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Abstract
Federated learning enables training on a massive number of edge devices. To improve flexibility
and scalability, we propose a new asynchronous federated optimization algorithm. We prove that
the proposed approach has near-linear convergence to a global optimum, for both strongly convex
and a restricted family of non-convex problems. Empirical results show that the proposed algorithm
converges quickly and tolerates staleness in various applications.

1. Introduction

Federated learning [5, 10] enables training a global model on datasets partitioned across a massive
number of resource-weak edge devices. Motivated by the modern phenomenon of distributed (often
personal) data collected by edge devices at scale, federated learning can use the large amounts of
training data from diverse users for better representation and generalization. Federated learning is
also motivated by the desire for privacy preservation [1, 2]. In some scenarios, on-device training
without depositing data in the cloud may be legally required by regulations [3, 12, 13].

A federated learning system is often composed of servers and workers, with an architecture that is
similar to parameter servers [4, 7, 8]. The workers (edge devices) train the models locally on private
data. The servers aggregate the learned models from the workers and update the global model.

Federated learning has three key properties [5, 10]: 1) Infrequent task activation. For the weak
edge devices, learning tasks are executed only when the devices are idle, charging, and connected to
unmetered networks [2]. 2) Infrequent communication. The connection between edge devices and
the remote servers may frequently be unavailable, slow, or expensive (in terms of communication
costs or battery power usage). 3) Non-IID training data. For federated learning, the data on different
devices are disjoint, thus may represent non-identically distributed samples from the population.

Federated learning [2, 10] is most often implemented using the synchronous approach, which
could be slow due to stragglers. When handling massive edge devices, there could be a large
number of stragglers. As availability and completion time vary from device to device, due to limited
computational capacity and battery time, the global synchronization is difficult, especially in the
federated learning scenario.

Asynchronous training [9, 14, 15] is widely used in traditional distributed stochastic gradient
descent (SGD) for stragglers and heterogeneous latency [9, 14, 15]. In this paper, we take the
advantage of asynchronous training and combines it with federated optimization.

We propose a novel asynchronous algorithm for federated optimization. The key ideas are (i) to
solve regularized local problems to guarantee convergence, and (ii) then use a weighted average to
update the global model, where the mixing weight is set adaptively as a function of the staleness.
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Together, these techniques result in an effective asynchronous federated optimization procedure. The
main contributions of our paper are listed as follows:
• We propose a new asynchronous federated optimization algorithm and a prototype system design.
• We prove the convergence of the proposed approach for a restricted family of non-convex problems.
• We propose strategies for controlling the error caused by asynchrony. To this end, we introduce a

mixing hyperparameter which adaptively controls the trade-off between the convergence rate and
variance reduction according to the staleness.

• We show empirically that the proposed algorithm converges quickly and often outperforms syn-
chronous federated optimization in practical settings.

Table 1: Notations and Terminologies.

Notation Description
n Number of devices
T Number of global epochs
[n] Set of integers {1, . . . , n}
Hmin Minimal number of local iterations
Hmax Maximal number of local iterations
δ δ = Hmax

Hmin
is the imbalance ratio

Hi
τ Number of local iterations

in the τ th epoch on the ith device
xt Global model in the tth epoch on server
xiτ,h Model initialized from xτ , updated in

the hth local iteration, on the ith device
Di Dataset on the ith device
zit,h Data (minibatch) sampled from Di
γ Learning rate
α Mixing hyperparameter
ρ Regularization weight
t− τ Staleness
s(t− τ) Function of staleness for adaptive α
‖ · ‖ All the norms in this paper are l2-norms
Device Where the training data are placed
Worker One worker on each device,

process that trains the model
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Figure 1: System overview. 0©: scheduler trig-
gers training through coordinator. 1©, 2©: worker
receives model xt−τ from server via coordinator.
3©: worker computes local updates as Algorithm 1.

Worker can switch between the two states: working
and idle. 4©, 5©, 6©: worker pushes the locally
updated model to server via the coordinator. Co-
ordinator queues the models received in 5©, and
feeds them to the updater sequentially in 6©. 7©,
8©: server updates the global model and makes it

ready to read in the coordinator. In our system, 1©
and 5© operate asynchronously in parallel.

