
OPT2019: 11th Annual Workshop on Optimization for Machine Learning

Estimating the Lipschitz constant of Neural Networks with Polynomial
Optimization methods

Fabian Latorre FABIAN.LATORRE@EPFL.CH

Paul Rolland PAUL.ROLLAND@EPFL.CH

Volkan Cevher VOLKAN.CEVHER@EPFL.CH

École polytechnique fédérale de Lausanne (EPFL), Switzerland

Abstract
We introduce LiPopt, a polynomial optimization framework for computing increasingly tighter
upper bounds on the Lipschitz constant of neural networks. The underlying optimization problems
boil down to either linear (LP) or semidefinite (SDP) programming. The sparsity of the network can
significantly reduce the complexity of computation. This is specially useful for convolutional as
well as pruned neural networks. We conduct experiments on networks with random weights as well
as networks trained on MNIST, showing that in the particular case of the `∞-Lipschitz constant,
our approach yields superior estimates as compared to other baselines available in the literature.

1. Introduction

We consider a neural network fd defined by the recursion:

f1(x) :=W1x fi(x) :=Wiσ(fi−1(x)), i = 2, . . . , d (1)

for an integer d larger than 1, matrices {Wi}di=1 of appropriate dimensions and an activation function
σ, understood to be applied element-wise. We refer to d as the depth, and we focus on the case where
fd has a single real value as output.

In this work, we address the problem of estimating the Lipschitz constant of the network fd. A
function f is Lipschitz continuous with respect to a norm ‖·‖ if there exists a constant L such that
for all x, y we have |f(x) − f(y)| ≤ L‖x − y‖. The minimum over all such values satisfying this
condition is called the Lipschitz constant of f and is denoted by L(f).

The Lipschitz constant of a neural network is of major importance in many successful applica-
tions of deep learning. In the context of supervised learning, Bartlett et al. [2] show how it directly
correlates with the generalization ability of neural network classifiers, suggesting it as model com-
plexity measure. It also provides a measure of robustness against adversarial perturbations [20] and
can be used to improve such metric [3]. Moreover, an upper bound on L(fd) provides a certificate
of robust classification around data points [24].

Indeed, there is a growing need for methods that provide tighter upper bounds on L(fd), even
at the expense of increased complexity. For example Fazlyab et al. [4], Jin and Lavaei [10], Raghu-
nathan et al. [17] derive upper bounds based on semidefinite programming (SDP). While expensive
to compute, these type of certificates are in practice surprisingly tight. Our work belongs in this
vein of research, and aims to overcome some limitations in the current state-of-the-art.

We present LiPopt, a general approach for upper bounding the Lipschitz constant of a neural
network based on a relaxation to a polynomial optimization problem (POP) [15]. This approach

c© F. Latorre, P. Rolland & V. Cevher.

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

requires only that the unit ball be described with polynomial inequalities, which covers the common
`2- and `∞-norms.

Notation. We denote by ni the number of columns of the matrix Wi in the definition (1) of the
network. This corresponds to the size of the i-th layer, where we identify the input as the first layer.
We let n = n1 + . . . + nd be the total number of neurons in the network. For a vector x, Diag(x)
denotes the square matrix with x in its diagonal and zeros everywhere else. For an array X , vec(X)
is the flattened array. The support of a sequence supp(α) is defined as the set of indices j such that
αj is nonzero. For x = [x1, . . . , xn] and a sequence of nonnegative integers γ = [γ1, . . . , γn] we
denote by xγ the monomial xγ11 x

γ2
2 . . . xγnn . The set of nonnegative integers is denoted by N.

2. Polynomial optimization formulation

In this section we derive an upper bound on L(fd) given by the value of a POP, i.e. the mini-
mum value of a polynomial subject to polynomial inequalities. Our starting point is the following
theorem, which casts L(f) as an optimization problem:

Theorem 1 Let f be a differentiable and Lipschitz continuous function on an open, convex subset
X of an euclidean space. Let ‖·‖∗ be the dual norm. The Lipschitz constant of f is given by

L(f) = sup
x∈X
‖∇f(x)‖∗ (2)

For completeness, we provide a proof in appendix A. In our setting, we assume that the activation
function σ is Lipschitz continuous and differentiable. In this case, the assumptions of Theorem 1
are fulfilled because fd is a composition of activations and linear transformations.

