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Abstract
We introduce a new sequential subspace optimization method for large-scale saddle-point prob-
lems. It solves iteratively a sequence of auxiliary saddle-point problems in low-dimensional sub-
spaces, spanned by directions derived from first-order information over the primal and dual vari-
ables. Proximal regularization is further deployed to stabilize the optimization process. Experi-
mental results demonstrate significantly better convergence relative to popular first-order methods.
We analyze the influence of the subspace on the convergence of the algorithm, and assess its per-
formance in various deterministic optimization scenarios, such as bi-linear games, ADMM-based
constrained optimization and generative adversarial networks.

1. Introduction

Saddle-point problems arise in many applications, such as game theory [16], constrained and robust
optimization [1, 2] and generative adversarial networks (GANs) [14]. Important variational prob-
lems such as `∞ minimization, convex segmentation or compressed sensing [5, 7] have saddle-point
formulations that are efficiently handled using primal-dual solvers.

In case of large scale optimization problems, there is a need for optimization algorithms whose
storage requirement and computational cost per iteration grow at most linearly with the problem
dimensions. In the context of minimization, this constraint has led to the development of a broad
family of methods such as variable metric methods, and subspace optimization[8, 9, 12, 15, 20–
22]. In this work, motivated by the inherent slowness of gradient based methods and the power of
subspace optimization, we extend the idea of subspace optimization, until now limited to minimiza-
tion, to saddle-point problems. Specifically, we solve sequentially low dimensional saddle-point
problems in subspaces defined by first-order information. We propose to perform the subspace
optimization over the primal and dual variables, allowing to search for a saddle-point in a richer
subspace, wherein the function can increase and/or decrease in primal and dual variables respec-
tively. Further, we propose to couple the saddle-point objective with proximal operators in order to
ensure the existence of a stationary point in the subspace. We solve the subspace optimization via
adapted second order optimization that can be implemented efficiently in the given low dimensional
subspace. Finally, we perform backtracking line search over the gradient norm. This ensures faster
convergence, and most importantly, prevents divergence in degenerative cases. Experimental results
assess the power and usefulness of the proposed method.
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2. Sequential Subspace Optimization for saddle-point Problems

We consider the unconstrained saddle-point problem

min
x∈RM

max
y∈RN

f(x, y), (1)

where f is twice continuously differentiable and the first derivative is L Lipschitz continuous on
RM ×RN . Finding a global saddle-point is computationally intractable. We therefore assume local
convexity-concavity of the objective in which case saddle-point solution (x∗, y∗) holds in a local r
neighborhood ball of (x∗, y∗), which we denote B2((x

∗, y∗), r).
Let us define the subspace saddle-point problem as

min
α∈Rm

max
β∈Rn

f(xk + Pkα, yk +Qkβ), (2)

where we assume m � M and n � N . Matrices Pk and Qk define the subspace structure at
iteration k. The subspace optimization can be solved exactly or approximately. The new iterate is
of the form (

xk+1

yk+1

)
=

(
xk
yk

)
+ ηk

(
Pkα
Qkβ

)
, (3)

where ηk is the step size obtained via outer optimization (i.e. original problem), and the procedure
stops if convergence tests are satisfied. This formulation allows flexibility in definition of the search
space. The following simple but challenging example illustrates this property. The bi-linear game
f(x, y) = xT y [29] diverges when search is performed over one dimensional anti-gradient/gradient
direction. However, convergence can be reached if the optimization is performed separately over the
primal and dual variables, as shown in the following theorem. Proofs are provided in the Appendix
A.

Theorem 1 Consider the saddle-point problem f(x, y) = xT y and the update from eq. (3), where
α and β are obtained by solving eq.(2) with Pk = ∇xf(xk, yk) and Qk = ∇yf(xk, yk). Then,
∀ηk ∈ (0, 2f(xk, yk)

2/‖Pk‖2‖Qk‖2) the procedure converges to optimum.
Also, the gradient method (i.e. −α = β > 0), diverges ∀ηk > 0.