2. Problem formulation

We consider federated learning with n devices. On each device, a worker process trains a model
on local data. The overall goal is to train a global model x ∈ Rd using data from all the devices.
Formally, we solve minx∈Rd F (x), where F (x) = 1

n

∑
i∈[n] Ezi∼Dif(x; zi), for ∀i ∈ [n], zi is

sampled from the local data Di on the ith device. Note that different devices have different local
datasets, i.e., Di 6= Dj , ∀i 6= j.

3. Methodology

The training takes T global epochs. In the tth epoch, the server receives a locally trained model xnew
from an arbitrary worker, and updates the global model by weighted averaging: xt = (1− α)xt−1 +
αxnew, where α ∈ (0, 1) is the mixing hyperparameter. A system overview is illustrated in Figure 1.
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ASYNCHRONOUS FEDERATED OPTIMIZATION

On an arbitrary device i, after receiving a global model xt (potentially stale) from the server,
we locally solve the following regularized optimization problem using SGD for multiple iterations:
minx∈Rd Ezi∼Dif(x; zi)+

ρ
2‖x−xt‖

2. For convenience, we define gx′(x; z) = f(x; z)+ ρ
2‖x−x

′‖2.

Algorithm 1 Asynchronous Federated Optimization (FedAsync)
Process Server(α ∈ (0, 1)):

Initialize x0, αt ← α,∀t ∈ [T ]
Run Scheduler() thread and Updater() thread asynchronously in parallel

Thread Scheduler():
Periodically trigger training tasks on some workers, and send the global model with time stamp

Thread Updater():
for epoch t ∈ [T ] do

Receive the pair (xnew, τ) from any worker
Optional: αt ← α× s(t− τ), s(·) is a function of the staleness
xt ← (1− αt)xt−1 + αtxnew

Process Worker():
for i ∈ [n] in parallel do

if triggered by the scheduler then
Receive the pair of the global model and its time stamp (xt, t) from the server
τ ← t, xiτ,0 ← xt
Define gxt(x; z) = f(x; z) + ρ

2‖x− xt‖
2, where ρ > µ

for local iteration h ∈ [H i
τ ] do

Randomly sample ziτ,h ∼ Di

Update xiτ,h ← xiτ,h−1 − γ∇gxt(xiτ,h−1; ziτ,h)
Push (xi

τ,Hi
τ
, τ) to the server

The server and workers conduct updates asynchronously, i.e., the server immediately updates the
global model whenever it receives a local model. The communication between the server and the
workers is non-blocking. Thus, the server and workers can update the models at any time without
synchronization, which is favorable when the devices have heterogeneous conditions.

The detailed algorithm is shown in Algorithm 1. The model parameter xiτ,h is updated in the hth
local iteration after receiving xτ , on the ith device. The data ziτ,h is randomly drawn in the hth local
iteration after receiving xτ , on the ith device. H i

τ is the number of local iterations after receiving xτ
on the ith device. γ is the learning rate and T is the total number of global epochs.

Remark 1 On the server side, the scheduler and the updater run asynchronously in parallel. The
scheduler periodically triggers training tasks and controls the staleness (t− τ in the updater thread).
The updater receives models from workers and updates the global model. Our architecture allows for
multiple updater threads with read-write lock on the global model, which improves the throughput.

Remark 2 Intuitively, larger staleness results in greater error when updating the global model.
For the local models with large staleness (t− τ), we can decrease α to mitigate the error caused
by staleness. As shown in Algorithm 1, optionally, we use a function s(t − τ) to determine the
value of α. In general, s(t− τ) should be 1 when t = τ , and monotonically decrease when (t− τ)
increases. There are many functions that satisfy such two properties, with different decreasing rate,
e.g., sa(t− τ) = 1

t−τ+1 . The options used in this paper can be found in Section 5.2.
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4. Convergence analysis

First, we introduce some definitions and assumptions for our convergence analysis.

Definition 3 (Smoothness) A differentiable function f is L-smooth if for ∀x, y, f(y) − f(x) ≤
〈∇f(x), y − x〉+ L

2 ‖y − x‖
2, where L > 0.

Definition 4 (Weak convexity) A differentiable function f is µ-weakly convex if the function g with
g(x) = f(x) + µ

2‖x‖
2 is convex, where µ ≥ 0. f is convex if µ = 0, and non-convex if µ > 0.