Using the chain rule, the compositional structure of fd yields the following formula for its
gradient:

∇fd(x) =W T
1

d−1∏
i=1

Diag(σ′(fi(x)))W
T
i+1 (3)

For every i = 1, . . . , d − 1 we introduce a variable si = σ′(fi(x)) corresponding to the derivative
of σ at the i-th hidden layer of the network. For activation functions like ELU or softplus, their
derivative is bounded between 0 and 1, which implies that 0 ≤ si ≤ 1. This bound together with
the definition of the dual norm ‖x‖∗ := sup‖t‖≤1 t

Tx implies the following upper bound of L(fd):

L(fd) ≤ max

{
tTW T

1

d−1∏
i=1

Diag(si)W
T
i+1 : 0 ≤ si ≤ 1, ‖t‖ ≤ 1

}
(4)

We will refer to the polynomial objective of this problem as the norm-gradient polynomial of the
network fd, a central object of study in this work.

For some frequently used `p-norms, the constraint ‖t‖p ≤ 1 can be written with polynomial
inequalities. In the rest of this work, we use exclusively the `∞-norm for which ‖t‖∞ ≤ 1 is
equivalent to the polynomial inequalities −1 ≤ ti ≤ 1, for i = 1, . . . , n1. However, note that when
p ≥ 2 is a positive even integer, ‖t‖p ≤ 1 is equivalent to a single polynomial inequality ‖t‖pp ≤ 1,
and our proposed approach can be adapted with minimal modifications.

In such cases, the optimization problem in the right-hand side of (4) is a POP. Optimization of
polynomials is a NP-hard problem and we do not expect to have efficient algorithms for solving (4)
in this general form. In the next sections we describe LiPopt: a systematic way of obtaining an
upper bound on L(fd) via tractable approximation methods of the POP (4).

2

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

3. Hierarchical solution based on a Polynomial Positivity certificate

For ease of exposition, we rewrite (4) as a POP constrained in [0, 1]n using the substitution s0 :=
(t+ 1)/2. Denote by p the norm-gradient polynomial, and let x = [s0, . . . , sd−1] be the concatena-
tion of all variables. Polynomial optimization methods [15] start from the observation that a value
λ is an upper bound for p over a set K if and only if the polynomial λ− p is positive over K.

In LiPopt, we will employ a well-known classical result in algebraic geometry, the so-called
Krivine’s positivity certificate1, but in theory we can use any positivity certificate like sum-of-
squares (SOS). The following is a straightforward adaptation of Krivine’s certificate to our setting:

Theorem 2 (Adapted from [8, 12, 19]) If the polynomial λ − p is strictly positive on [0, 1]n, then
there exist finitely many positive weights cαβ such that

λ− p =
∑

(α,β)∈N2n

cαβhαβ, hαβ(x) :=
n∏
j=1

x
αj

j (1− xj)βj (5)

By truncating the degree of Krivine’s positivity certificate (Theorem 2) and minimizing over all
possible upper bounds λ we obtain a hierarchy of LP problems [15, Section 9]:

θk := min
c≥0,λ

λ : λ− p =
∑

(α,β)∈N2n
k

cαβhαβ

 (6)

where N2n
k is the set of nonnegative integer sequences of length 2n adding up to at most k. This

is indeed a sequence of LPs as the polynomial equality constraint can be implemented by equating
coefficients in the canonical monomial basis. For this polynomial equality to be feasible, the degree
of the certificate has to be at least that of the norm-gradient polynomial p, which is equal to the
depth d. This implies that the first nontrivial bound (θk <∞) corresponds to k = d.

An advantage of using Krivine’s positivity certificate over SOS is that one obtains an LP hier-
archy (rather than SDP), for which commercial solvers can reliably handle a large instances. Other
positivity certificates offering a similar advantage are the DSOS and SDSOS hierarchies [1], which
boil down to LP or second order cone programming (SOCP), respectively.

Drawback. The size of the LPs given by Krivine’s positivity certificate can become quite large.
The dimension of the variable c is |N2n

k | = O(nk). To make this approach more scalable, in
appendix C we describe how to exploit the sparsity of the polynomial p to find LPs of drastically
smaller size than (6), but with similar approximation properties.

