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Abstract
We develop a limited-memory method for online linear regression problems named the reduced
Kalman-based Stochastic Gradient Descent. Limited-memory methods are intriguing since they
address the computational challenges of second order methods and show more robustness to differ-
ent parameter choices than first order methods. However, current limited-memory methods, such
as adaption of L-BFGS to the stochastic case, suffer from one or more of the following drawbacks:
(1) assumptions made on objective functions that rule out least squares problems; (2) samples with
size larger than the dimensional of problem required when estimating Hessian; (3) less robustness
due to new hyper-parameters introduced. Moreover, all the methods do not incorporate the latest
observation in the Hessian estimate for the next iterate due to the lack of a relevant proof technique.
The standard approach used in current methods requires a conditional independence between the
Hessian estimate and the gradient estimate. We tackle those problems by introducing a new limited-
memory method that avoids those drawbacks by construction. We give the theoretical guarantee
and experimentally demonstrate our method. Importantly, in our method, we fully exploit the up-
to-the-moment information in the Hessian estimate and the gradient estimate. We develop a new
analysis strategy that allows us to study the convergence when the Hessian and gradient are depen-
dent. Furthermore, this strategy can be adapted for a series of procedures that include dependent
Hessian and gradient estimate since no specialties of least squares problems are utilized in our
analysis scheme.

1. Introduction

Least squares problems continue to be an intensive area of research especially as the number of
equations and dimension of the problem grow with advances in sensor technology [e.g., 13] and
developments in higher fidelity models by domain experts [e.g., see Ch. 2 of 2]. In addition, the
data for least square problems are generated continuously in many cases, which results in streams
of data [1, 13, 14]. To better handle the increasing data size and possible demand of adaptation to
streaming model, we reformulate the least squares problem as a statistical estimation problem,

min
β

E
[
(Y −X ′β)2

]
, (1)

where Y is the resulting random variable corresponding to the elements of the dependent vector
of the least squares problem; X is the resulting random vector of dimension p corresponding to
the rows of coefficient matrix of the least squares problem and X ′ is the transpose of X; β is the
unknown parameter of dimension p; and E is the expectation operator over the distribution placed
onX and Y . Such a reformulation allow us to employ stochastic approximation methods for solving
least square problems.
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Among the current stochastic approximation methods, first order methods have very low com-
putational complexity and memory requirements, but their convergence behavior is highly sensitive
to the curvature of the objective near the solution [4]. Second order methods, in comparison to first
order methods, have been empirically shown to be highly robust to step-size selections (usually a
step size of one) [16], while incur a much higher computational cost per iteration and overall storage
complexity, which becomes prohibitive as the dimension of the parameter, p, increases.

To balance between computational efficiency and robustness to parameters, limited-memory
stochastic approximation methods are an intensive area of research [3, 5, 8, 9, 12, 15, 17, 18].
Current limited-memory stochastic approximation methods are based on deterministic L-BFGS
[3, 5, 8, 9, 12, 15, 17, 18]. The adaptations of L-BFGS to stochastic context result in a number of
benefits or drawbacks, especially for the linear regression problem: (1) assumptions that preclude
the linear regression problem [3, 15, 18]; (2) requirements for a sample size larger than the dimen-
sion of the problem for each Hessian update [5, 8, 9, 12]; (3) introducing new hyper-parameters that
reduce the robustness of the method [17]. Moreover, all stochastic analogues to L-BFGS do not fully
exploit the most recent information in generating the next iterate since they require the conditional
independence between the Hessian-estimate and gradient for analysis in their setting. Note, this
idiosyncrasy appears to be driven by analysis purposes: the aforementioned methods directly adapt
the standard approach for analyzing stochastic approximation methods (e.g., [6]), which depends
on the conditional independence between the Hessian-estimate and the gradient-estimate.

For the linear regression problem, rather than finding a general purpose, stochastic extension of
L-BFGS, an alterantive, tailored approach is to extend Gauss-Newton (see Ch. 10 of [10]). One
of the stochastic extension of Gauss-Newton is named Kalman-based Stochastic Gradient Descent,
the convergence of which is robust to the choice of tuning parameters [11]. In this work, we will
extend this related Gauss-Newton method to the limited memory case for the online linear regres-
sion problem under the name reduced Kalman-based Stochastic Gradient Descent. Importantly, our
resulting method makes use of the most recently available information in the Hessian estimate and
in the gradient estimate. We develop an analysis strategy that allows us to deal with the dependence
between the Hessian estimate and gradient estimate. Fortunately, our analysis strategy does not
depend on the properties of the linear regression problem, and can be readily adapted to analyz-
ing procedures that induce dependence between the Hessian estimate and gradient estimate (e.g.,
AdaGrad, ADAM, etc.). To summarize,
1. We develop a novel limited-memory method that is based on Gauss-Newton and that avoids the

difficulties associated with stochastic L-BFGS methods;
2. We develop a novel analysis strategy that can be leveraged to analyze a variety of methods that

induce dependence between the Hessian estimate and the gradient estimate.

2. Method & Algorithms

In this section, we introduce how we derive a reduced memory version of Kalman-based Stochastic
Gradient Descent (k-SGD). The full k-SGD is derived by choosing optimal step-size and estimated
inverse hessian to minimize the mean square error conditioned on Fk+1 = σ(X1, X2, . . . , Xk+1)
[11].A pseudo-code of k-SGD is summarized in Algorithm 1. Actually, the recursive formula for
k-SGD is equivalent to (2), and therefore and be viewed as an adaption of Gauss-Newton method to
the stochastic case. More details can be found in [11].
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βk+1 = βk +

(
Ip +

1

γ

k+1∑
i=1

X ′iXi

)−1

Xk+1

(
Yk+1 − β′kXk+1

)
. (2)

The advantages of k-SGD include the insensitivity to conditioning of Hessian and robustness to the
choice of tuning parameters. However, for large dimension problem, it is expensive to store the
whole matrix Nk. What’s more, the matrix-vector product in Line 6 shows to be time-consuming in
the numerical experiments when dimension p is large. Therefore, we construct a reduced memory
version of k-SGD for large scale problems. Similar to the L-BFGS procedure, we construct an
approximation of the matrix Nk using only a user-defined number of vectors, m. We first obtain
a recursive formula to calculate dk with {dk−m+1, . . . , dk−1} and Nk−m, and then introduce a
diagonal approximation of Nk−m. Our method initializes C0 as the identity matrix and β0 as an
arbitrary vector, and determines {Ck} and {βk} by

v
(k+1)
k−(m∧k)+j =


x
j−1∏
s=1

Ip − v
(k+1)
k−(m∧k)+sX

′
k−m+s

γ +
(
v

(k+1)
k−(m∧k)+s

)′
Xk−m+s


CkXk−m+j , (3)

βk+1 = βk +
η

γ +X ′k+1v
(k+1)
k+1

v
(k+1)
k+1

(
Yk+1 − β′kXk+1

)
, (4)

Ck+1 =

{
Ip k < m(
C−1
k + diag

{
Xk−m+1X

′
k−m+1

})−1
k ≥ m

, (5)

for j = 1, . . . , (m ∧ k) + 1, where
x∏

represent left multiplication. Here, Ck is the diagonal ap-
proximation of Nk−m; {v(k+1)

k−m+1, . . . , v
(k+1)
k+1 } are the approximated searching directions generated

at step k; η > 0 is a tuning parameter that accounts for the reduced memory approximation to the
Hessian estimate.

