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Abstract
Conditional gradient methods constitute a class of first order algorithms for solving smooth
convex optimization problems that are projection-free and numerically competitive. We
present the Locally Accelerated Conditional Gradients algorithmic framework that relaxes the
projection-freeness requirement to only require projection onto (typically low-dimensional)
simplices and mixes accelerated steps with conditional gradient steps to achieve dimension-
independent local acceleration for smooth strongly convex functions. We prove that the
introduced class of methods attains the asymptotically optimal convergence rate. Our
theoretical results are supported by numerical experiments that demonstrate a speed-up
both in wall-clock time and in per-iteration progress when compared to state-of-the-art
conditional gradient variants.

1. Introduction
We consider problems of the form:

min
x∈X

f(x), (P)

where f is an L-smooth (gradient Lipschitz) µ-strongly convex function and X ⊆ Rn is
a polytope. We assume access to the objective function f through a first-order oracle
(FO), and access to the polytope X through a linear optimization oracle (LO). Conditional
gradient (CG) algorithms operate under this model and due to their simplicity, good practical
performance, and other favorable characteristics continue to be an active area of research
(see, e.g., [1–3, 7–10, 12–15, 18, 20] and references therein). While some CG variants achieve
a linear convergence rate for smooth strongly convex functions [8, 15], they do not achieve
the optimal accelerated convergence rate that is attained by projection-based methods for
smooth strongly convex optimization.

This slower convergence is not merely an artifact of the analysis of existing CG-type
methods: global dimension-independent accelerated convergence is impossible for any method
whose access to the polytope is limited to an LO [12, 16]. In particular, in the worst case,
any such method requires t = Ω(min{n, 1/ε}) queries to an LO to construct a solution
xt ∈ X that satisfies f(xt) − f(x∗) ≤ ε, where x∗ = argminx∈X f(x). Thus, if we seek a
global convergence of the form f(xt) − f(x∗) ≤ (1 − r)t(f(x0) − f(x∗)), then r ≤ 2 logn

n ,
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i.e., the (unaccelerated) convergence rate of methods such as the Away-step Frank-Wolfe
(AFW) [11, 15] and Pairwise Frank-Wolfe (PFW) [15, 21] is optimal up to log factors.

The Catalyst framework [19] can provide black-box acceleration for different CG variants.
However, to be compatible with the lower bound from [12, 16], this approach still incurs a large
dimension-dependent factor in the resulting iteration complexity of the accelerated method.
Another form of acceleration in the case of LO-based methods is achieved by Conditional
Gradient Sliding [17], which leads to the optimal first-order oracle (FO) complexity. However,
the LO complexity remains in the unaccelerated regime; this is also necessary due to the
lower bound. Note that in practice a call to an LO is typically much more computationally
intensive than a call to the FO.

We show that local dimension-independent acceleration for conditional gradient methods
is possible. The acceleration is achieved after a burn-in phase whose length does not depend
on the target accuracy ε (but could potentially depend on the dimension). Our contributions
are summarized as follows, where we assume that f is L-smooth and µ-strongly convex.

1. (Locally Accelerated Conditional Gradients.) We introduce a new class of condi-
tional gradient algorithms – Locally Accelerated Conditional Gradients (LaCG) – that
achieve an asymptotically optimal iteration complexity of K +O

(√
L
µ log 1

ε

)
to solve

Problem (P) up to error ε, where K is a constant that only depends on X and f .

2. (Generalized Accelerated Method.) We generalize the algorithm µAGD+ from [4] by
showing that it retains its convergence guarantees when coupled with an arbitrary
alternative algorithm. Furthermore, it also tolerates inexact projections onto the
feasible set and admits changes to the convex set onto which these projections are
performed (as long as the convex set is contained in the convex set from the preceding
iteration and it contains the minimizer x∗).

3. (Computational Experiments.) We compare our methods to other conditional gradient
variants and provide computational evidence that our algorithms achieve a practical
speed-up, both in terms of per-iteration progress and in wall-clock time.

2. Locally Accelerated Conditional Gradients
For concreteness, we present a variant of LaCG that is used on top of the Away-Step
Frank-Wolfe (AFW) algorithm. We note, however, that the same methodology can be used
on top of any active-set-based CG method (such as, e.g., Pairwise Frank-Wolfe). Pseudocode
of the resulting algorithm is provided in Algorithm 1.