We emphasize the fact that joint subspace optimization is convergent while independent (alternat-
ing) subspace optimization is divergent in this unstable case. Following the subspace minimization
strategy to use more than current gradient, we seek a saddle-point in the subspace spanned by
first order information. Namely, we use the mandatory (Nemirovskii [22]) current gradient, pre-
vious gradients, and the previous search steps in x and y, such that span{Pk} = span{Sxk , Gxk}
and span{Qk} = span{Syk , G

y
k}, where Suk = {puk−l−1, . . . , puk−1} with puk = uk − uk−1, and

Guk = {∇uf(xk−l, yk−l), . . . ,∇uf(x, y)}. Other directions can be used or added to improve the
convergence as well. Expanding the subspace with more directions can enrich the subspace but en-
ables a subjective trade-off between computational cost and speed of convergence. Such subspace
formulation generalizes popular methods, e.g. the gradient method [28] or Optimistic Mirror De-
scent [10, 27]. In order to improve the convergence, the proposed framework can be combined with
other methods, such as weighted averaging of iterates as final solution [4], or consensus optimization
[18] as modification of the objective.
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2.1. General Subspace Convergence Analysis

In this section we analyse the convergence conditions of the subspace optimization method, in
terms of the norm of gradient, i.e. convergence to stationary point. Consider zk = [xk, yk] where
[·, ·] denotes vectors concatenation. We denote the direction dk = [Pkα,Qkβ] = Rk[α, β] := Rkγ,
where Rk is the block matrix populated with Pk and Qk in the block diagonal and zero elsewhere.
Here we assume Rk has linearly independent columns. From the first order expansion, there exists
sufficiently small ζ > 0 such that

f(zk+1) = f(zk + ζdk) = f(zk) + ζ〈∇f(zk), dk〉+ o(ζ2‖dk‖). (4)

Thus, by taking derivative of eq.(4) we have ∇f(zk+1) ≈ ∇f(zk) + ζ∇2f(zk)dk. Since we are
interested in decreasing the gradient norm to reach convergence, we have

‖∇f(zk+1)‖2 = ‖∇f(zk)‖2 + 2ζ∇f(zk)
T∇2f(zk)dk + o(ζ2‖∇2f(zk)dk‖). (5)

Thereafter, the sufficient condition for convergence to local stationary point is∇f(zk)
T∇2f(zk)dk <

0. For example, the steepest descent/ascent direction is convergent in the case of strongly convex-
concave problem since in that case∇f(zk)

T∇2f(zk)∇f(zk) < 0. We can reformulate the previous
equation in terms of the subspace parameters such that, since ∇γf(z + Rγ) = RT∇zf(z + Rγ),
we have

‖∇f(zk+1)‖2 ≈ ‖∇f(zk)‖2 + 2ζ∇f(zk)
T∇2f(zk)Rkγ

=‖∇f(zk)‖2 + 2ζ∇γf(zk +Rkγ)T
∣∣
γ=0

R+T
k R+

k ∇
2
γf(zk +Rkγ)

∣∣
γ=0

γ,
(6)

where, R+
k denote the Moore–Penrose pseudoinverse of matrix RTk . Thus, assuming single Newton

step in subspace γ = −ν∇2
γf(zk +Rkγ)−1

∣∣
γ=0
∇γf(zk +Rkγ)

∣∣
γ=0

, ∃ν > 0 such that

‖∇f(zk+1)‖2 = ‖∇f(zk)‖2 − 2νζ‖R+
k ∇γf(zk +Rkγ)

∣∣
γ=0
‖2. (7)

According to eq (7), in the neighborhood of the current point zk, Newton step in the subspace
domain decreases gradient norm of the original problem, and thus induces global convergence to
stationary point. However, contrary to the minimization setup [8] where subspace optimization are
descent methods, exact convergence to stationary point in subspaces (i.e. ∇γf(zk+Rkγ) = 0) does
not necessarily enforce convergence in the original problem space, as shown in Theorem 1. This is
mainly due to the interaction term ∇xyf(x, y) present in eq. (5) via the Hessian matrix. Thus, the
extension of subspace optimization to saddle-point problems is then not straightforward.