4. Experiments

We consider the following estimators of L(fd) with respect to the `∞ norm:

1. also known as Krivine’s Positivstellensatz

3

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Name Description
SDP Upper bound arising from the solution of the SDP relaxation described

in appendix D
LipOpt-k Upper bound arising from the k-th degree of the LP hierarchy (6) based

on the sparse Krivine Positivstellenstatz.
Lip-SDP Upper bound from Fazlyab et al. [4] multiplied

√
d where d is the input

dimension of the network.
UBP Upper bound determined by the product of the layer-wise Lipschitz con-

stants with `∞ metric
LBS Lower bound obtained by sampling 50000 random points around zero,

and evaluating the dual norm of the gradient

4.1. Experiments on random networks

We compare the bounds obtained by the algorithms described above on networks with random
weights and either one or two hidden layers. We define the sparsity level of a network as the
maximum number of neurons any neuron in one layer is connected to in the next layer. For the
experimental setup details, see appendix E.

When the chosen degree for LiPopt-k is the smallest as possible, i.e., equal to the depth of the
network, we observe that the method is already competitive with the SDP method, especially in the
case of 2 hidden layers. When we increment the degree by 1, LiPopt-k becomes uniformly better
than SDP over all tested configurations. We remark that the upper bounds given by UBP are too
large to be shown in the plots. Similarly, for the 1-hidden layer networks, the bounds from LipSDP
are too large to be plotted.

We measured the computation time of the different methods on each tested network (Figures 2
and 4). We observe that the computation time for LiPopt-k heavily depends on the network sparsity,
which reflects the fact that such structure is exploited in the algorithm.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

Lip
sc

hi
tz

 e
rro

r

LiPopt_2
LiPopt_3
SDP

(a) 40× 40

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(b) 80× 80

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(c) 160× 160

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(d) 320× 320

Figure 1: Lipschitz approximated relative error for 1-hidden layer networks

4.2. Experiments on trained networks

We compare these methods on networks trained on MNIST. The architecture we use is a fully
connected network with two hidden layers with 300 and 100 neurons respectively, and with one-hot
output of size 10. Since the output is multi-dimensional, we restrict the network to a single output,
and estimate the Lipschitz constant with respect to label 8.

In order to improve the scalability of our method, we train the network using the pruning strategy
described in [7]. Doing so, we were able to remove 95% of the weights, while preserving the same

4

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

Co
m

pu
ta

tio
n

tim
e

LiPopt_2
LiPopt_3
SDP

(a) 40× 40

4 6 8 10 12 14
Sparsity

0.0

0.2

0.4

0.6

0.8

Co
m

pu
ta

tio
n

tim
e

(b) 80× 80

4 6 8 10 12 14
Sparsity

0.0

0.5

1.0

1.5

Co
m

pu
ta

tio
n

tim
e

(c) 160× 160

4 6 8 10 12 14
Sparsity

0

2

4

6

8

10

Co
m

pu
ta

tio
n

tim
e

(d) 320× 320

Figure 2: Computation times for 1-hidden layer networks (seconds)

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

LiPopt_3
LiPopt_4
SDP
LipSDP

(a) 5× 5× 10

4 6 8 10 12 14
Sparsity

0.0

0.2

0.4

0.6

0.8

Lip
sc

hi
tz

 e
rro

r

(b) 10× 10× 10

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

(c) 20× 20× 10

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

(d) 40× 40× 10

Figure 3: Lipschitz approximated relative error for 2-hidden layer networks

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
n

tim
e

LiPopt_3
LiPopt_4
SDP

(a) 5× 5× 10

4 6 8 10 12 14
Sparsity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
m

pu
ta

tio
n

tim
e

(b) 10× 10× 10

4 6 8 10 12 14
Sparsity

0

5

10

15

20

Co
m

pu
ta

tio
n

tim
e

(c) 20× 20× 10

4 6 8 10 12 14
Sparsity

0

20

40

60

Co
m

pu
ta

tio
n

tim
e

(d) 40× 40× 10

Figure 4: Computation times for 2-hidden layer networks (seconds)

test accuracy. We recorded the Lipschitz bounds for various methods in Table 4.2. We observe clear
improvement of the Lipschitz bound obtained from LiPopt-k compared to SDP method, even when
using k = 3. Also note that the input dimension is too large for the method Lip-SDP to provide
competitive bound, so we do not provide the obtained bound for this method.

