by zk = (xk, yk) where yk =
√
akpk

and (xk, pk) is generated by Algorithm (1) from a starting point z0. Let Assumptions 2.1 and 3.1
hold true. Assume moreover that condition (4) holds. Then,

(i) (sufficient decrease property) There exists a positive scalar ρ1 s.t. :

H(zk+1)−H(zk) ≤ −ρ1 ‖xk+1 − xk‖2 ∀k ∈ N.

(ii) There exists a positive scalar ρ2 s.t. :

‖∇H(zk+1)‖ ≤ ρ2 (‖xk+1 − xk‖+ ‖xk − xk−1‖) ∀k ≥ 1.

(iii) (continuity condition) If z̄ is a limit point of a subsequence (zkj )j∈N, then lim
j→+∞

H(zkj ) =

H(z̄).

Remark 9 Conditions in Bolte et al. [8, Appendix] corresponding to Theorem 8 are more general.
Authors consider a nonsmooth objective function and introduce the Fréchet subdifferential instead
of the gradient. For our purposes, this is sufficient.

Proof

(i) From Theorems 1 and 2, we get for all k ∈ N:

H(zk+1)−H(zk) ≤ −ε〈ak+1, p
2
k+1〉 ≤ −ε〈ak+1,

(
xk+1 − xk
−ak+1

)2

〉 ≤ − ε

asup
‖xk+1−xk‖2.

We set ρ1 := ε
asup

.

(ii) First, observe that for all k ∈ N

‖∇H(zk+1)‖ ≤ ‖∇f(xk+1)‖+
1

b
‖yk+1‖ . (19)

Now, let us upperbound each one of these two terms. Recall that we can rewrite our algorithm
under a "Heavy-ball"-like form as follows:

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1) ∀k ≥ 1.

where αk := bak+1 and βk = (1− b)ak+1

ak
are vectors.

On the one hand,

‖∇f(xk+1)‖2 ≤ 2
(
‖∇f(xk+1)−∇f(xk)‖2 + ‖∇f(xk)‖2

)
≤ 2

(
L2 ‖xk+1 − xk‖2 + ‖∇f(xk)‖2

)
(L-Lipschitz continuity of the gradient)
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Moreover,

‖∇f(xk)‖2 =

∥∥∥∥xk − xk+1

αk
+
βk
αk

(xk − xk−1)

∥∥∥∥2

≤ 2

∥∥∥∥xk − xk+1

bak+1

∥∥∥∥2

+ 2

∥∥∥∥1− b
b

1

ak
(xk − xk−1)

∥∥∥∥2

≤ 2

b2δ2
‖xk+1 − xk‖2 +

2(1− b)2

b2δ2
‖xk − xk−1‖2

≤ 2

b2δ2
(‖xk+1 − xk‖2 + ‖xk − xk−1‖2).

Hence,

‖∇f(xk+1)‖2 ≤ 2
(
L2 ‖xk+1 − xk‖2 + ‖∇f(xk)‖2

)
≤ 2

(
L2 +

2

b2δ2

)
‖xk+1 − xk‖2 +

4

b2δ2
‖xk − xk−1‖2

≤ 2

(
L2 +

2

b2δ2

)
(‖xk+1 − xk‖2 + ‖xk − xk−1‖2) .

Therefore, the following inequality holds :

‖∇f(xk+1)‖ ≤

√
2

(
L2 +

2

b2δ2

)
(‖xk+1 − xk‖+ ‖xk − xk−1‖) .

On the otherhand,

‖yk+1‖ = ‖√ak+1pk+1‖ =

∥∥∥∥xk+1 − xk√
ak+1

∥∥∥∥ ≤ 1√
δ
‖xk+1 − xk‖ .

Finally, combining the inequalities for both terms in Equation (19), we obtain

‖∇H(zk+1)‖ ≤ ρ2(‖xk+1 − xk‖+ ‖xk − xk−1‖) ∀k ≥ 1 .

with ρ2 :=
(√

2
(
L2 + 2

b2δ2

)
+ 1

b
√
δ

)
.

(iii) This is a consequence of the continuity of H .

C.2. Properties of the limit point set

Notations and definitions. If (E, d) is a metric space, z ∈ E and A is a non-empty subset of E,
we use the notation d(z,A) := inf{d(z, z′) : z′ ∈ A} . The set of critical points of the function H
is defined by critH := {z ∈ R2d s.t.∇H(z) = 0} .
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Definition 10 (Set of limit points) The set of all limit points of (zk)k∈N initialized at z0 is defined
by ω(z0) := {z̄ ∈ R2d : ∃ an increasing sequence of integers (kj)j∈N s.t zkj → z̄ as j →∞} .