2.2. Convergence Improvement Strategies

To ensure convergence of inner and outer optimization, we propose to solve the subspace opti-
mization in a constrained local region. Also, we propose to correct the direction obtained from the
subspace optimization by controlling the outer step size ηk as in eq. (3) via an adapted line-search
procedure.
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2.2.1. PROXIMAL REGULARIZATION

In the following, we extend the auxiliary subspace saddle problem (2) by adding proximal point
regularization [17]. At each iteration we solve the subspace proximal problem over f̃(x, y), namely

min
α∈Rm

max
β∈Rn

f̃(xk + Pkα, yk +Qkβ) :=f(xk + Pkα, yk +Qkβ)

+
τk
2
‖xk + Pkα− x̄k‖2 −

τk
2
‖yk +Qkβ − ȳk‖2,

(8)

where x̄k and ȳk denote the primal and dual prox-centers respectively (e.g. moving average or
previous point). The proximal approach motivation is two-fold. First, it allows averaging over
iterations, reducing the oscillation behavior typical to min-max games [29], and improves stability
of the optimization procedure. Foremost, it ensures the existence of a saddle-point in potentially
degenerate subspaces, avoiding divergence, in a trust-region fashion [30].

2.2.2. SADDLE-POINT BACKTRACKING LINE SEARCH

Common line-search backtracking methods [25] cannot be applied straightforwardly to the saddle-
point problems, since implementing search over the function primal and dual values can diverge
(e.g. bi-linear game). To tackle this problem, we perform backtracking line search over the gradient
norm to both ensure faster convergence of the method, and, most importantly prevent potential di-
vergence after the inner subspace optimization. The proposed procedure is described in Algorithm 1.

This step size search procedure is used in both inner
(fast convergence in subspace) and outer (step correc-
tion) optimization. In our experiments we chose c = 0
for less computational overhead and set ν = 0.5. We
further limit the number of line-search iterations to 30.
The following theorem, based on the analysis of Sec-
tion 2.1, states the convergence of the proposed algo-
rithm for the standard gradient method (memoryless
subspaces).

Algorithm 1: Saddle Backtracking
Line Search

Input : f : RM×N → R, current point
zk, direction dk,
c ∈ [0, 1), ν ∈ (0, 1), η ≤ 1

Output: Step size η

while ‖∇f(zk + ηdk)‖2 ≥
‖∇f(zk)‖2 + ηc∇f(zk)

T∇2f(zk)dk
do
η = η ∗ ν;

end
return η;

Theorem 2 Consider function f(x, y) with stable saddle-point (x∗, y∗). Assume the subspace is
spanned by the anti-gradient and gradient directions for the primal and dual variables, respectively.
Then, the procedure of Algorithm 1 converges to the optimum for every (x0, y0) ∈ B2((x

∗, y∗), r).

2.3. Efficient Second-Order Saddle-point Optimization in Subspace

Second order methods aim at finding roots of the gradient via solution of the second order expan-
sion. Therefore, they can converge extremely fast to saddle-points, especially in the proximity of
the solution where the problem has a good quadratic approximation. The major drawback is the
prohibitive computational cost for both the computation and inversion of the Hessian. However, in
our small subspace setting, second order methods, s.a. (Quasi-)Newton, can be handled efficiently.
In particular, the computation of the Hessian in the subspace is performed via Hessian product with
the direction vectors [26]. Nowadays, it can be handled efficiently via automatic differentiation tool,
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Algorithm 2: Sequential Subspace Saddle-point Optimization

Input : f : (RM × RN )→ R, initial point z0 = (x0, y0), d the maximum subspace
dimension, K the maximum number of iterations, ε the machine precision

Output: (xfinal, yfinal)

τ ∈ R+
0 , ν ∈ (0, 1);

Initialize proximal centers x̄0, ȳ0;
for k = 0, 1, ...,K do

if ‖∇f(xk, yk)‖ < ε then: return (xk, yk);
if ‖∇f̃(xk, yk)‖ < ε then: τ = ντ ;
Update Pk and Qk with current gradients ;
Set t = 0 and γt = 0;
while ‖∇γf(zk +Rkγt)‖ > ε do