Algorithm LBS LiPopt-4 LiPopt-3 SDP UBP
Lipschitz bound 84.2 88.3 94.6 98.8 691.5

Acknowledgements

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement 725594 - time-
data). PR is supported by the Swiss National Science Foundation (SNSF) under grant number
407540 167319. FL is supported through a PhD fellowship of the Swiss Data Science Center, a
joint venture between EPFL and ETH Zurich. VC acknowledges the 2019 Google Faculty Research
Award.

5

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

References

[1] A. Ahmadi and A. Majumdar. Dsos and sdsos optimization: More tractable alternatives to sum
of squares and semidefinite optimization. SIAM Journal on Applied Algebra and Geometry,
3(2):193–230, 2019. doi: 10.1137/18M118935X. URL https://doi.org/10.1137/
18M118935X.

[2] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems 30, pages
6240–6249. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7204-spectrally-normalized-margin-bounds-for-neural-networks.
pdf.

[3] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pages 854–863, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.press/v70/cisse17a.html.

[4] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas.
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. arXiv
e-prints, art. arXiv:1906.04893, Jun 2019.

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, train-
able neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

[6] Bissan Ghaddar, Jakub Marecek, and Martin Mevissen. Optimal power flow as a polynomial
optimization problem. IEEE Transactions on Power Systems, 31(1):539–546, 2015.

[7] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[8] David Handelman. Representing polynomials by positive linear functions on compact convex
polyhedra. Pacific J. Math., 132(1):35–62, 1988. URL https://projecteuclid.org:
443/euclid.pjm/1102689794.

[9] Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network con-
struction with back-propagation. In Advances in Neural Information Processing Systems 1,
pages 177–185. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/
156-comparing-biases-for-minimal-network-construction-with-back-propagation.
pdf.

[10] Ming Jin and Javad Lavaei. Stability-certified reinforcement learning: A control-theoretic
perspective. arXiv e-prints, art. arXiv:1810.11505, Oct 2018.

[11] Masakazu Kojima, Sunyoung Kim, and Hayato Waki. Sparsity in sums of squares of polyno-
mials. Mathematical Programming, 103(1):45–62, May 2005. ISSN 1436-4646. doi: 10.1007/
s10107-004-0554-3. URL https://doi.org/10.1007/s10107-004-0554-3.

6

https://doi.org/10.1137/18M118935X
https://doi.org/10.1137/18M118935X
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf
http://proceedings.mlr.press/v70/cisse17a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://projecteuclid.org:443/euclid.pjm/1102689794
https://projecteuclid.org:443/euclid.pjm/1102689794
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
http://papers.nips.cc/paper/156-comparing-biases-for-minimal-network-construction-with-back-propagation.pdf
https://doi.org/10.1007/s10107-004-0554-3

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

[12] Jean-Louis Krivine. Anneaux préordonnés. Journal d’analyse mathématique, 12:p. 307–326,
1964. URL https://hal.archives-ouvertes.fr/hal-00165658.

[13] J. B. Lasserre. Convergent lmi relaxations for nonconvex quadratic programs. In Proceedings
of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), volume 5, pages
5041–5046 vol.5, Dec 2000. doi: 10.1109/CDC.2001.914738.

[14] Jean B Lasserre. Convergent sdp-relaxations in polynomial optimization with sparsity. SIAM
Journal on Optimization, 17(3):822–843, 2006.

[15] Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2015. doi: 10.1017/
CBO9781107447226.

[16] Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically constrained
quadratic programming. arXiv preprint arXiv:1703.07870, 2017.

[17] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bys4ob-Rb.

[18] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for cer-
tifying robustness to adversarial examples. In Advances in Neural Information Processing
Systems, pages 10877–10887, 2018.

[19] Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math-
ematische Annalen, 207(2):87–97, Jun 1974. ISSN 1432-1807. doi: 10.1007/BF01362149.
URL https://doi.org/10.1007/BF01362149.

[20] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

[21] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite program
relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on
Optimization, 17(1):218–242, 2006. doi: 10.1137/050623802.

[22] Zizhuo Wang, Song Zheng, Stephen Boyd, and Yinyu Ye. Further relaxations of the sdp
approach to sensor network localization. Tech. Rep., 2006.

[23] Tillmann Weisser, Jean B Lasserre, and Kim-Chuan Toh. Sparse-bsos: a bounded degree sos
hierarchy for large scale polynomial optimization with sparsity. Mathematical Programming
Computation, 10(1):1–32, 2018.