Lemma 11 (Properties of the limit point set) Let (zk)k∈N be the sequence defined for all k ∈ N by
zk = (xk, yk) where yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from a starting point

z0. Let Assumptions 2.1, 3.1 and 4.1 hold true. Assume that Condition (4) holds. Then,

(i) ω(z0) is a nonempty compact set.
(ii) ω(z0) ⊂ critH = critf × {0} .

(iii) lim
k→+∞

d(zk, ω(z0)) = 0.

(iv) H is finite and constant on ω(z0).

Proof

(i) By Theorem 2, the sequence (H(zn))n∈N is nonincreasing. Therefore, for all n ∈ N,
H(zn) ≤ H(z0) and hence zn ∈ {z :H(z) ≤ H(z0)} . Since f is coercive, H is also
coercive and its level sets are bounded. As a consequence, (zn)n∈N is bounded and there
exist z∗ ∈ Rd and a subsequence (zkj )j∈N s.t. zkj → z∗ as j → ∞. Hence, ω(z0) 6= ∅ .
Furthermore, ω(z0) =

⋂
q∈N

⋃
k≥q{zk} is compact as an intersection of compact sets.

(ii) First, critH = critf × {0} because ∇H(z) = (∇f(x), y/b)T . Let z∗ ∈ ω(z0). Recall
that xk+1 − xk → 0 as k → ∞ by Theorem 2. We deduce from the second assertion of
Theorem 8 that∇H(zk)→ 0 as k →∞ . As z∗ ∈ ω(z0), there exists a subsequence (zkj )j∈N
converging to z∗. Then, by Lipschitz continuity of ∇H , we get that ∇H(zkj )→ ∇H(z∗) as
j → ∞ . Finally, ∇H(z∗) = 0 since ∇H(zk) → 0 and (∇H(zkj ))j∈N is a subsequence of
(∇H(zn))n∈N .

(iii) This point stems from the definition of limit points. Every subsequence of the sequence
(d(zk, ω(z0)))k∈N converges to zero as a consequence of the definition of ω(z0).

(iv) The sequence (H(zn))n∈N is nonincreasing by Theorem 2. It is also bounded from below
because H(zk) ≥ f(xk) ≥ inf f for all k ∈ N. Hence we can denote by l its limit. Let
z̄ ∈ ω(z0). There there exists a subsequence (zkj )j∈N converging to z̄ as j → ∞ . By
the third assertion of Theorem 8, lim

j→+∞
H(zkj ) = H(z̄) . Hence this limit equals l since

(H(zn))n∈N converges towards l. Therefore, the restriction of H to ω(z0) equals l .

C.3. Proof of Theorem 6

We introduce now a uniformized version of the KŁ property which will be useful for our analysis.

Lemma 12 (Uniformized KŁ property, Bolte et al. [7, Lemma 6, p 478]) Let Ω be a compact set
and let H : R2d → (−∞,+∞] be a proper l.s.c function. Assume that H is constant on Ω and
satisfies the KŁ property at each point of Ω. Then, there exist ε > 0, η > 0 and ϕ ∈ Φη such that
for all z̄ ∈ Ω, for all z ∈ {z ∈ Rd : d(z,Ω) < ε} ∩ [H(z̄) < H < H(z̄) + η], one has

ϕ′(H(z)−H(z̄))‖∇H(z)‖ ≥ 1 (20)
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The first step of this proof follows the same path as Bolte et al. [8, Proof of Theorem 6.2,
Appendix]. Since f is coercive, H is also coercive. The sequence (H(zk))k∈N is nonincreasing.
Hence, (zk) is bounded and there exists a subsequence (zkq)q∈N and z̄ ∈ R2d s.t. zkq → z̄ as
q →∞ . Then, since (H(zk))k∈N is nonincreasing and lowerbounded by inf f , it is convergent and
we obtain by continuity of H ,

lim
k→+∞

H(zk) = H(z̄) . (21)