γ̄ = −H̃−1γ (zk +Rkγt)∇γ f̃(zk +Rkγt), eq. (9);
Find inner step size ηin following Algorithm 1 over subspace objective;
Set γt+1 = γt + ηinγ̄ and t = t+ 1;

end
Find outer step size ηout following Algorithm 1;
Update zk+1 = zk + ηoutRkγt;
if dim(Pk) > d− 1 then: Remove the oldest direction from Pk and Qk;
Update Pk+1 and Qk+1 with search steps and/or gradients;
Update proximal centers x̄k, ȳk (e.g with xk and yk);

end
return (xK , yK);

since (∂2f) · v = ∂(∂f · v). Hessian inversion is computationally negligible in low dimensional
subspace (generally up to ten dimensions). The method can be further accelerated using frozen or
truncated Hessian strategies, especially when the Hessian remains almost unchanged in the vicinity
of the solution.

The second order proximal subspace optimization is performed iteratively until the convergence
(or maximum number of iterations) is reached, as follows:

γk+1 = γk − ηkH̃−1γ (zk +Rkγk)∇γ f̃(zk +Rkγk)

= γk − ηk
(
RTk (H̃z(zk +Rkγk))Rk

)−1
RTk∇z f̃(zk +Rkγk)

= γk − ηk
(
RTk (Hz(zk +Rkγk) + T)Rk

)−1
RTk∇z f̃(zk +Rkγk),

(9)

where the last two equations illustrate the computational complexity of the method, through the
Hessian-vector product over the subspaces matrix Rk, and the low dimensional subspace Hessian
inversion. Here, the matrices Hu(v) and H̃u(v) denote the variable metric matrices reduced to
∇2
uf(v) and∇2

uf̃(v) respectively in the Newton scheme. Also, T denote the dampening matrix that

ensures stability of the former saddle-point system, such that T = τ

(
I 0

0 −I

)
. Here ηk is the

step size commonly obtained via the line search procedure. In the case of the Newton optimiza-
tion in the subspace being computationally intensive (e.g. high dimensional subspace or prohibitive
derivatives computation), a Quasi-Newton method can be deployed instead. In the saddle-point set-
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ting, Quasi-Newton alternatives that do not enforce positive definiteness of the Hessian can be used,
such as symmetric rank-one (SR1) with usual handling of the update factors [24]. We summarize
the proposed sequential subspace optimization framework for saddle-point problems in Algorithm
2.

3. Experimental Results

To assess the performance of the proposed method, and to demonstrate its efficacy, we performed
several experiments. GDA refers to the gradient method [28], DAS refers to the dual averaging
scheme of [23], OGDA is the optimistic gradient method [11], CP refers to Chambolle-Pock algo-
rithm [6], and EGDA refers to the extrinsic gradient method [31]. Detailed description of all the
experiments settings is provided in the Appendix C. Results are obtained with a three dimensional
subspace for each variable. Unless stated otherwise all the methods use the same oracle.

3.1. Quadratic saddle-point Problem

We consider the following quadratic saddle-point problem

min
x

max
y

1

2
(xTAxx+ yTAyy) + xTCy + bTxx+ bTy y, (10)

where the matrices Ax, Ay, C are generated from the normal distribution and have pre-defined con-
dition numbers (see Appendix C.1). We plot in Figure 1 the distance to optimum (leftmost plot),
the norm of the gradient (second plot from left), the effect of the subspace dimension on the con-
vergence of the proposed method (third from left), and the impact of the condition number κ of the
block-matrices on the mean convergence rate (rightmost plot).

In the first experiment presented in Figure 1 top row, we consider a separable problem with
Ax � 0, Ay ≺ 0 and C = 0. We show that the proposed approach keeps its manifold expansion
property throughout the last search direction (m = n ≥ 3), and therefore converges extremely
fast to the solution. In contrast, the convergence of other methods is very slow. This is due to the
difficulty of the gradient method to converge in ill-conditioned scenarios, and due to the unified step
size for the primal and the dual directions. In the second experiment (middle row), we consider
the stable quadratic saddle point problem with Ax � 0, Ay ≺ 0 and C to be full rank matrices.
We observe the superiority of the proposed method, while the advantage of using more directions
is clear in handling the interaction matrix C, as compared to gradient based methods. In the last
experiment (bottom row), we deploy the bi-linear game problem, where Ax = 0, Ay = 0 and C is
a full rank matrix. The proposed method performs significantly better, as compared to other first-
order approaches. In the bi-linear case, we can see that increasing the size of the subspace is not
necessarily beneficial. We show the superiority of the method in term of computational time for the
different settings in Table 3.1.