[24] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane
Boning, and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU
networks. In Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 5276–5285, Stockholmsmässan,

7

https://hal.archives-ouvertes.fr/hal-00165658
https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.1007/BF01362149
http://arxiv.org/abs/1312.6199

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/weng18a.html.

[25] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring Randomly Wired
Neural Networks for Image Recognition. International Conference on Computer Vision, Apr
2019.

[26] Zhengfeng Yang, Chao Huang, Xin Chen, Wang Lin, and Zhiming Liu. A linear program-
ming relaxation based approach for generating barrier certificates of hybrid systems. In John
Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou, editors, FM 2016: For-
mal Methods, pages 721–738, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-48989-6.

[27] Yinyu Ye. Approximating quadratic programming with bound and quadratic constraints.
Mathematical Programming, 84(2):219–226, Feb 1999. ISSN 1436-4646. doi: 10.1007/
s10107980012a. URL https://doi.org/10.1007/s10107980012a.

[28] Y. Zhang, Z. Yang, W. Lin, H. Zhu, X. Chen, and X. Li. Safety verification of nonlinear hybrid
systems based on bilinear programming. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2768–2778, Nov 2018. doi: 10.1109/TCAD.2018.
2858383.

8

http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://doi.org/10.1007/s10107980012a

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Appendix A. Proof of Theorem 1

Theorem Let f be a differentiable and Lipschitz continuous function on an open, convex subset X
of a euclidean space. Let ‖ · ‖ be the dual norm. The Lipschitz constant of f is given by

L(f) = sup
x∈X
‖∇f(x)‖∗ (7)

Proof First we show that L(f) ≤ supx∈X ‖∇f(x)‖∗.

|f(y)− f(x)| =
∣∣∣∣∫ 1

0
∇f((1− t)x+ ty)T (y − x) dt

∣∣∣∣
≤
∫ 1

0

∣∣∇f((1− t)x+ ty)T (y − x)
∣∣ dt

≤
∫ 1

0
‖∇f((1− t)x+ ty)‖∗ dt ‖y − x‖

≤ sup
x∈X
‖∇f(x)‖∗‖y − x‖

were we have used the convexity of X .
Now we show the reverse inequality L(f) ≥ supx∈X ‖∇f(x)‖∗. To this end, we show that for

any positive ε, we have that L(f) ≥ supx∈X ‖∇f(x)‖∗ − ε.
Let z ∈ X be such that ‖∇f(z)‖∗ ≥ supx∈X ‖∇f(x)‖∗ − ε. Because X is open, there exists a

sequence {hk}∞k=1 with the following properties:

1. 〈hk,∇f(z)〉 = ‖hk‖‖∇f(z)‖∗

2. z + hk ∈ X

3. limk→∞ hk = 0.

By definition of the gradient, there exists a function δ such that limh→0 δ(h) = 0 and the following
holds:

f(z + h) = f(z) + 〈h,∇f(z)〉+ δ(h)‖h‖

For our previously defined iterates hk we then have

⇒ |f(z + hk)− f(z)| = |‖hk‖‖∇f(z)‖∗ + δ(hk)‖hk‖|

Dividing both sides by ‖hk‖ and using the definition of L(f) we finally get

⇒ L(f) ≥
∣∣∣∣f(z + hk)− f(z)

‖hk‖

∣∣∣∣ = |‖∇f(z)‖∗ + δ(hk)|

⇒ L(f) ≥ lim
k→∞

|‖f(z)‖∗ + δ(hk)| = ‖∇f(z)‖∗

⇒ L(f) ≥ sup
x∈X
‖∇f(x)‖∗ − ε

9

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Appendix B. Proof of Proposition 6

Proposition Let fd be a dense network (all weights are nonzero). The following sets, indexed by
i = 1, . . . , nd, form a valid sparsity pattern for the norm-gradient polynomial of the network fd:

Ii :=
{
s(d−1,i)} ∪ {s(j,k) : there exists a directed path from s(j,k) to s(d−1,i) in Gd

}
(8)

Proof First we show that ∪mi=1Ii = I . This comes from the fact that any neuron in the network is
connected to at least one neuron in the last layer. Otherwise such neuron could be removed from
the network altogether.