Algorithm 1: Full k-SGD
Input: Parameter β0, Hyper-parameter γ
Output: Parameter β

1 β ← β0;
2 N0 ← p× p identity matrix ;
3 k ← 0 ;
4 while true do
5 Read new observation (Xk+1, Yk+1) ;
6 dk+1 ← NkXk+1 ;
7 s← γ + d′k+1Xk+1 ;
8 β ← β + dk+1(Yk+1 − β′Xk+1)/s ;
9 Nk+1 ← Nk − dk+1d

′
k+1/s ;

10 k ← k + 1;
11 end

Algorithm 2: Reduced k-SGD
Input: Parameter β0, Hyper-parameter γ
Output: Parameter β

1 β ← β0;
2 c← p× 1 array of 1’s ;
3 k ← 0 ;
4 while true do
5 Read new observation (Xk+1, Yk+1) ;
6 Compute vk+1 by (3) using c and

{X(k−m+1)∨1, . . . , Xk+1};
7 s← γ + v′k+1Xk+1;
8 β ← β + ηvk+1(Yk+1 − β′Xk+1)/s;
9 if k ≥ m then

10 c←
(
c−1 +X2

k−m+1

)−1

11 end
12 k ← k + 1;
13 end
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3. Analysis of Convergence

In this section, we prove the convergence rate of our reduced k-SGD method (see Theorem 2).
As mentioned in §1, the standard convergence analysis (e.g., [6]) failed since we have dependent
Hessian estimated and gradient estimated.1 The alternative approach in [11] is also not applicable
for our method since it requires certain relationships to persist between the initial Hessian estimate
through the terminal Hessian estimate.

Therefore, we innovate an approach that can readily handle arbitrary dependencies between
the Hessian estimate and gradient estimate. Our new approach has two steps. In the first step,
we introduce a “ghost” estimator which replaces the random Hessian estimate with a carefully
constructed deterministic quantity. Then, we apply the standard analysis to get the convergence
of this “ghost” estimator. In the second step, we analyze the iterates generated by reduced k-SGD
against the iterates generated by the ghost estimator, which effectively requires us to compare the
random Hessian estimate to the aforementioned carefully constructed deterministic quantity.

We first introduce the assumptions we make for analysis. Assumption 1 formulates the least
squares problem. Assumption 2 ensures that (1) is well-defined and has a unique minimizer. As-
sumption 3 controls the density of {Xk}.

Assumption 1 Suppose we have independent identical distributed pairs (X1, Y1), (X2, Y2), . . . ∈
Rp × R, which have the linear relationship Yk = X ′kβ∗ + εk, where β∗ ∈ Rp is a fixed vector, εk’s
satisfy E [εk|Xk] = 0 and V [εk|Xk] = σ2 > 0.

Assumption 2 Assume that Q∗ = E[X1X
′
1] exists and 0 ≺ Q∗ ≺ ∞.

Assumption 3 Suppose for any {j1, . . . , js} ⊂ {1, . . . , p}, and {t1, . . . , ts} such that
∑s

i=1 ti ≤ 8
we have

E

[
s∏
i=1

(X1,ji)
ti

]
<∞. (6)

We define a ghost estimator {θk} by first write out the explicit form of recursive formula (4) and
then replace the Hessian estimate by its expectation. The update formula for {θk} is

θk+1 = θk +
η

γ
J−1
Q,k+1Xk+1

(
Yk+1 −X ′k+1θk

)
, (7)

where the hessian estimate JQ,k+1 is defined as

JQ,k+1 =


Ip +

1 + k

γ
Q∗ k ≤ m

Ip +
1

γ
[(k −m)Qd + (m+ 1)Q∗] k > m

, (8)

where Qd = diag{Q∗}. We show that the “ghost” estimator converges with rate O(1/k).

1. Recall that for stochastic L-BFGS methods, the Hessian estimate and gradient estimate are designed to be condition-
ally independent; see §1.
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Theorem 1 Suppose that Assumption 1 and Assumption 2 hold. If η > λmax(Qd)
2λmin(Q∗)

,

E
[
‖θk − β∗‖2Q∗

]
= O

(
1

k

)
, (9)

where ‖x‖2
Q∗

= xTQ∗x.

We can then show the difference between two estimators convergences to 0 with rate O(1/k).

Theorem 2 With assumption 1, 2 and 3, if the step-size η > λmax(Qd)
2λmin(Q∗)

, then for arbitrary δ > 0,
there exists a sequence of events {Dk}∞k=K satisfiesDk+1 ⊂ Dk and for k ≥ K, limk→∞ P (Dk) ≥
1− δ, such that

E
[
‖θk − βk‖2Q∗1Dk−1

]
= O

(
1

k

)
. (10)

4. Numerical Experiments

In this section we are going to compare the behavior of reduced k-SGD with SGD[6], full k-SGD,
AdaGrad[7], and the stochastic quasi Newton method [5] on a BlogFeedback data set. All the
methods are initialized with 0. We record the number of accessed data points (ADP), elapsed time
and the the mean of the residuals squared (MRS). The behaviors are measured with two metrics, the
ADP and the time needed to get the same MRS.

BlogFeedback Data Set contains the processed features of the selected blog posts. The goal
is to predict the the number of comments in the upcoming 24 hours. We apply a Haar waveket
model. The resolutions of all features is set to be 2, which resulted in a parameter of dimension
p = 1960. From Figure 1, our reduced k-SGD has outperformed SGD, AdaGrad and online L-
BFGS. The full k-SGD goes into wrong direction in the first few steps, but then returns to the right
track and converges faster than all the other methods when the ADP is large. The online L-BFGS
stops making progress early due to some zero gradients in this data set. When turns Figure 2,
reduced k-SGD with m = 1 still shows good performance. However, the running time of k-SGD
with m = 5 grows a lot. The total runnning time for full k-SGD is more than 1400 seconds and is
not shown in this figure.

Figure 1: ADP versus Loss Figure 2: Time versus Loss
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5. Conclusion and Future Goals

In this paper, we developed reduced k-SGD method for least squares problems and analyzed the
convergence. As a result, our method achieves a convergence rate O(1/k) and avoids the awk-
wardness of stochastic L-BFGS. That is to say, the assumptions for our method work perfectly
for least squares problems; no extra sub-sampling is needed to ensure convergence. Importantly,
our method is able to exploit the latest observation in the Hessian estimation with developing a
innovative analysis strategy. This strategy is capable of Hessian and gradient estimate that are not
conditional independent, in which case the classical analysis strategy has broken down. Further-
more, our method can be readily adapted to a bunch of methods with dependent Hessian estimate
and gradient estimate.

There are several things left for the future,
1. show that Theorem 2 convergence with probability 1;
2. construct an efficient implementation of Equation (3);
3. demonstrate the performance of our method on more numerical experiments.

References

[1] Harshavardhan Achrekar, Avinash Gandhe, Ross Lazarus, Ssu-Hsin Yu, and Benyuan Liu.
Predicting flu trends using twitter data. In 2011 IEEE conference on computer communications
workshops (INFOCOM WKSHPS), pages 702–707. IEEE, 2011.

[2] Lorenz Biegler, George Biros, Omar Ghattas, Matthias Heinkenschloss, David Keyes, Bani
Mallick, Luis Tenorio, Bart Van Bloemen Waanders, Karen Willcox, and Youssef Marzouk.
Large-scale inverse problems and quantification of uncertainty, volume 712. Wiley Online
Library, 2011.