3.2. Constrained Optimization: ADMM

In this experiment, we consider the smooth Lasso problem that can be reformulated (see Appendix
C.2) as a saddle-point problem of the augmented Lagrangian

min
x,w

max
y

{1

2
‖Ax− b‖2 + λ

∑
j

ϕs(wj) + yT (x− w) +
ρ

2
‖x− w‖2

}
, (11)
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Figure 1: Quadratic saddle point problems

Setting GDA DAS OGDA EGDA CP Our
Separable 42.5 - 73.1 60.7 15.9 5.9
Stable 144.1 - 49.3 55.4 - 38.1
Unstable ∞ - 34.3 33.6 - 14.7

Table 1: Mean computation time in seconds of the presented methods until convergence threshold
is reached, for the different quadratic settings.∞ denotes non-convergence and ’-’ denotes
slower convergence than our method by at least factor 30.

with λ ∈ R+, ρ denotes the penalty parameter and ϕs(t) denotes the scalar smooth approxima-
tion of the L1 norm [13]. In Figure 2 we present the convergence results of the ADMM method
with smoothing constant s = 10−3, versus the proposed subspace method boosted by the ADMM
directions populating the subspace matrices. The boosting obtained by the proposed approach is
significant both in speed and accuracy.

Figure 2: Subspace Optimization boosting via ADMM Directions

3.3. Generative Adversarial Networks

We test the proposed method in deterministic setting of the Dirac GAN scheme proposed in [19] by
expanding the dimensions of the problem such that

f(x, y) = φ(−xT y) + φ(yT c), (12)
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for some scalar function φ (see Appendix C.3). Since the objective is concave-concave, the compet-
ing methods fail to converge to saddle-point, and diverge to saturation regions [19]. The proximal
operator prevents the method from diverging, and allows faster convergence to optimum as depicted
in the rightmost plot.

Figure 3: Dirac GAN. Other methods similarly converge to saturation region (leftmost).

4. Conclusions

In this paper we introduced a sequential subspace optimization approach to saddle-point problems.
We improve convergence of first-order methods via efficient secondary subspace optimization. We
evaluated the proposed framework on several saddle-point problems, demonstrating its efficacy and
superior performance relative to popular optimization techniques. Further theoretical investigation
of the influence of the subspace directions and dimensions may provide better understanding and
enable development of both faster and more efficient saddle-point optimization methods.
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Appendix A. Proof of Theorem 3.1

Let us first consider the bi-linear setting f(x, y) = xTCy, where C is a full rank-matrix. We first
show that the gradient method is diverging in the above case. The gradient method update is defined
as (

xk+1

yk+1

)
=

(
xk
yk

)
+ ηk

(
−∇xf(xk, yk)
∇yf(xk, yk)

)
=

(
xk
yk

)
+ ηk

(
0 −C
CT 0

)(
xk
yk

)
=

(
I −ηkC

ηkC
T I

)(
xk
yk

)
= A

(
xk
yk

)
.

(13)

Thus we have ∀C and ∀ηk∥∥∥∥(xk+1

yk+1

)∥∥∥∥2 ≥ λmin(ATA)

∥∥∥∥(xkyk
)∥∥∥∥2 =

(
1 + λmin(η2kCC

T )
) ∥∥∥∥(xkyk

)∥∥∥∥2 . (14)

We now proceed to the proof of convergence of the one dimensional subspace method, assuming
C = I . Optimal solution of the subspace optimization satisfies{

P Tk ∇xf(xk + Pkα, yk +Qkβ) = 0
QTk∇yf(xk + Pkα, yk +Qkβ) = 0

⇔
{
α = −(QTkC

TPk)
−1QTkC

Txk
β = −(P Tk CQk)

−1P Tk Cyk

(15)

Thereafter, the update of the variable x is written as

xk+1 = xk − ηkPk(QTkCTPk)−1QTkCTxk = xk − ηkPk(QTkCTPk)−1QTkQk, (16)

with ηk > 0. Then, we can show that

‖xk+1‖2 = ‖xk‖2 − 2
ηk

QTkC
TPk
〈xk, Pk‖Qk‖2〉+

η2k‖Pk‖2‖Qk‖4

(QTkC
TPk)2

= ‖xk‖2 +
‖Qk‖2

(QTkC
TPk)2

(
− 2ηkQ

T
kC

TPk〈xk, Pk〉+ η2k‖Pk‖2‖Qk‖2
)
.