Now we show the second property of a valid sparsity pattern. Note that the norm-gradient
polynomial is composed of monomials corresponding to the product of variables in a path from
input to a final neuron. This imples that if we let pi be the sum of all the terms that involve the
neuron s(d−1,i) we have that p =

∑
i pi, and pi only depends on the variables in Ii.

We now show the last property of the valid sparsity pattern. This is the only part where we use
that the network is dense. For any network architecture the first two conditions hold. We will use
the fact that the maximal cliques of a chordal graph form a valid sparsity pattern (see for example
Lasserre [14]).

Because the network is dense, we see that the clique Ii is composed of the neuron in the last layer
s(d−1,i) and all neurons in the previous layers. Now consider the extension of the computational
graph Ĝd = (V, Ê) where

Ê = E ∪ {(sj,k, sl,m) : j, l ≤ d− 2)}

which consists of adding all the edges between the neurons that are not in the last layer. We show
that this graph is chordal. Let (a1, . . . , ar, a1) be a cycle of length at least 4 (r ≥ 4). notice that
because neurons in the last layer are not connected between them in Ĝ, no two consecutive neurons
in this cycle belong to the last layer. This implies that in the subsequence (a1, a2, a3, a4, a5) at most
three belong to the last layer. A simple analysis of all cases implies that it contains at least two
nonconsecutive neurons not in the last layer. Neurons not in the last layer are always connected in
Ĝ. This constitutes a chord. This shows that Ĝd is a chordal graph. Its maximal cliques correspond
exactly to the sets in proposition.

Appendix C. Reducing the number of variables

Many neural network architectures, like those composed of convolutional layers, have a highly
sparse connectivity between neurons. Moreover, it has been empirically observed that up to 90%
of network weights can be pruned (set to zero) without harming accuracy [5]. In such cases their
norm-gradient polynomial has a special structure that allows polynomial positivity certificates of
smaller size than the one given by Krivine’s positivity certificate (Theorem 2).

In this section, we describe how to exploit the sparsity of the network to decrease the complexity
of the LPs (6) given by the Krivine’s positivity certificate. In this way, LiPopt can obtain upper
bounds on L(fd) that require less computation and memory. Let us start with the definition of a
valid sparsity pattern:

10

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Definition 3 Let I = {1, . . . , n} and p be a polynomial with variable x ∈ Rn. A valid sparsity
pattern of p is a sequence {Ii}mi=1 of subsets of I , called cliques, such that

⋃m
i=1 Ii = I and:

. p =
∑m

i=1 pi where pi is a polynomial that depends only on the variables {xj : j ∈ Ii}

. for all i = 1, . . . ,m− 1 there is an l ≤ i such that (Ii+1 ∩
⋃i
r=1 Ir) ⊆ Il

When the polynomial objective p in a POP has a valid sparsity pattern, there is an extension of
Theorem 2 due to Weisser et al. [23], providing a smaller positivity certificate for λ− p over [0, 1]n.
We refer to it as the sparse Krivine’s certificate and we include it here for completeness:

Theorem 4 (Adapted from Weisser et al. [23]) Let a polynomial p have a valid sparsity pattern
{Ii}mi=1. Define Ni as the set of sequences (α, β) ∈ N2n where the support of both α and β is
contained in Ii. If λ − p is strictly positive over K = [0, 1]n, there exist finitely many positive
weights cαβ such that

λ− p =
m∑
i=1

hi, hi =
∑

(α,β)∈Ni

cαβhαβ (9)

where the polynomials hαβ are defined as in (5).

The sparse Krivine’s certificate can be used like the general version (Theorem 2) to derive a se-
quence of LPs approximating the upper bound on L(fd) stated in (4). However, the number of
different polynomials hαβ of degree at most k appearing in the sparse certificate can be drastically
smaller, the amount of which determines how good the sparsity pattern is.

We introduce a graph that depends on the network fd, from which we will extract a sparsity
pattern for the norm-gradient polynomial of a network.

Definition 5 Let fd be a network with weights {Wi}di=1. Define a directed graph Gd = (V,E) as:

V = {si,j : 0 ≤ i ≤ d− 1, 1 ≤ j ≤ ni}
E = {(si,j , si+1,k) : 0 ≤ i ≤ d− 2, [Wi]k,j 6= 0}

(10)

which we call the computational graph of the network fd.