[3] Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping
Tak Peter Tang. A progressive batching l-bfgs method for machine learning. arXiv preprint
arXiv:1802.05374, 2018.
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Appendix A. Explict update formula for reduced k-SGD

Lemma 3 With C0 = Ip and the same initial point β0, the updating rule (3), (4), and (5) are
equivalent to

JC,k+1 = C−1
k +

1

γ

(m∧k)+1∑
j=1

Xk−(m∧k)+jX
′
k−(m∧k)+j , (11)

βk+1 = βk +
η

γ
J−1
C,k+1Xk+1(Yk+1 −X ′k+1βk), (12)

Ck+1 =

{
Ip k < m(
C−1
k + diag{Xk−m+1X

′
k−m+1}

)−1
k ≥ m

. (13)

Proof We only prove for the case k ≥ m. We first work out the explicit form of v(k+1)
k+1 by sub-

stituting previous v(k+1)
k−m+j’s. When j = 1, v(k+1)

k−m+1 = CkXk−m+1. Then for j = 2, we will
have

v
(k+1)
k−m+2 =

Ip − v
(k+1)
k−m+1X

′
k−m+1

γ +
(
v

(k+1)
k−m+1

)′
Xk−m+1

CkXk−m+2

=

(
Ck −

CkXk−m+1X
′
k−m+1Ck

γ +X ′k−m+1CkXk−m+1

)
Xk−m+2

=

(
C−1
k +

1

γ
Xk−m+1X

′
k−m+1

)−1

Xk−m+2.

(14)

The last equality follows the Sherman-Morrison formula. Actually, if we repeatedly do the same
procedure for j = 2, . . . ,m + 1, we will get an explicit formula for v(k+1)

k−m+j with adding more
Xk−m+jXk−m+j’s inside the parentheses. We can prove this by induction. We denote

M
(k+1)
k−m+1 = Ck

M
(k+1)
k−m+j+1 =

[(
M

(k+1)
k−m+j

)−1
+Xk−m+jX

′
k−m+j

]−1

,
(15)

for j = 1, . . . ,m. We claim that

v
(k+1)
k−m+j = M

(k+1)
k−m+jXk−m+j . (16)

for j = 1, . . . ,m + 1. We have already prove the base case j = 1. Now we assume that for j ≤ l,
(16) holds. Then we focus on the case j = l + 1. Again, we denote

q
〈r〉
k−m+l+1 =


x
r∏
s=1

Ip − v
(k+1)
k−m+sX

′
k−m+s

γ +
(
v

(k+1)
k−m+s

)′
Xk−m+s


CkXk−m+l+1, (17)

for r = 0, . . . , l. Here we use a second induction with respect to the index r. We claim that

q
〈r〉
k−m+l+1 = M

(k+1)
k−m+r+1Xk−m+l+1. (18)
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The base case r = 0 follows the definition of q〈0〉k−m+l+1 and M (k+1)
k−m+1. We now assume that for

r = t− 1, 1 ≤ t ≤ l,
q
〈t−1〉
k−m+l+1 = M

(k+1)
k−m+tXk−m+l+1. (19)

Then for r = t,

q
〈t〉
k−m+l+1 =

Ip − v
(k+1)
k−m+tX

′
k−m+t

γ +
(
v

(k+1)
k−m+t

)′
Xk−m+t

 q
〈t−1〉
k−m+l+1

=

Ip − v
(k+1)
k−m+tX

′
k−m+t

γ +
(
v

(k+1)
k−m+t

)′
Xk−m+t

M
(k+1)
k−m+tXk−m+l+1.

(20)

Substituting the first induction hypothesis (16) and using Sherman-Morrison formula,

q
〈t〉
k−m+l+1 =

(
Ip −

M
(k+1)
k−m+tXk−m+tX

′
k−m+t

γ +X ′k−m+tM
(k+1)
k−m+tXk−m+t

)
M

(k+1)
k−m+1Xk−m+l+1

=

(
Ip −

M
(k+1)
k−m+tXk−m+tX

′
k−m+tM

(k+1)
k−m+1

γ +X ′k−m+tM
(k+1)
k−m+tXk−m+t

)
Xk−m+l+1

=

[(
M

(k+1)
k−m+t

)−1
+Xk−m+tX

′
k−m+t

]−1

Xk−m+l+1

= M
(k+1)
k−m+t+1Xk−m+l+1,

(21)

which implies (18) holds when r = t. Therefore the second claim holds for all r = 1, . . . , l. When
r = l,

vk−m+l+1 = q
〈l〉
k−m+l+1 = M

(l+1)
k−m+l+1Xk−m+l+1. (22)

Therefore, (16) holds for the case j = l + 1, which completes outer induction reasoning. After
substituting in the explicit formula of v(k+1)

k+1 , the updating formula for βk+1 now becomes

βk+1 = βk +
η

γ +X ′k+1M
(k+1)
k+1 Xk+1

M
(k+1)
k+1 Xk+1

(
Yk+1 − β′kXk+1

)
, (23)

We can still simplify this formula by applying Sherman-Morrison formula again,

βk+1 = βk +
η

γ

[
M

(k+1)
k+1 −

M
(k+1)
k+1 Xk+1X

′
k+1M

(k+1)
k+1

γ +X ′k+1M
(k+1)
k+1 Xk+1

]
Xk+1

(
Yk+1 −X ′k+1βk

)
= βk +

η

γ

[(
M

(k+1)
k+1

)−1
+

1

γ
Xk+1X

′
k+1

]−1

Xk+1

(
Yk+1 −X ′k+1βk

)
= βk +

η

γ

C−1
k +

1

γ

m+1∑
j=1

Xk−m+jX
′
k−m+j

−1

Xk+1

(
Yk+1 −X ′k+1βk

)
= βk +

η

γ
J−1
C,k+1Xk+1(Yk+1 −X ′k+1βk).

(24)
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The last equality follows the definition of JC,k+1.

Appendix B. The Proof of Theorem 1 and 2

Theorem 1 Suppose that Assumption 1 and Assumption 2 hold. If η > λmax(Qd)
2λmin(Q∗)

,

E
[
‖θk − β∗‖2Q∗

]
= O

(
1

k

)
, (9)

where ‖x‖2
Q∗

= xTQ∗x.

Proof
We can apply the standard approach on {θk}. Recall that β∗ is the true parameter and we want

to show that {θk} converges to β∗. Importantly, we do not directly analyze the 2-norm of θk − β∗
to avoid cross term J−1

Q,k+1Q∗, which is not necessary positive definite even when considering the
limit. Instead we consider a matrix norm: specifically, we define ‖x‖2Q∗ = xTQ∗x, for x ∈ Rp.2
Denote

λmin(Q∗) = ξ1, λmax(Q∗) = Ξ1,

λmin(Qd) = ξ2, λmax(Qd) = Ξ2.
(25)

The following inequalities give the equivalence of ‖ · ‖2 and ‖ · ‖Q∗ ,

ξ1‖x‖22 ≤ ‖x‖2Q∗ ≤ Ξ1‖x‖22,
1

Ξ1
‖x‖2Q∗ ≤ ‖x‖

2
2 ≤

1

ξ1
‖x‖2Q∗ .

(26)

And we consider the convergence in this norm instead, using (7) and Assumption 1 we have

‖θk − β∗‖2Q∗ =

∥∥∥∥θk − β∗ +
η

γ
J−1
Q,k+1Xk+1(Yk+1 −X ′k+1θk)

∥∥∥∥2

Q∗

=

∥∥∥∥θk − β∗ − η

γ
J−1
Q,k+1Xk+1X

′
k+1(θk − β∗) +

η

γ
J−1
Q,k+1Xk+1εk+1

∥∥∥∥2

Q∗

.