(17)

Denoting δk = −2ηkQ
T
kC

TPk〈x, Pk〉+ η2k‖Pk‖2‖Qk‖2
and since C = I we have

δk =− 2ηk‖QTk Pk‖2 + η2k‖Pk‖2‖Qk‖2

=− 2ηkf(xk, yk)
2 + η2k‖∇xf(xk, yk)‖2‖∇yf(xk, yk)‖2

(18)

Thus, ∀ηk ∈ (0, 2f(xk, yk)
2/‖∇xf(xk, yk)‖2‖∇yf(xk, yk)‖2) we have ‖xk+1‖2 < ‖xk‖2. By

following similar arguments, we get ‖yk+1‖2 < ‖yk‖2.
�
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Appendix B. Proof of Theorem 3.2

We are looking for η > 0 such that zk+1 = zk + ηdk is a better stationary point than zk, i.e.
‖∇f(zk+1)‖ ≤ ‖∇f(zk)‖. Here dk designate the anti-gradient dx and gradient direction dy ac-
cording to the primal and dual variable respectively. From first order expansion we have

f(zk+1) = f(zk) + η〈∇f(zk), dk〉+ o(η2‖dk‖)
⇐⇒ ∇f(zk+1) = ∇f(zk) + η∇2f(zk)dk

(19)

Thus we have

‖∇f(zk+1)‖2 = ‖∇f(zk)‖2 + 2η∇f(zk)
T∇2f(zk)dk + η2dTk∇2f(zk)

T∇2f(zk)dk

⇒
η→0
‖∇f(zk+1)‖2 = ‖∇f(zk)‖2 + 2η∇f(zk)

T∇2f(zk)dk,
(20)

Since we have

∇f(zk)
T∇2f(zk)dk = −dTx∇xxf(zk)dx + dTy∇yyf(zk)dy − dTx∇xyf(zk)dy + dTy∇yxf(zk)dx

= −dTx∇xxf(zk)dx + dTy∇yyf(zk)dy < 0,
(21)

where the last inequality arises from the positive/negative definiteness of the second order partial
derivatives in B2((x

∗, y∗), r). �
Notice the line search procedure cannot diverge for non-strongly convex-concave problems

where the block diagonal Hessian can vanish.

Appendix C. Experiments Settings

GDA refers to the gradient method [28], DAS refers to the dual averaging scheme of [23], OGDA
is the optimistic gradient method [11], and EGDA refers to the extrinsic gradient method [31]. All
the methods but DAS are implemented using the proposed backtracking line search for improved
convergence. When line search did not converge for EGDA, we searched for optimal step size. In
the following, the proximal centers of the proposed method are set to previous point (i.e. xk−1 and
yk−1). In all the presented experiments, the subspace is populated by the current gradient (m =
n = 1), by previous gradient (m = n = 2), and by previous search directions (m = n ≥ 3). The
machine precision ε is set to single precision 10−8 and the maximum number of inner optimization
iterations is limited to 10. In all the figures k denote the iteration number. Unless stated otherwise
all the methods use the same oracle.