If there exists k̄ ∈ N s.t. H(zk̄) = H(z̄) , then H(zk̄+1) = H(z̄) and by the first point of Theo-
rem 8, xk̄+1 = xk̄ and then (xk)k∈N is stationary and for all k ≥ k̄ , H(zk) = H(z̄) and the results
of the theorem hold in this case (note that z̄ ∈ critH by Theorem 11). Therefore, we can assume now
that H(z̄) < H(zk)∀k > 0 since (H(zk))k∈N is nonincreasing and Equation (21) holds. One more
time, from Equation (21), we have that for all η > 0, there exists k0 ∈ N s.t. H(zk) < H(z̄) + η
for all k > k0. From Theorem 11, we get d(zk, ω(z0)) → 0 as k → +∞ . Hence, for all ε > 0,
there exists k1 ∈ N s.t. d(zk, ω(z0)) < ε for all k > k1 . Moreover, ω(z0) is a nonempty compact
set and H is finite and constant on it. Therefore, we can apply the uniformization Theorem 12 with
Ω = ω(z0). Hence, for any k > l := max(k0, k1), we get

ϕ′(H(zk)−H(z̄))2 ‖∇H(zk)‖2 ≥ 1 . (22)

This completes the first step of the proof. In the second step, we follow the proof of Johnstone and
Moulin [17, Theorem 2]. Using Theorem 8 .(i)-(ii), we can write for all k ≥ 1,

‖∇H(zk+1)‖2 ≤ 2ρ2
2 (‖xk+1 − xk‖2 + ‖xk − xk−1‖2) ≤ 2ρ2

2

ρ1
(H(zk−1)−H(zk+1)) .

Injecting the last inequality in Equation (22), we obtain for all k > k2 := max(l, 2),

2ρ2
2

ρ1
ϕ′(H(zk)−H(z̄))2 (H(zk−2)−H(zk)) ≥ 1 .

Now, use ϕ′(s) = c̄sθ−1 to derive the following for all k > k2:

[H(zk−2)−H(z̄)]− [H(zk)−H(z̄)] ≥ ρ1

2ρ2
2 c̄

2
[H(zk)−H(z̄)]2(1−θ) . (23)

Let rk := H(zk)−H(z̄) and C1 = ρ1
2ρ22 c̄

2 . Then, we can rewrite Equation (23) as

rk−2 − rk ≥ C1r
2(1−θ)
k ∀k > k2 . (24)

We distinguish three different cases to obtain the sought results.

(i) θ = 1 :
Suppose rk > 0 for all k > k2 . Then, since we know that rk → 0 by Equation (21), C1 must
be equal to 0. This is a contradiction. Therefore, there exist k3 ∈ N s.t. rk = 0 for all k > k3

(recall that (rk)k∈N is nonincreasing).
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(ii) θ ≥ 1
2 :

As rk → 0, there exists k4 ∈ N s.t. for all k ≥ k4, rk ≤ 1 . Observe that 2(1 − θ) ≤ 1 and
hence rk−2 − rk ≥ C1rk for all k > k2 and then

rk ≤ (1 + C1)−1rk−2 ≤ (1 + C1)−p1rk4 . (25)

where p1 := bk−k42 c . Notice that p1 >
k−k4−2

2 . Thus, the linear convergence result follows.
Note also that if θ = 1/2, 2(1− θ) = 1 and Equation (25) holds for all k > k2 .

(iii) θ < 1
2 :

Define the function h by h(t) = D
1−2θ t

2θ−1 where D > 0 is a constant. Then,

h(rk)− h(rk−2) =

∫ rk

rk−2

h′(t)dt = D

∫ rk−2

rk

t2θ−2dt ≥ D (rk−2 − rk) r2θ−2
k−2 .

We disentangle now two cases :

(a) Suppose 2r2θ−2
k−2 ≥ r

2θ−2
k . Then, by Equation (24), we get

h(rk)− h(rk−2) = D (rk−2 − rk) r2θ−2
k−2 ≥

C1D

2
. (26)

(b) Suppose now the opposite inequation 2r2θ−2
k−2 < r2θ−2

k . We can suppose without loss
of generality that rk are all positive. Otherwise, if there exists p such that rp = 0, the
sequence (rk)k∈N will be stationary at 0 for all k ≥ p . Observe that 2θ−2 < 2θ−1 < 0,
thus 2θ−1

2θ−2 > 0 . As a consequence, we can write in this case r2θ−1
k > q r2θ−1

k−2 where

q := 2
2θ−1
2θ−2 > 1 . Therefore, using moreover that the sequence (rk)k∈N is nonincreasing

and 2θ − 1 < 0, we derive the following

h(rk)−h(rk−2) =
D

1− 2θ
(r2θ−1
k −r2θ−1

k−2 ) >
D

1− 2θ
(q−1)r2θ−1

k−2 >
D

1− 2θ
(q−1)r2θ−1

k2
:= C2 .