(27)

LetFk = σ(X1, . . . , Xk), Gk = σ(X1, Y1, . . . , Xk, Yk) andHk+1 = σ(X1, Y1, . . . , Xk, Yk, Xk+1),
where σ(·) denotes the induced σ-field. Note Fk ⊆ Gk ⊆ Hk+1. Then we take the expectation with

2. Analyzing the problem under this norm is equivalent to analyzing the progress of the objective function directly.
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respect toHk+1 and use the first and second moment of εk+1,

E
[
‖θk+1 − β∗‖2Q∗ |Hk+1

]
= ‖θk − β∗‖2Q∗ −

2η

γ
(θk − β∗)′Q∗J−1

Q,k+1Xk+1X
′
k+1(θk − β∗)

+
η2

γ2
(θk − β∗)′Xk+1X

′
k+1J

−1
Q,k+1Q∗

× J−1
Q,k+1Xk+1X

′
k+1(θk − β∗)

+
η2

γ2
σ2
(
X ′k+1J

−1
Q,k+1Q∗J

−1
Q,k+1Xk+1

)
≤ ‖θk − β∗‖2Q∗ −

2η

γ
(θk − β∗)′Q∗J−1

Q,k+1Xk+1X
′
k+1(θk − β∗)

+
η2

γ2

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1

∥∥∥∥2

2

‖Xk+1‖42‖θk − β∗‖22

+
η2

γ2
σ2

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1

∥∥∥∥2

2

‖Xk+1‖22 .

(28)

The inequality follows the definition of matrix induced 2-norm. Now take expectation with respect
to Gk on both side. Denote E

[
‖X1‖42

]
= µX,4 and E

[
‖X1‖22

]
= µX,2. Then

E
[
‖θk+1 − β∗‖2Q∗ |Gk

]
≤ ‖θk − β∗‖2Q∗ −

2η

γ
(θk − β∗)′Q∗J−1

Q,k+1Q∗ (θk − β∗)

+
η2

γ2
µX,4

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1

∥∥∥∥2

2

‖θk − β∗‖22 +
η2

γ2
σ2µX,2

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1

∥∥∥∥2

2

≤ ‖θk − β∗‖2Q∗ −
2η

γ
λmin

(
Q

1
2
∗ J
−1
Q,k+1Q

1
2
∗

)
‖θk − β∗‖Q∗

+
η2

γ2
µX,4

∥∥∥∥Q 1
2
∗

∥∥∥∥2

2

∥∥∥J−1
Q,k+1

∥∥∥2

2
‖θk − β∗‖22

+
η2

γ2
σ2µX,2

∥∥∥∥Q 1
2
∗

∥∥∥∥2

2

∥∥∥J−1
Q,k+1

∥∥∥2

2

≤ ‖θk − β∗‖2Q∗ −
2η

γ
ξ1λmin

(
J−1
Q,k+1

)
‖θk − β∗‖Q∗

+
η2

γ2
µX,4Ξ1λ

2
max

(
J−1
Q,k+1

)
‖θk − β∗‖22

+
η2

γ2
σ2µX,2Ξ1λ

2
max

(
J−1
Q,k+1

)
,

(29)

where λmin(·) represents the smallest eigenvalue. The second and third inequality follows the in-
equalities of eigenvalues. Now since limk→∞

1
kJQ,k+1 = 1

γQd, we can bound the right-hand side
with eigenvalues of Qd and get rid of JQ,k+1. The accurate bounds is given in Lemma 4.
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Using Lemma 4 and (26),

E
[
‖θk+1 − β∗‖2Q∗ |Gk

]
≤ ‖θk − β∗‖2Q∗ −

1

k

2η(1− δ1)ξ1

Ξ2
‖θk − β∗‖2Q∗

+
1

k2

η2(1 + δ2)2µX,4Ξ1

ξ2
2ξ1

‖θk − β∗‖2Q∗

+
1

k2

η2σ2µX,2(1 + δ2)2Ξ1

ξ2
2

,

(30)

Now the right-hand side is in order ‖θk−β∗‖2Q∗ [1−O(1/k)]+O(1/k2), we can therefore conclude

that E
[
θk+1 − β∗‖2Q∗

]
converges to 0 with rate O(1/k) by Lemma 1 in [6].

In detail, for arbitrary δ3, let K2 =
η(1+δ2)2Ξ1Ξ2µX,4

2δ3(1−δ1)ξ21ξ
2
2

. When k > max{K1,K2}, we can control
the third term,

E
[
‖θk+1 − β∗‖2Q∗ |Gk

]
≤
(

1− 1

k

2η(1− δ1)(1− δ3)ξ1

Ξ2

)
‖θk − β∗‖2Q∗

+
1

k2

η2σ2µX,2(1 + δ2)2Ξ1

ξ2
2

.

(31)

Let B1 = 2η(1−δ1)(1−δ3)ξ1
Ξ2

, B2 =
η2σ2µX,2(1+δ2)2Ξ1

ξ22
and take expectation of both side of (31),

E
[
‖θk+1 − β∗‖2Q∗

]
≤
(

1− B1

k

)
E
[
‖θk − β∗‖2Q∗

]
+
B2

k2
. (32)

If η > Ξ2
2ξ1

, we can choose appropriate δ1, δ3 such that B1 > 1. Then we could prove by
induction that for k ≥ K = max{K1,K2},

E
[
‖θk − β∗‖2Q∗

]
≤ B3

k
, (33)

where B3 = max
{
KE

[
‖θK − β∗‖2Q∗

]
, B2
B1−1

}
. We conclude the following result.

We can prove this by induction. For the base case k = K3,

E
[
‖θK3 − β∗‖2Q∗

]
=
K3E

[
‖θK3 − β∗‖2Q∗

]
K3

≤ B3

K3
. (34)

Now assume that for k = l ≥ K3, E
[
‖θl − β∗‖2Q∗

]
≤ B3

l . For k = l + 1, using (32) and the
hypothesis assumption,

E
[
‖θl+1 − β∗‖2Q∗

]
≤
(

1− B1

l

)
E
[
‖θl − β∗‖2Q∗

]
+
B2

l2

≤
(

1− B1

l

)
B3

l
+
B2

l2
− B3

l + 1
+

B3

l + 1

=

(
1

l(l + 1)
− B1

l2

)
B3 +

B1

l2
+

B3

l + 1

≤ (1−B1)B3 +B2

l2
+

B3

l + 1

≤ B3

l + 1
,

(35)
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which completes the proof.

Theorem 2 With assumption 1, 2 and 3, if the step-size η > λmax(Qd)
2λmin(Q∗)

, then for arbitrary δ > 0,
there exists a sequence of events {Dk}∞k=K satisfiesDk+1 ⊂ Dk and for k ≥ K, limk→∞ P (Dk) ≥
1− δ, such that

E
[
‖θk − βk‖2Q∗1Dk−1

]
= O

(
1

k

)
. (10)

Proof Since we have already proved the convergence of the alternative estimator, we can instead
analyze the difference between our estimator and the “ghost” estimator.

Let ek = ‖βk − θk‖2Q∗ . To analyze the convergence, we again write {E[ek]} as a recursion.
First take the difference of (12) and (7),

βk+1 − θk+1 = βk − θk

+
η

γ

(
J−1
C,k−1Xk+1(Yk+1 −X ′k+1βk)− J−1

Q,k−1Xk+1(Yk+1 −X ′k+1θk)
) (36)

To analyze the second term, we need to add and subtract several intermediate terms. There are
two goals of doing this. First, we want to make use of the convergence of θk−β∗. Second, we need
to get rid of the product of J−1

C,k+1 and Xk+1 since it is difficult to control this term as mentioned
before. We do some additions and subtractions to make the difference easier to analysis. We first
add and subtract a η

γJ
−1
Q,k−1Xk+1(Yk+1 −X ′k+1βk),

βk+1 − θk+1 = βk − θk +
η

γ
J−1
Q,k−1Xk+1(Yk+1 −X ′k+1βk)

− J−1
Q,k−1Xk+1(Yk+1 −X ′k+1θk) +

η

γ
J−1
C,k−1Xk+1(Yk+1 −X ′k+1βk)

− η

γ
J−1
Q,k−1Xk+1(Yk+1 −X ′k+1βk)

= βk − θk −
η

γ
J−1
Q,k+1Xk+1X

′
k+1(βk − θk)

+
η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1(Yk+1 −X ′k+1βk).