C.1. Quadratic saddle-point Problem

We recall the quadratic saddle-point problem

min
x

max
y

1

2
(xTAxx+ yTAyy) + xTCy + bTxx+ bTy y, (22)

where the matrices Ax, Ay, C are generated from the normal distribution and have pre-defined con-
dition numbers. Namely, we generate a standard Gaussian matrix with i.i.d. entries, perform its
SVD and substitute diagonal singular values with an array of log-uniform random values in prede-
fined range. The dimension of the optimization problem is set to M = 1500, N = 500. We plot

12
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the distance to optimum (leftmost plot) and the norm of the gradient (second plot from left). Also,
we show the impact of the condition number of the block-matrices in A on the mean convergence
rate K−1

∑K
k ‖zk+1 − z∗‖/‖zk − z∗‖ (rightmost plot). Here x-axis represents the inverse condi-

tion number κ−1. These first three plots are obtained with a three dimensional subspace for each
variable. Finally, we show the effect of the subspace dimension on the convergence of the proposed
method (third from left). For this experiment we add time comparison with the Chambolle-Pock
algorithm (CP) with step size set according to the interaction term matrix to ensure proven conver-
gence [6]. For fairness, we do not assume any closed form solution is given, all the derivatives are
computed at each iteration using the same automatic differentiation tool for all the methods.

In the first experiment presented, we consider a separable problem with Ax � 0, Ay ≺ 0 and
C = 0. The two matrices are conditioned with the condition numbers κ(Ax) = 103, κ(Ay) = 102.

In the second experiment, we consider the stable quadratic saddle point problem with Ax � 0,
Ay ≺ 0 and C to be full rank matrices. Here, all the block-matrices are conditioned with condition
number κ(Ax) = 103, κ(Ay) = 102, κ(C) = 103.

In the last experiment, we deploy the bi-linear game problem, where Ax = 0, Ay = 0 and C is
a full rank matrix, such that κ(C) = 102. Here M = N = 1000 so there exist only one solution to
the equivalent system of linear equations.

C.2. Constrained Optimization: ADMM

We recall the original problem

min
x

1

2
‖Ax− b‖2 + λ

∑
j

ϕs(xj), (23)

with λ ∈ R+. Here xj denotes the jth component of vector x, and ϕs(t) denotes the scalar non-
linearity that implements the smooth convex approximation

∑
j ϕs(xj) of the `1 norm such that

ϕs(t) = |t|−sln(1+|t|/s), s ∈ (0,∞), where the scaling factor s defines the degree of smoothness.
This choice of ϕs(t) yields well defined shrinkage [13]. The original ADMM algorithm can be
summarized in the following three steps: minimization in former primal variable x, minimization
in separable variable w, and update of the dual variable y [3]. We can reformulate the Lasso setting
as a saddle-point problem of the augmented Lagrangian

min
x,w

max
y

{1

2
‖Ax− b‖2 + λ

∑
j

ϕs(wj) + yT (x− w) +
ρ

2
‖x− w‖2

}
(24)

where ρ denotes the penalty parameter. In Figure 2 we present the convergence results of the
ADMM method with smoothing constant s = 10−3, versus the proposed subspace method boosted
by the ADMM directions populating the subspace matrices. The data setting is the same as in [3],
Section (11.1).

C.3. Generative Adversarial Networks

Generative Adversarial Networks became recently one of the most popular applications of the mini-
max approach [14]. We test the proposed method in deterministic setting of the Dirac GAN scheme
proposed in [19] by expanding the dimensions of the problem such that

f(x, y) = φ(−xT y) + φ(yT c), (25)

13
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for some scalar function φ. Here, c denotes the high dimensional Dirac distribution value that we
sample from the Normal distribution. The primal and dual variables represent the data generator
and discriminator, respectively. Figure 3 depicts the distance to optimum (leftmost), the gradient
norm of the generator and discriminator (second from left), the influence of the subspace dimension
(third from left), and the influence of the proximal factor on convergence for different initialization
(rightmost). Therein, we use the common sigmoid cross-entropy loss φ(t) = − ln(1 + e−t) [14].

14


	Introduction
	Sequential Subspace Optimization for saddle-point Problems
	General Subspace Convergence Analysis
	Convergence Improvement Strategies
	Proximal Regularization
	Saddle-point Backtracking Line Search

	Efficient Second-Order Saddle-point Optimization in Subspace

	Experimental Results
	Quadratic saddle-point Problem
	Constrained Optimization: ADMM
	Generative Adversarial Networks

	Conclusions
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Experiments Settings
	Quadratic saddle-point Problem
	Constrained Optimization: ADMM
	Generative Adversarial Networks