(27)

Combining Equation (26) and Equation (27) yields h(rk) ≥ h(rk−2) + C3 where C3 :=
min(C2,

C1D
2 ) . Consequently, h(rk) ≥ h(rk−2 p2) + p2C3 where p2 := bk−k22 c . We

deduce from this inequality that

h(rk) ≥ h(rk)− h(rk−2 p2) ≥ p2C3 .

Therefore, rearranging this inequality using the definition of h, we obtain r1−2θ
k ≤ D

1−2θ (C3 p2)−1 .
Then, since p2 >

k−k2−2
2 ,

rk ≤ C4 p
1

2θ−1

2 ≤ C4

(
k − k2 − 2

2

) 1
2θ−1

.

where C4 :=
(
C3 (1−2θ)

D

) 1
2θ−1 .

We conclude the proof by observing that f(xk) ≤ H(zk) and recalling that z̄ ∈ critH .
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C.4. Corollary to Theorem 6

We introduce a lemma in order to make the KŁ assumption on the objective function f instead of
the auxiliary function H .

Lemma 13 Let f be a continuously differentiable function satisfying the KL property at x̄ with an
exponent of θ ∈ (0, 1/2]. Then the function H defined in Equation (6) has also the KŁ property at
(x̄, 0) with an exponent of θ .

Proof
Since f has the KŁ property at x̄ with an exponent θ ∈ (0, 1/2], there exist c, ε and ν > 0 s.t.

‖∇f(x)‖
1

1−θ ≥ c(f(x)− f(x̄)) (28)

for all x ∈ Rd s.t. ‖x− x̄‖ ≤ ε and f(x) < f(x̄) + ν where condition f(x̄)− f(x) is dropped
because Equation (28) holds trivially otherwise. Let z = (x, y) ∈ R2d be s.t. ‖x− x̄‖ ≤ ε , ‖y‖ ≤ ε
and H(x̄, 0) < H(x, y) < H(x̄, 0) + ν . We assume that ε < b (ε can be shrunk if needed). We
have f(x) ≤ H(x, y) < H(x̄, 0) + ν = f(x̄) + ν . Hence Equation (28) holds for these x.

By concavity of u 7→ u
1

2(1−θ) , we obtain

‖∇H(x, y)‖
1

1−θ ≥ C0

(
‖∇f(x)‖

1
1−θ +

∥∥∥y
b

∥∥∥ 1
1−θ
)

where C0 := 2
1

2(1−θ)−1 .
Hence, using Equation (28), we get

‖∇H(x, y)‖
1

1−θ ≥ C0

(
c (f(x)− f(x̄)) +

∥∥∥y
b

∥∥∥ 1
1−θ
)
.

Observe now that 1
1−θ ≥ 2 and

∥∥y
b

∥∥ ≤ ε
b ≤ 1. Therefore,

∥∥y
b

∥∥ 1
1−θ ≥ ‖y/b‖2 .

Finally,

‖∇H(x, y)‖
1

1−θ ≥ C0

(
c (f(x)− f(x̄)) +

2

b

1

2b
‖y‖2

)
≥ C0 min

(
c,

2

b

) (
f(x)− f(x̄) +

1

2b
‖y‖2

)
= C0 min

(
c,

2

b

)
(H(x, y)−H(x̄, 0)) .

This completes the proof.

The following result derives a convergence rate on the objective function values under a KŁ
assumption on this same function instead of an assumption on the Lyapunov function H . The result
is an immediate consequence of Theorem 13 and Theorem 6.

Corollary 14 Let (zk)k∈N be the sequence defined for all k ∈ N by zk = (xk, yk) where yk =√
akpk and (xk, pk) is generated by Algorithm (1) from a starting point z0. Let Assumptions 2.1,

3.1 and 4.1 hold true. Assume that Condition (4) holds. Suppose moreover that f is a KŁ function
with KŁ exponent θ ∈ (0, 1/2). Denote by f(x∗) the limit of the sequence (H(zk))k∈N where x∗ is
a critical point of f . Then f(xk)− f(x∗) = O(k

1
2θ−1 ) .
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