(37)

Since we have no idea about Yk+1 −X ′k+1βk, we do another pair of addition and subtraction,

βk+1 − θk+1 = βk − θk −
η

γ
J−1
Q,k+1Xk+1X

′
k+1(βk − θk)

+
η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1(Yk+1 −X ′k+1βk)

− η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1(Yk+1 −X ′k+1θk)

+
η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1(Yk+1 −X ′k+1βk)

= βk − θk −
η

γ
J−1
Q,k+1Xk+1X

′
k+1(βk − θk)

− η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1X

′
k+1(βk − θk)

+
η

γ

(
J−1
C,k+1 − J

−1
Q,k+1

)
Xk+1(Yk+1 −X ′k+1θk).

(38)
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REDUCED K-SGD

We denote
(
J−1
C,k+1 − J

−1
Q,k+1

)
by Ek+1. Now we can have a recursive formula of E[ek]. We

first calculate the products out, take expectations, control the matrix-vector product with eigenvalues
and combine like terms. The result is proved in Lemma 5 and is concluded here.

E [ek+1|Gk] ≤ ek
(

1− 2η

γ
ξ1λmin

(
J−1
Q,k+1

)
+
η2Ξ1

ξ1γ2
δk,1

)
+
√
ek‖θk − β∗‖Q∗

2η2Ξ1

γ2ξ1
δk,2 +

η2Ξ1

γ2ξ1
δk,3,

(39)

where

δk,1 =
∥∥∥J−1

Q,k+1

∥∥∥2

2
µX,4 +

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+ 2

∥∥∥J−1
Q,k+1

∥∥∥
2

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
+

2γ

η

√
µX1,4

√
E
[
‖Ek+1‖2F |Gk

]
,

δk,2 =
γ

η

√
µX1,4

√
E[‖Ek+1‖2F |Gk] +

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+
∥∥∥J−1

Q,k+1

∥∥∥
2

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
,

δk,3 = ‖θk − β∗‖2Q∗
√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+ ξ1σ

2√µX,4

√
E
[
‖Ek+1‖4F |Gk

]
.

(40)

With Lemma 6, if we can control δk,1, δk,2 and δk,3 appropriately, we will be able to show that
{E[ek]} convergences to 0 with rate O(1/k). To show this, we first notice that in these three terms,
only E

[
‖Ek+1‖jF |Gk

]
are left to analyze, j = 2, 4. What’s more, by Jensen’s inequality,

E
[
‖Ek+1‖2F |Gk

]
≤
(
E
[
‖Ek+1‖4F |Gk

]) 1
2
. (41)

Therefore, we only need to bound E
[
‖Ek+1‖4F |Gk

]
. Actually, we are able to prove that this term

is in O(1/k9/2) with high probability in the following paragraphs. With this rate, we can show that
the recursive formula of E[ek] satisfies the condition in Lemma 7 and therefore {E[ek]} converges
with high probability. This is discussed in appendix D. In conclusion, for arbitrary δ, there exist K5

such that

P

 ∞⋃
k=K5

{
E
[
‖Ek+1‖4F |Gk

]
>

B4

k9/2

} < δ, (42)

the exact definition of K5 is given in the end of appendix D
Then we will complete the proof of Theorem 2. For arbitrary δ, K5 = K5(δ) is defined in

Lemma 8. Let

Dk =
k⋂

j=K5

{
E
[
‖Ek+1‖4F |Gk

]
≤ B4

k9/2

}
, (43)

for k ≥ K5. Then by (42), limk→∞ P (Dk) ≥ 1− δ. Since Dk ∈ Gk, we have

E [ek+11Dk
|Gk] = E [ek+1|Gk] 1Dk

(44)
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Using (39),

E
[
ek+11Dk

|Gk
]
≤ ek1Dk

(
1− 2η

γ
ξ1λmin

(
J−1
Q,k+1

)
+
η2Ξ1

ξ1γ2
δk,11Dk

)
+
√
ek1Dk

‖θk − β∗‖Q∗
2η2Ξ1

γ2ξ1
δk,21Dk

+
η2Ξ1

γ2ξ1
δk,31Dk

.

(45)

By the definition of δk,1, δk,2, δk,3 and Dk, we have

δk,11Dk
≤
∥∥∥J−1

Q,k+1

∥∥∥2

2
µX,4 +

√
µX,8

√
B4

k
9
4

+ 2
∥∥∥J−1

Q,k+1

∥∥∥
2

√
µX,8

B
1
4
4

k
9
8

+
2γ

η

√
µX1,4

B
1
4
4

k
9
8

,

δk,21Dk
≤ γ

η

√
µX1,4

B
1
4
4

k
9
8

+
√
µX,8

B
1
4
4

k
9
8

+
∥∥∥J−1

Q,k+1

∥∥∥
2

√
µX,8

B
1
4
4

k
9
8

,

δk,31Dk
≤ ‖θk − β∗‖2Q∗

√
µX,8

√
B4

k
9
4

+ ξ1σ
2√µX,4

√
B4

k
9
4

.

(46)

We denote the right-hand side by δ̃k,1, δ̃k,2, δ̃k,3 respectively. Note that δ̃k,1 and δ̃k,2 are determinis-
tic. Substituting (46) into (45) and taking expectation on both side,

E
[
ek+11Dk

]
≤ E

[
ek1Dk

](
1− 2η

γ
ξ1λmin

(
J−1
Q,k+1

)
+
η2Ξ1

ξ1γ2
δ̃k,1

)
+
√

E
[
ek1Dk

]√
E
[
‖θk − β∗‖2Q∗

]2η2Ξ1

γ2ξ1
δ̃k,2 +

η2Ξ1

γ2ξ1
E
[
δ̃k,3

]
.

(47)

Choose appropriate δ1 and δ3 such that B1 = 2η(1−δ1)(1−δ3)ξ1
Ξ2

> 1 and let δ2 = 1. Then using
Lemma 4 we have when k > K1 = max{m,K1,1(δ1),K1,2(1)},

λmin

(
J−1
Q,k+1

)
≥ 1

k

(1− δ1)γ

Ξ2
,

λmax

(
J−1
Q,k+1

)
≤ 1

k

2γ

ξ2
.

(48)

Substituting (48) into (46) we have

δ̃k,1 ≤
B7

k
9
8

, (49)

where

B7 =
γ2

ξ2
2

µX,4 +
√
µX,8B4 +

√
µX,8

4γB
1
4
4

ξ2
+
√
µX1,4

2γB
1
4
4

η
. (50)

Then similar as what we did in Theorem 1, for k ≥ K6 =
(

ηΞ1B7Ξ2

2ξ21(1−δ1)δ3γ2

)8
, we can domi-

nate δ̃k,1 with the previous negative term in the parentheses. Now we want to bound the term

E
[
‖θk − β∗‖2Q∗

]
. Using Theorem 1, for k ≥ K3 = max{K1,K2},

E
[
‖θk − β∗‖2Q∗

]
≤ B3

k
. (51)
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Substituting (48) , (49) and (51) into (47) we have

E
[
ek+11Dk

]
≤ E

[
ek1Dk

](
1− B1

k

)
+
√
E
[
ek1Dk

]B8

k
3
2

+
B9

k2

≤ E
[
ek1Dk−1

](
1− B1

k

)
+

√
E
[
ek1Dk−1

]B8

k
3
2

+
B9

k2
,

(52)

where

B8 = B
1
2
3 B

1
4
4

2η2Ξ1

γ2ξ1

(
γ

η

√
µX1,4

+
√
µX,8 +

√
µX,8

γ

ξ2

)
B9 =

η2Ξ1

γ2ξ1

√
B4

(
B3
√
µX,8 + ξ1σ

2√µX,4

)
.