In the graph Gd the vertex s(i,j) represents the j-th neuron in the i-th layer. There is a directed edge
between two neurons in consecutive layers if they are joined by a nonzero weight in the network.
The following result shows that for fully connected networks we can extract a valid sparsity pattern
from this graph. We delegate the proof to appendix B.

Proposition 6 Let fd be a dense network (all weights are nonzero). The following sets, indexed by
i = 1, . . . , nd, form a valid sparsity pattern for the norm-gradient polynomial of the network fd:

Ii :=
{
s(d−1,i)} ∪ {s(j,k) : there exists a directed path from s(j,k) to s(d−1,i) in Gd

}
(11)

We refer to this as the sparsity pattern induced by Gd. An example is depicted in in Figure 5.
Remark. When the network is not dense, the the second condition (Definition 3) for the sparsity

pattern (11) to be valid might not hold. In that case we lose the guarantee that the values of the
corresponding LPs converge to the maximum of the POP (4). Nevertheless, it still provides a valid

11

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

Figure 5: Sparsity pattern of Proposition 6 for
a network of depth three.

Figure 6: Structure of one set in the sparsity
pattern from Proposition 6 for a network with
2D convolutional layers with 3× 3 filters.

positivity certificate that we use to upper bound L(fd). In Section 4 we show that in practice it
provides upper bounds of good enough quality. If needed, a valid sparsity pattern can be obtained
via a chordal completion of the correlative sparsity graph of the POP [21].

We now quantify how good this sparsity pattern is. Let s be the size of the largest clique in a
sparsity pattern, and let Ni,k be the subset of Ni (defined in Theorem 4) composed of sequences
summing up to k. The number of different polynomials for the k-th LP in the hierarchy given by
the sparse Krivine’s certificate can be bounded as follows:∣∣∣∣∣

m⋃
i=1

Ni,k

∣∣∣∣∣ ≤
m∑
i=1

(
2|Ii|+ k

k

)
= O

(
msk

)
(12)

We immediately see that the dependence on the number of cliques m is really mild (linear) but the
size of the cliques as well as the degree of the hierarchy can really impact the size of the optimization
problem. Nevertheless, this upper bound can be quite loose; polynomials hαβ that depend only on
variables in the intersection of two or more cliques are counted more than once.

The number of cliques given in the sparsity pattern induced by Gd is equal to the size of the last
layer m = nd and the size of each clique depends on the particular implementation of the network.
We now study different architectures that could arise in practice, and determine the amount of
polynomials in their sparse Krivine’s certificate.

Fully connected networks. Even in the case of a network with all nonzero connections, the
sparsity pattern induced byGd decreases the size of the LPs when compared to Krivine’s certificate.
In this case the cliques have size n1+ . . .+nd−1+1 but they all have the same common intersection
equal to all neurons up to the second-to-last hidden layer. A straightforward counting argument
shows that the total number of polynomials is O(n(n1 + . . .+ nd−1 +1)k−1), improving the upper
bound (12).

Unstructured sparsity. In the case of networks obtained by pruning [9] or generated randomly
from a distribution over graphs [25], the sparsity pattern can be arbitrary. In this case the size of the
resulting LPs varies at runtime. Under the layer-wise assumption that any neuron is connected to at
most r neurons in the previous layer, the size of the cliques in (11) is bounded as s = O(rd). This
estimate has an exponential dependency on the depth but ignores that many neurons might share
connections to the same inputs in the previous layer, thus being potentially loose. The bound (12)
implies that the number of different polynomials is O(ndrdk).

12

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

2D Convolutional networks. The sparsity in the weight matrices of convolutional layers has a
certain local structure; neurons are connected to contiguous inputs in the previous layer. Adjacent
neurons also have many input pixels in common (see Figure 6). Assuming a constant number of
channels per layer, the size of the cliques in (11) is O(d3). Intuitively, such number is proportional
to the volume of the pyramid depicted in Figure 6 where each dimension depends linearly on d.
Using (12) we get that there are O(ndd3k) different polynomials in the sparse Krivine’s certificate.
This is a drastic decrease in complexity when compared to the unstructured sparsity case.

The use of sparsity in polynomial optimization preceeds Theorem 4 [23]. First studied in the
context of sum-of-squares by Kojima et al. [11] and further refined in Lasserre [14], Waki et al. [21]
(and references therein), it has found applications in safety verification [26, 28], sensor localization
Wang et al. [22], optimal power flow [6] and many others. Our work fits precisely into this set of
important applications.