We have the following convergence guarantees. Detailed proofs can be found in the appendix.

Theorem 5 Assume that F is L-smooth and µ-weakly convex, and each worker executes at least
Hmin and at most Hmax local updates before pushing models to the server. We assume bounded
delay t− τ ≤ K. The imbalance ratio of local updates is δ = Hmax

Hmin
. Furthermore, we assume that

for ∀x ∈ Rd, i ∈ [n], and ∀z ∼ Di, we have ‖∇f(x; z)‖2 ≤ V1 and ‖∇gx′(x; z)‖2 ≤ V2, ∀x′. For
any small constant ε > 0, taking ρ large enough such that ρ > µ and−(1+2ρ+ε)V2+ρ

2‖xτ,h−1−
xτ‖2 − ρ

2‖xτ,h−1 − xτ‖2 ≥ 0, ∀xτ,h−1, xτ , and γ < 1
L , after T global updates, Algorithm 1

converges to a critical point: minT−1t=0 E‖∇F (xt)‖2 ≤ E[F (x0)−F (xT )]
αγεTHmin

+ O
(
γH3

max+αKHmax
εHmin

)
+

O
(
α2γK2H2

max+γK
2H2

max
εHmin

)
.

5. Experiments

In this section, we empirically evaluate the proposed algorithm.

5.1. Datasets

We conduct experiments on two benchmarks: CIFAR-10 [6], and WikiText-2 [11]. The training set
is partitioned onto n = 100 devices. The mini-batch sizes are 50 and 20 respectively.

5.2. Evaluation setup

The baseline algorithm is FedAvg introduced by [10], which implements synchronous federated
optimization. For FedAvg, in each epoch, k = 10 devices are randomly selected to launch local
updates. We also consider single-thread SGD as a baseline. For FedAsync, we simulate the asynchrony
by randomly sampling the staleness (t− τ) from a uniform distribution.

We repeat each experiment 10 times and take the average. For CIFAR-10, we use the top-
1 accuracy on the testing set as the evaluation metric. To compare asynchronous training and
synchronous training, we consider “metrics vs. number of gradients”. The “number of gradients” is
the number of gradients applied to the global model.

For convenience, we name Algorithm 1 as FedAsync. We also test the performance of FedAsync
with adaptive mixing hyperparameters αt = α × s(t − τ), as outlined in Section 3. We employ
the following three strategies for the weighting function s(t − τ) (parameterized by a, b > 0):

• Constant: s(t− τ) = 1.
• Polynomial: sa(t−τ) = (t−τ+1)−a.

• Hinge: sa,b(t− τ) =

{
1 if t− τ ≤ b

1
a(t−τ−b)+1 otherwise

.

For convenience, we refer to FedAsync with constant α as FedAsync+Const, FedAsync with
polynomial adaptive α as FedAsync+Poly, and FedAsync with hinge adaptive α as FedAsync+Hinge.
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(a) Top-1 accuracy on testing set, t− τ ≤ 4
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Figure 2: Top-1 accuracy (the higher the better) vs. # of gradients on CNN and CIFAR-10 dataset.
The maximum staleness is 4 or 16. γ = 0.1, ρ = 0.005. For FedAsync+Poly, we take a = 0.5.
For FedAsync+Hinge, we take a = 10, b = 4. Note that when the maximum staleness is 4,
FedAsync+Const and FedAsync+Hinge with b = 4 are the same.

5.3. Empirical results

We test FedAsync (asynchronous federated optimization in Algorithm 1) with different learning rates
γ, regularization weights ρ, mixing hyperparameter α, and staleness.

In Figure 2 and 3, we show how FedAsync converges when the number of gradients grows. We
can see that when the overall staleness is small, FedAsync converges as fast as SGD, and faster than
FedAvg. When the staleness is larger, FedAsync converges slower. In the worst case, FedAsync has
similar convergence rate as FedAvg. When α is too large, the convergence can be unstable, especially
for FedAsync+Const. The convergence is more robust when adaptive α is used.
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(a) Perplexity on testing set, t− τ ≤ 4
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Figure 3: Perplexity (the lower the better) vs. # of gradients on LSTM-based language model and
WikiText-2 dataset. The maximum staleness is 4 or 16. γ = 20, ρ = 0.0001. For FedAsync+Poly,
we take a = 0.5. For FedAsync+Hinge, we take a = 10, b = 2.