(53)

Now we can apply Lemma 6 and the conclusion follows.

Appendix C. Technique Lemmas

Lemma 4 For arbitrary small δ1 > 0 and δ2 > 0, there exist K1 = max{m,K1,1(δ1),K1,2(δ2)},
such that when k > K1,

λmin

(
J−1
Q,k+1

)
≥ 1

k

(1− δ1)γ

Ξ2
, (54)

λmax

(
J−1
Q,k+1

)
≤ 1

k

(1 + δ2)γ

ξ2
, (55)

where

K1,1(δ1) =
(1− δ1) [γ + (m+ 1)Ξ1 −mΞ2]

δ1Ξ2
,

K1,2(δ2) =
(1 + δ2) [mξ2 − (m+ 1)ξ1 − γ]

δ2ξ2
.

(56)

Proof Using (7), for k > m,

λmax (JQ,k+1) ≤ 1 +
1

γ
[(k −m) Ξ2 + (m+ 1) Ξ1] ,

λmin (JQ,k+1) ≥ 1 +
1

γ
[(k −m)ξ2 + (m+ 1)ξ1] .

(57)

Since the reciprocal of eigenvalues of a matrix are the eigenvalues of the inverse matrix, we will
have

λmin

(
J−1
Q,k+1

)
= λmax (JQ,k+1)−1 ≥

(
1 +

1

γ
[(k −m) Ξ2 + (m+ 1) Ξ1]

)−1

. (58)

Then we can get a lower bound of k which can guarantee that (54) holds,

k ≥ (1− δ1) [γ + (m+ 1)Ξ1 −mΞ2]

δ1Ξ2
. (59)
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Similarly,
λmax

(
J−1
Q,k+1

)
= λmin (JQ,k+1)−1

≤
(

1 +
1

γ
[(k −m)ξ2 + (m+ 1)ξ1]

)−1

.
(60)

We can also get a lower bound of k such that (55) holds,

k ≥ (1 + δ2) [mξ2 − (m+ 1)ξ1 − γ]

δ2ξ2
. (61)

Lemma 5 With Assumption 1, 2 and 3,

E [ek+1|Gk] ≤ ek
(

1− 2η

γ
ξ1λmin

(
J−1
Q,k+1

)
+
η2Ξ1

ξ1γ2
δk,1

)
+
√
ek‖θk − β∗‖Q∗

2η2Ξ1

γ2ξ1
δk,2 +

η2Ξ1

γ2ξ1
δk,3,

(62)

where

δk,1 =
∥∥∥J−1

Q,k+1

∥∥∥2

2
µX,4 +

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+ 2

∥∥∥J−1
Q,k+1

∥∥∥
2

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
+

2γ

η

√
µX1,4

√
E
[
‖Ek+1‖2F |Gk

]
,

δk,2 =
γ

η

√
µX1,4

√
E[‖Ek+1‖2F |Gk] +

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+
∥∥∥J−1

Q,k+1

∥∥∥
2

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
,

δk,3 = ‖θk − β∗‖2Q∗
√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+ ξ1σ

2√µX,4

√
E
[
‖Ek+1‖4F |Gk

]
.

(63)
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Proof We first substitute (38) into the definition of ek+1,

ek+1 = ek +
η2

γ2

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1Xk+1

∥∥∥∥2

2

[
X ′k+1 (βk − θk)

]2
+
η2

γ2

∥∥∥∥Q 1
2
∗Ek+1Xk+1

∥∥∥∥2

2

[
X ′k+1 (βk − θk)

]2
+
η2

γ2

∥∥∥∥Q 1
2
∗Ek+1Xk+1

∥∥∥∥2

2

(
Yk+1 −X ′k+1θk

)2
− 2η

γ
(βk − θk)′Q∗J−1

Q,k+1Xk+1X
′
k+1(βk − θk)

− 2η

γ
(βk − θk)′Q∗Ek+1Xk+1X

′
k+1(βk − θk)

+
2η

γ
(βk − θk)′Q∗Ek+1Xk+1

(
Yk+1 −X ′k+1θk

)
+

2η2

γ2
(βk − θk)′Xk+1X

′
k+1J

−1
Q,k+1Q∗Ek+1Xk+1X

′
k+1(βk − θk)

− 2η2

γ2
(βk − θk)′Xk+1X

′
k+1J

−1
Q,k+1Q∗Ek+1Xk+1

(
Yk+1 −X ′k+1θk

)
− 2η2

γ2
(βk − θk)′Xk+1X

′
k+1Ek+1Q∗Ek+1Xk+1

(
Yk+1 −X ′k+1θk

)
.

(64)

Recall that Hk+1 = σ(X1, Y1, . . . , Xk, Yk, Xk+1) and Gk = σ(X1, Y1, . . . , Xk, Yk). Compute
conditional expectation first with respective to Hk+1 using Assumption 1 and the first and second
moments of εk+1,

E [ek+1|Hk+1] = ek +
η2

γ2

∥∥∥∥Q 1
2
∗ J
−1
Q,k+1Xk+1

∥∥∥∥2

2

[
X ′k+1(βk − θk)

]2
+
η2

γ2

∥∥∥∥Q 1
2
∗Ek+1Xk+1

∥∥∥∥2

2

[
X ′k+1 (βk − θk)

]2
+
η2

γ2

∥∥∥∥Q 1
2
∗Ek+1Xk+1

∥∥∥∥2

2

[
X ′k+1 (β∗ − θk)

]2
+
η2

γ2

∥∥∥∥Q 1
2
∗Ek+1Xk+1

∥∥∥∥2

2

σ2

− 2η

γ
(βk − θk)′Q∗J−1

Q,k+1Xk+1X
′
k+1(βk − θk)

− 2η

γ
(βk − θk)′Q∗Ek+1Xk+1X

′
k+1(βk − θk)

+
2η

γ
(βk − θk)′Q∗Ek+1Xk+1X

′
k+1(β∗ − θk)

+
2η2

γ2
(βk − θk)′Xk+1X

′
k+1J

−1
Q,k+1Q∗Ek+1Xk+1X

′
k+1(βk − θk)

− 2η2

γ2
(βk − θk)′Xk+1X

′
k+1J

−1
Q,k+1Q∗Ek+1Xk+1X

′
k+1(β∗ − θk)

− 2η2

γ2
(βk − θk)′Xk+1X

′
k+1Ek+1Q∗Ek+1Xk+1X

′
k+1(β∗ − θk).

(65)
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We then compute E [ek+1|Gk] using (26). The Cauchy–Schwarz inequality are applied to decou-
ple correlated products. Also we control the matrix-vector product with eigenvalues and Frobenius
norm. Here, we use the Frobenius norm rather than l2 norm since the Frobenius norm is easier to
control.