A standing assumption in our methodology is that projections onto the convex hull
of the active set can be implemented efficiently. These projections are typically cheap in
applications due to the small size of the active sets; the sparsity of the final solution and the
away steps keep the active set small. Further, there are various heuristics that are used in
practice to reduce the size of the active set (see, e.g., [2]). Solving the projection problem
amounts to minimizing a quadratic function over the probability simplex to an accuracy
that is of the same order as the target accuracy, and thus normally requires a number of
iterations of the order log(1/ε). Furthermore, computing this projection does not require
any additional calls to either the LO or the FO of the original problem. In Algorithm 1, the
projection steps are carried out in Lines 16 and 12.
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Our algorithm couples the steps of AFW and an adaptation of µAGD+ [4] that we
introduce to handle special properties of CG-type methods. In particular, in every iteration,
the method computes the AFW step and the µAGD+ step and chooses the one with the
lower function value. This is crucial to ensure that the method always makes at least as
much per-iteration progress as AFW. It also ensures convergence over iterations in which
the convex hull Ck of the active set Sk does not contain the optimum x∗ and in which there
are no guarantees for the accelerated sequence. By a standard fact, after a constant number
of iterations K (that only depends on f and X ), Ck is guaranteed to contain (a ball of radius
r around) x∗ in every subsequent iteration. After those K iterations, we can apply the
arguments pertaining to the accelerated sequence. Our coupling ensures that we do not
need to know K a priori or have the ability to detect whether x∗ ∈ Ck.

Another ingredient of our analysis is that we allow feasible sets used in the accelerated
sequence to shrink (see Lemma 1 below). This allows us to use the convex hull of the same
active set as AFW, as long as AFW is not adding any vertices. When AFW adds a new
vertex, LaCG freezes the active set for the analysis from Lemma 1 to apply. The discrepancy
between the two active sets is resolved via scheduled restarts that are enforced not to happen
too frequently, so that the convergence rate from Lemma 1 can be preserved. Due to space
constraints, further details are omitted and we only state the final result in Theorem 2.

Algorithm 1: Locally Accelerated Conditional Gradients
1 Let x0 ∈ X be an arbitrary point, SAFW

0 = {x0}, λAFW
0 = [1] ;

2 Let y0 = x̂0 = w0 = x0, z0 = −∇f(y0) + Ly0, C1 = co(SAFW
0 ) ;

3 a0 = A0 = 1, θ =
√

µ
2L , µ0 = L− µ ;

4 H = 2
θ

log(1/(2θ2)− 1) ; // Minimum restart period
5 rf = false, rc = 0 ; // Restart flag and restart counter initialization
6 for i← 2 to l do
7 xAFW

k , SAFW
k , λAFW

k = AFW(xAFW
k−1 , SAFW

k−1 , λAFW
k−1 ) ; // AFW step

8 if rf and rc ≥ H then // Restart criterion is met
9 yk = argmin{f(xAFW

k ), f(x̂k)} ;
10 Ck+1 = co(SAFW

k ) ; // Updating feasible set for the accelerated sequence
11 ak = Ak = 1, zk = −∇f(yk) + Lyk ; // Restarting accelerated sequence
12 x̂k = wk = argminu∈Ck+1

{− 〈zk,u〉+ L
2 ‖u‖

2} ;
13 rc = 0, rf = false ; // Resetting the restart indicators
14 else
15 Ak = Ak−1/(1− θ), ak = θAk ;
16 x̂k, zk, wk = ACC(xk−1, zk−1,wk−1, µ, µ0, ak, Ak, Ck) ; // Accelerated step
17 if SAFW

k \ SAFW
k−1 6= ∅ then // Vertex was added to the AFW active set

18 rf = true ; // Raise restart flag
19 end
20 if rf = false then // If AFW did not add a vertex since last restart
21 Ck+1 = co(SAFW

k ) ; // Update the feasible set
22 else
23 Ck+1 = Ck ; // Freeze the feasible set
24 end
25 end
26 xk = argmin{f(xAFW

k ), f(x̂k), f(xk−1)} ; // Choose the better step + monotonicity
27 rc = rc + 1 ; // Increment the restart counter
28 end
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Algorithm 2: Accelerated Step ACC(xk−1, zk−1,wk−1, µ, µ0, ak, Ak, Ck)
1 θ = ak/Ak ;
2 yk = 1

1+θxk−1 + θ
1+θwk−1 ;

3 zk = zk−1 − ak∇f(yk) + µakyk ;
4 wk = argminu∈Ck

{− 〈zk,u〉+ µAk+µ0
2 ‖u‖2} ;

5 x̂k = (1− θ)xk−1 + θwk ;
6 return x̂k, zk,wk ;

The workhorse of our analysis is the following lemma, which shows that it is possible
to couple the sequence of steps of accelerated method µAGD+ from [4] with an arbitrary
sequence of points, without paying in the convergence rate. It further shows that the
convergence is unaffected by any shrinking of the feasible set, as long as it remains convex
and it contains the problem solution x∗. Finally, we also allow for inexact projection steps.
The analysis relies on the use of the Approximate Duality Gap Technique [5].