Appendix D. QCQP reformulation and Shor’s SDP relaxation

Another way of upper boundingL(fd) comes from a further relaxation of (4) to an SDP. We consider
the following equivalent formulation where the variables si are normalized to lie in the interval
[−1, 1], and we rename t = s0:

L(fd) ≤ max

{
1

2d−1
sT0W

T
1

d−1∏
i=1

Diag(si + 1)W T
i+1 : −1 ≤ si ≤ 1

}
(13)

Any polynomial optimization problem like (13) can be cast as a (possibly non-convex) quadratically
constrained quadratic program (QCQP) by introducing new variables and quadratic constraints.
This is a well-known procedure described in Park and Boyd [16, Section 2.1]. When d = 2 problem
(13) is already a QCQP (for the `∞ and `2-norm cases) and no modification is necessary.

QCQP reformulation. We illustrate the case d = 3 where we have the variables s1, s2 cor-
responding to the first and second hidden layer and a variable s0 corresponding to the input. The
norm-gradient polynomial in this case is cubic, and it can be rewritten as a quadratic polynomial
by introducing new variables corresponding to the product of the first and second hidden layer vari-
ables.

More precisely the introduction of a variable s1,2 with quadratic constraint s1,2 = vec(s1s
T
2)

allows us to write the objective (13) as a quadratic polynomial. The problem then becomes a QCQP
with variable y = [1, s0, s1, s2, s1,2] of dimension 1 + n+ n1n2.

SDP relaxation. Any quadratic objective and constraints can then be relaxed to linear con-
straints on the positive semidefinite variable yyT = X < 0 yielding the so-called Shor’s relaxation
of (13) [16, Section 3.3]. When d = 2 the resulting SDP corresponds precisely to the one studied
in Raghunathan et al. [17]. This resolves a common misconception [18] that this approach is only
limited to networks with one hidden layer.

Note that in our setting we are only interested in the optimal value rather than the optimizers, so
there is no need to extract a solution for (13) from that of the SDP relaxation.

Drawback. This approach includes a further relaxation step from (13), thus being fundamen-
tally limited in how tightly it can upper bound the value of L(fd). Moreover when compared to LP
solvers, off-the-shelf semidefinite programming solvers are, in general, much more limited in the
number of variables they can efficiently handle.

13

ESTIMATING THE LIPSCHITZ CONSTANT OF NEURAL NETWORKS WITH POLYNOMIAL OPTIMIZATION METHODS

In the case d = 2 this relaxation provides a constant factor approximation to the original QCQP
[27]. The approximation qualities of such hierarchical optimization approaches to NP-hard prob-
lems are a big topic of research in theoretical computer science and are out of the scope of this
work.

Relation to sum-of-squares. The QCQP approach might appear fundamentaly different to the
hierarchical optimization approaches to POPs, like the one described in Section 3. However, it is
known that Shor’s SDP relaxation corresponds exactly to the first degree of the SOS hierarchical
SDP solution to the QCQP relaxation [13]. Thus, the approach in section 3 and the one in this
section are, in essence, the same; they only differ in the choice of polynomial positivity certificate.

Appendix E. Experimental setup details

The non-zero weights of network’s i-th layer are sampled uniformly in [− 1√
ni
, 1√

ni
] where ni is the

number of neurons in layer i.
For different configurations of width and sparsity, we generate 10 random networks and average

the obtained Lipschitz bounds. For better comparison, we plot the relative error. Since we do
not know the true Lipschitz constant, we cannot compute the true relative error. Instead, we take
as reference the lower bound given by LBS. Figures 1 and 3 show the relative error, i.e., (L̂ −
LLBS)/LLBS where LLBS is the lower bound computed by LBS and L̂ is the estimated upper
bound.

LiPopt uses the Gurobi LP solver, while SDP uses Mosek. All methods run on a single machine
with Core i7 2.8Ghz quad-core processor and 16Gb of RAM.

14

	Introduction
	Polynomial optimization formulation
	Hierarchical solution based on a Polynomial Positivity certificate
	Experiments
	Experiments on random networks
	Experiments on trained networks

	Proof of Theorem 1
	Proof of Proposition 6
	Reducing the number of variables
	QCQP reformulation and Shor's SDP relaxation
	Experimental setup details