E[ek+1|Gk] ≤ ek + ek

∥∥∥J−1
Q,k+1

∥∥∥2

2

η2Ξ1

γ2ξ1
µX,4 + ek

η2Ξ1

γ2ξ1

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+ ‖θk − β∗‖2Q∗

η2Ξ1

γ2ξ1

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
+
η2Ξ1

γ2
σ2√µX,4

√
E
[
‖Ek+1‖4F |Gk

]
− 2η

γ
(βk − θk)′Q∗J−1

Q,k+1Q∗(βk − θk)

+ ek
2ηΞ1

γξ1

√
µX1,4

√
E
[
‖Ek+1‖2F |Gk

]
+
√
ek‖β∗ − θk‖Q∗

2ηΞ1

γξ1

√
µX,4

√
E
[
‖Ek+1‖2F |Gk

]
+ ek

∥∥∥J−1
Q,k+1

∥∥∥
2

2η2Ξ1

γ2ξ1

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
+
√
ek‖β∗ − θk‖Q∗

∥∥∥J−1
Q,k+1

∥∥∥
2

2η2Ξ1

γ2ξ1

√
µX,8

√
E
[
‖Ek+1‖2F |Gk

]
+
√
ek‖β∗ − θk‖Q∗

2η2Ξ1

γ2ξ1

√
µX,8

√
E
[
‖Ek+1‖4F |Gk

]
≤ ek

(
1− 2η

γ
ξ1λmin

(
J−1
Q,k+1

)
+
η2Ξ1

ξ1γ2
δk,1

)
+
√
ek‖θk − β∗‖Q∗

2η2Ξ1

γ2ξ1
δk,2 +

η2Ξ1

γ2ξ1
δk,3.

(66)

The last line follows the definition of δk,1, δk,2 and δk,3.

Lemma 6 If a positive sequence {bk} satisfies

bk+1 ≤
(

1− ∆1

k

)
bk +

∆2

k3/2

√
bk +

∆3

k2
(67)

for all k > K with ∆1 > 1, ∆2,∆3 > 0. Then for all k > K,

bk ≤
∆4

k
, (68)

where ∆4 = max

{
KbK ,

(
∆2

2+
√

∆2
2+4(1−∆1)∆3

2(∆1−1)

)2
}

.
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Proof We prove this by induction. For k = K,

bK =
KbK
K
≤ ∆4

K
. (69)

Now we assume that for k = l > K , bl < ∆4
l , then for k = l + 1,

bl+1 ≤
(

1− ∆1

l

)
∆4

l
+

∆2

√
∆4

l2
+

∆3

l2

≤
(

1− ∆1

l

)
∆4

l
+

∆2

√
∆4

l2
+

∆3

l2
− ∆4

l + 1
+

∆4

l + 1

≤ ∆4

l(l + 1)
+
−∆1∆4 + ∆2

√
∆4 + ∆3

l2
+

∆4

l + 1

≤ (1−∆1)∆4 + ∆2

√
∆4 + ∆3

l2
+

∆4

l + 1
.

(70)

Since 1−∆1 < 0, using the property of quadratic function we have

(1−∆1)∆4 + ∆2

√
∆4 + ∆3 ≤ 0, (71)

when √
∆4 ≥

∆2 +
√

∆2
2 + 4(∆1 − 1)∆3

2(∆1 − 1)
. (72)

Therefore bl+1 ≤ ∆4
l+1 , which completes the induction reasoning.

Appendix D. Bound E
[
‖Ek+1‖4

F |Gk
]

with high probability

To bound E
[
‖Ek+1‖4F |Gk

]
, we first break Ek+1 in several parts so that we can directly analyze

the elements in each part. Then we apply Chebyshev’s inequality to control the probability of those
elements deviating from theirs expectation for a certain distance. Then with a summable series
of probabilities, we will have that E

[
‖Ek+1‖4F |Gk

]
is controlled for all k large enough with high

probability.
Since JQ,k+1 and JC,k+1 are defined in additive forms, it is easier to analyze elements in the

difference of themselves rather than directly analyze Ek+1, which is the difference of inverses.
Therefore we first rewrite Ek+1. Using the definition of Ek+1 and the properties of Frobenius
norm,

‖Ek+1‖4F =
∥∥∥J−1

Q,k+1 − J
−1
C,k+1

∥∥∥4

F

=
∥∥∥J−1

C,k+1 (JC,k+1 − JQ,k+1) J−1
Q,k+1

∥∥∥4

F

≤
∥∥∥J−1

C,k+1

∥∥∥4

F
‖(JC,k+1 − JQ,k+1)‖4F

∥∥∥J−1
Q,k+1

∥∥∥4

F

(73)

For the third term
∥∥∥J−1

Q,k+1

∥∥∥4

F
, we recall that J−1

Q,k+1 is deterministic and we give a bound of its

eigenvalue in Lemma 4. Using Lemma 4 and taking δ2 = 1 we have for k > max{m,K1,2(1)}∥∥∥J−1
Q,k+1

∥∥∥4

F
≤ p2λ4

max

(
J−1
Q,k+1

)
≤ p224γ4

k4ξ4
2

(74)
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Nevertheless, for the first term
∥∥∥J−1

C,k+1

∥∥∥4

F
, the method we used in Lemma 4 is not applicable.

And it is still hard to directly analyze the elements in J−1
C,k+1. However, due to the special structure

of JC,k+1, we are able to bound this term by ‖Ck‖4F , where Ck is a diagonal matrix and we can then
directly deal with its elements. The bound is obtained by keep using Sherman-Morrison formula
and is concluded in the following lemma.

Lemma 7 If JC,k+1 is defined as (11), then for k ≥ m,∥∥∥J−1
C,k+1

∥∥∥2

F
≤ ‖Ck‖2F . (75)

Proof By (11), JC,k+1 � C−1
j . Therefore,

J−1
C,k+1 � Ck. (76)

Let QΛQ′ be the Schur decomposition of J−1
C,k+1. Q is positive definite and the columns are given

by qi, i = 1, . . . , p. Recall that p is the dimension of JC,k+1. Σ is a diagonal matrix and the diagonal
elements of Σ is denoted by σ(J−1

C,k+1). Then,

‖J−1
C,k+1‖

2
F =

p∑
i=1

σ2
i (J
−1
C,k+1) =

p∑
i=1

(q′iJ
−1
C,k+1qi)

2

≤
p∑
i=1

(q′iCkqi) ≤ ‖Q′CkQ‖2F = ‖Ck‖2F .
(77)

Now return to ‖Ek+1‖4F . We have

‖Ek+1‖4F ≤ ‖Ck‖
4
F ‖(JC,k+1 − JQ,k+1)‖4F

∥∥∥J−1
Q,k+1

∥∥∥4

F
. (78)

Remember that we need to take expectation conditioning on Gk. The terms ‖Ck‖4F and
∥∥∥J−1

Q,k+1

∥∥∥4

F
on the right-hand side are in Gk and we only need to consider the conditional expectation of the
term ‖JC,k+1 − JQ,k+1‖4F . If we try to directly calculate it, the fourth power will generate many
cross terms and will entangle the calculations. However, since JC,k+1 is defined in an additive form
and all the terms expect Xk+1X

′
k+1 of JC,k+1 are in Gk, we can break ‖JC,k+1 − JQ,k+1‖4F into

two parts to decouple Xk+1X
′
k+1 with other terms. We remove the last term of JC,k+1 and JQ,k+1

separately and use J̃C,k and J̃Q,k to represent the new matrices:

J̃C,k = C−1
k +

1

γ

m∧k∑
j=1

Xk+1−jX
′
k+1−j ,

J̃Q,k = Q−1
k +

m ∧ k
γ

Q∗

(79)
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Then by definition,

‖JC,k+1 − JQ,k+1‖2F = ‖J̃C,k − J̃Q,k +Xk+1X
′
k+1 −Q∗‖2F

≤ 2
(
‖J̃C,k − J̃Q,k‖2F + ‖Xk+1X

′
k+1 −Q∗‖2F

)
.