Lemma 1 (Convergence of the modified µAGD+) Given the setting in Problem (P), let
{Ci}ki=0 be a sequence of convex subsets of X such that Ci ⊆ Ci−1 for all i and x∗ ∈

⋂k
i=0 Ci.

Let {x̃i}ki=0 be any (fixed) sequence of points from X . Let a0 = 1, ak
Ak

= θ for k ≥ 1, where
Ak =

∑k
i=0 ai and θ =

√
µ

2L . Let y0 ∈ X , x0 = w0, and z0 = Ly0 − ∇f(y0). For k ≥ 1,
define iterates xk by:

x̂k, zk, wk = ACC(xk−1, zk−1,wk−1, µ, µ0, ak, Ak, Ck)
xk = argmin{f(x̂k), f(x̃k)}

(1)

where, for all k ≥ 0, wk is defined as an εmk -approximate solution of the projection in Line 4
of Algorithm 2. Then, for all k ≥ 0:

f(xk)− f(x∗) ≤ (1− θ)k (L− µ)‖x∗ − y0‖2

2 + 2
∑k−1
i=0 ε

m
i + εmk

Ak
.

Theorem 2 (Convergence of LaCG) Let xk be the solution output by Algorithm 1, D =
maxx,y∈X ‖x− y‖, and let δ be the pyramidal width of X (see [15]). If:

k ≥ min
{

8L
µ

(
D

δ

)2
log

(
f(x0)− f(x∗)

ε

)
, K0 +H + 2

√
2L
µ

log
(

(L− µ)r2

2ε

)}
,

where H = 2
√

2L/µ log(L/µ− 1) and K0 = 8L
µ

(
D
δ

)2
log

(
2(f(x0)−f(x∗))

µr2

)
, then:

f(xk)− f(x∗) ≤ ε.

3. Numerical Experiments
We implemented Algorithm 1 using Python 3 and numpy, employing the O (n logn) projec-
tions onto the simplex described in [6, Algorithm 1] and Nesterov’s accelerated method [22, 23]
to solve the subproblems in Algorithm 1. While we give convergence guarantees for the AFW
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Figure 1: Algorithm comparison in terms of 1(a),1(c) iteration count and 1(b),1(d) wall-
clock time for the 1(a),1(b) Birkhoff and 1(c),1(d) MIPLIB examples. In both
examples, LaCG coupled with either AFW or PFW exhibits faster convergence
than other methods. Transition to faster accelerated convergence can be clearly
observed in the plots showing convergence in terms of the iteration count.

variant, as mentioned before, other linearly converging CG variants can be used, as long as
they maintain an active set; this excludes e.g., decomposition invariant CG (DICG) [9].

The two examples in Fig. 1 show the convergence both in terms of the iteration count
and wall-clock time when solving Problem (P) with L/µ ≈ 100. The first example, shown
in Fig. 1(a)-1(b), corresponds to minimization over the Birkhoff polytope of dimension
n = 1600 with f(x) = xT MTM+I

2 x, where M ∈ Rn×n is a sparse matrix whose 1% of the
elements are drawn from a standard Gaussian distribution and I is the identity matrix (the
matrix MTM has 15% non-zero elements). We compare LaCG (implemented with AFW
and PFW) with AFW, PFW, and the DICG algorithm [9]. The second example, shown
in Fig. 1(c)-1(d), corresponds to a structured regression problem over the convex hull of
the feasible region defined by integer and linear constraints, where the LO corresponds to
solving a mixed integer program (MIP) with a linear objective function. The specific instance
used corresponds to ran14x18-disj-8, of dimension 504, from the MIPLIB library. The
objective function f(x) = xT M2 x + b was obtained by first generating an orthonormal basis
B = {u1, · · · ,un} in Rn and a set of n uniformly distributed values {λ1, · · · , λn} between
µ and L and setting M =

∑n
i=1 λiuiuTi . The vector b was set to be outside of the feasible

region, and has random entries uniformly distributed in [0, 1]. Note that DICG [1, 9] is not
applicable here, as the representation of the MIPLIP polytope mixes continuous and integer
variables, so that the away step oracle cannot be readily implemented. In fact, for polytopes
over which linear optimization is NP-hard (e.g., TSP polytope), efficiently computing away
steps with an away step oracle as in [1] is not possible unless NP = co-NP.
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