(80)

The second line follows the inequality of mean. Substitute this into (78),

‖Ek+1‖4F ≤ 4 ‖Ck‖4F
(∥∥∥J̃C,k − J̃Q,k∥∥∥2

F
+
∥∥Xk+1X

′
k+1 −Q∗

∥∥2

F

)2 ∥∥∥J−1
Q,k+1

∥∥∥4

F

≤ 8 ‖Ck‖4F
(∥∥∥J̃C,k − J̃Q,k∥∥∥4

F
+
∥∥Xk+1X

′
k+1 −Q∗

∥∥4

F

)∥∥∥J−1
Q,k+1

∥∥∥4

F

(81)

Then we take the conditional expectation on both side,

E
[
‖Ek+1‖4F |Gk

]
≤ 8 ‖Ck‖4F

(∥∥∥J̃C,k − J̃Q,k∥∥∥4

F
+ L

)∥∥∥J−1
Q,k+1

∥∥∥4

F
, (82)

where L = E
[∥∥Xk+1X

′
k+1 −Q∗

∥∥4

F

]
is a constant.

Now we can deal with the elements in Ck and J̃C,k − J̃Q,k. We are going to using Chebyshev’s
inequality to bound the probability of each element being large. Then we will be able to control
E
[
‖Ek+1‖4F |Gk

]
for all k large enough with high probability. The following lemma gives the

formal statement.

Lemma 8 Assume that Assumption 2 and 3 hold. For arbitrary small δ, there exist K5 = K5(δ)

and a constant B4 such that the probability that E
[
‖Ek+1‖4F |Gk

]
< B4

k9/4
for all k > K is greater

than 1− δ.

Proof We first look at the term ‖Ck‖4F . As we mentioned before, we can control the elements of Ck
separately. Recall that Ck is a diagonal matrix and for k ≥ m,

Ck[j, j] =
γ∑k−m

i=1 X2
i,j

. (83)

We are going to applying Chebyshev’s inequality, which enables us to control the probability of
a random deviating from its expectation. Instead of directly applying that, we make the following
transformation since we have no idea about the expectation of this reciprocal. Let E[X2

1,j ] = µX1,j ,2
.

For k > 2m,

P

(
Ck[j, j] >

4γ

kµX1,j ,2

)
≤ P

(
Ck[j, j] >

2γ

(k −m)µX1,j ,2

)

= P

(
γ∑k−m

i=1 X2
i,j

>
2γ

(k −m)µX1,j ,2

)

= P

(
k−m∑
i=1

(
X2
i,j − µX1,j ,2

)
< −1

2
(k −m)µX1,j ,2

)

≤ P

(∣∣∣∣∣ 1

k −m

k−m∑
i=1

(X2
i,j − µX1,j ,2

)

∣∣∣∣∣ > 1

2
µX1,j ,2

)
,

(84)
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Let Ui,j = X2
i,j − µX1,j ,2

. By Assumption 1 and 3, for fixed j, Ui,j’s are of independent identical

distribution and E [Ui,j ] = 0, E
[
U2
i,j

]
= µU1,j ,2

< ∞, E
[
U4
i,j

]
= µU1,j ,4

< ∞. Then we apply
Chebyshev’s inequality.

P

(
Ck[j, j] >

4γ

kµX1,j ,2

)
≤

E
[(

1
k−m

∑k−m
i=1 Ui,j

)4
]

(
1
2µX1,j ,2

)4

=

∑k−m
i=1 EU4

i,j + 6
∑

1≤i<s≤k−m E
[
U2
i,jU

2
s,j

]
(k −m)4(1

2µX1,j ,2
)4

≤
µU1,j ,4

(k −m)3
(

1
2µX1,j ,2

)4 +
3µ2

U1,j ,2

(k −m)2
(

1
2µX1,j ,2

)4 .

(85)

We take the fourth moment since we want to construct a summable series of probabilities. Next we
sum up those elements.

P

‖Ck‖2F > 24γ2

k2

p∑
j=1

1

µ2
X1,j ,2

 ≤ P
 p⋃
j=1

{
Ck[j, j] >

4γ

kµX1,j ,2

}
≤ 1

(k −m)3

p∑
j=1

µU1,j ,4(
1
2µX1,j ,2

)4 +
1

(k −m)2

p∑
j=1

3µ2
U1,j ,2(

1
2µX1,j ,2

)4

≤ 1

(k −m)2

 p∑
j=1

µU1,j ,4(
1
2µX1,j ,2

)4 +

p∑
j=1

3µ2
U1,j ,2(

1
2µX1,j ,2

)4

 .
(86)

Similarly, we do the same procedure on
∥∥∥J̃C,k − J̃Q,k∥∥∥4

F
. Let Ẽ = J̃C,k − J̃Q,k. By (79),

Ẽk[j, s] =


1

γ

k∑
i=1

Ui,j j = s

1

γ

k∑
i=k−m+1

(Xi,jXi,s − E[Xi,j , Xi,s]) j 6= s

(87)

For elements on the diagonal, applying Chebyshev’s inequality we have

P

(
Ẽk[j, j]

2 >
k7/4

γ2

)
= P

 1

γ2

(
k∑
i=1

Ui,j

)2

>
k7/4

γ2



≤
E
[(∑k

i=1 Ui,j

)4
]

k7/2

≤
µU1,j ,4

k5/2
+

3µ2
U1,j ,2

k3/2
.

(88)
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The power 7
4 is chosen to make sure that the series of probabilities is summable and the bound we get

for E
[
‖Ek+1‖4F |Gk

]
is in order O( 1

kt ) with t > 2. For j 6= s, let Vi,j,s = Xi,jXi,s − E [Xi,jXi,s],

and by Assumption 3 we have EV1,j,s = 0, EV 2
1,j,s = µV1,j,s,2

<∞. Then,

P

(
Ẽk[j, s]

2 >
k7/4

γ2

)
= P

 1

γ2

(
k∑

i=k−m+1

(Vi,j,s)

)2

>
k7/4

γ2



≤
E
[(∑k

i=k−m+1(Vi,j,s)
)2
]

k7/4

≤
mµV1,j,s,2

k7/4
.

(89)

Combine (88) and (89) we can control ‖Ẽk‖2F ,

P

(
‖Ẽk‖2F >

p2k7/4

γ2

)
≤ 1

k3/2

 p∑
j=1

µU1,j ,4
+ 3

p∑
j=1

µ2
U1,j ,2

+ 2m
∑

1≤j<s≤p
µV1,j,s,2

 . (90)

Then combining (82), (74), (86) and (90), for k ≥ K4 = max{2m,K1,2(1), (γ2L)7/4},

P

(
E
[
‖Ek+1‖4F |Gk

]
>

B4

k9/2

)
≤ B5

(k −m)2
+

B6

k3/2
, (91)

where

B4 = 216

 p∑
j=1

1

µ2
X1,j ,2

2

p2γ4

ξ4
2

,

B5 =

p∑
j=1

µU1,j ,4(
1
2µX1,j ,2

)4 +

p∑
j=1

3µ2
U1,j ,2(

1
2µX1,j ,2

)4 ,

B6 =

p∑
j=1

µU1,j ,4
+ 3

p∑
j=1

µ2
U1,j ,2

+ 2m
∑

1≤j<s≤p
µV1,j,s,2

.

(92)

Then using (91) we have for l ≥ K4,

P (

∞⋃
k=l

{
E
[
‖Ek+1‖4F |Gk

]
>

B4

k9/2

}
) ≤

∞∑
k=l

(
B5

(k −m)2
+

B6

k3/2

)
≤ B5

∫ ∞
l

1

(k −m− 1)2
dk

+B6

∫ ∞
l

1

(k − 1)3/2
dk

=
B5

l −m− 1
+

2B6

(l − 1)1/2
.

(93)
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Therefore for arbitrary δ, let K5 =
⌈
max

{
2m,K4,

2B5
δ +m+ 1,

(
4B6
δ

)2
+ 1
}⌉

. Then

P

 ∞⋃
k=K5

{
E
[
‖Ek+1‖4F |Gk

]
>

B4

k9/2

} < δ. (94)
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