In Figure 4, we show how staleness affects the convergence of FedAsync, evaluated on CNN
and CIFAR-10 dataset. Overall, larger staleness makes the convergence slower, but the influence is
not catastrophic. Furthermore, the instability caused by large staleness can be mitigated by using
adaptive α. Using adaptive α always improves the performance, compared to using constant α.
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Figure 4: Top-1 accuracy on CNN and CIFAR-10 dataset at the end of training, with different
staleness. γ = 0.1, ρ = 0.01. α has initial value 0.9.

5.4. Discussion

In general, the convergence rate of FedAsync is between single-thread SGD and FedAvg. Larger α
and smaller staleness make FedAsync closer to single-thread SGD. Smaller α and larger staleness
makes FedAsync closer to FedAvg.

Empirically, we observe that FedAsync is generally insensitive to hyperparameters. When the
staleness is large, we can tune α to improve the convergence. Without adaptive α, smaller α
is better for larger staleness. For adaptive α, our best choice empirically was FedAsync+Hinge.
FedAsync+Poly and FedAsync+Hinge have similar performance.

In summary, compared to FedAvg, FedAsync performs as good as, and in most cases better. When
the staleness is small, FedAsync converges much faster than FedAvg. When the staleness is large,
FedAsync still achieves similar performance as FedAvg.

6. Conclusion

We proposed a novel asynchronous federated optimization algorithm on non-IID training data. We
proved the convergence for a restricted family of non-convex problems. Our empirical evaluation
validated both fast convergence and staleness tolerance. An interesting future direction is the design
of strategies to adaptively tune the mixing hyperparameters.
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Appendix

Appendix A. Proofs

Theorem 1 Assume that F is L-smooth and µ-weakly convex, and each worker executes at least
Hmin and at most Hmax local updates before pushing models to the server. We assume bounded
delay t−τ ≤ K. The imbalance ratio of local updates is δ = Hmax

Hmin
. Furthermore, we assume that for

∀x ∈ Rd, i ∈ [n], and ∀z ∼ Di, we have ‖∇f(x; z)‖2 ≤ V1 and ‖∇gx′(x; z)‖2 ≤ V2, ∀x′. Taking
ρ large enough such that ρ > µ and −(1 + 2ρ+ ε)V2 + ρ2‖xτ,h−1 − xτ‖2 − ρ

2‖xτ,h−1 − xτ‖
2 ≥

0,∀xτ,h−1, xτ , and γ < 1
L , after T global updates, Algorithm 1 converges to a critical point:

T−1
min
t=0

E‖∇F (xt)‖2

≤ E [F (x0)− F (xT )]
αγεTHmin

+O
(
γH3

max + αKHmax + α2γK2H2
max + γK2H2

max

εHmin

)
.

Taking α = 1√
Hmin

, γ = 1√
T

, T = H5
min, we have

T−1
min
t=0

E‖∇F (xt)‖2 ≤ O

 1

εH3
min

+
δ3

ε
√
Hmin

+
Kδ

ε
√
Hmin

+
K2δ2

ε
√
H5
min

+
K2δ2

ε
√
H3
min

 .

Proof Without loss of generality, we assume that in the tth epoch, the server receives the model
xnew, with time stamp τ . We assume that xnew is the result of applying Hmin ≤ H ≤ Hmax local
updates to xτ on the ith device. We also ignore i in xiτ,h and ziτ,h for convenience.

Thus, using smoothness and strong convexity, conditional on xτ,h−1, for ∀h ∈ [H] we have

E [F (xτ,h)− F (x∗)]
≤ E [Gxτ (xτ,h)− F (x∗)]
≤ Gxτ (xτ,h−1)− F (x∗)− γE [〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1; zτ,h)〉]

+
Lγ2

2
E
[
‖∇gxτ (xτ,h−1; zτ,h)‖2

]
≤ F (xτ,h−1)− F (x∗) +

ρ

2
‖xτ,h−1 − xτ‖2 − γE [〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1; zτ,h)〉]

+
Lγ2

2
E
[
‖∇gxτ (xτ,h−1; zτ,h)‖2

]
≤ F (xτ,h−1)− F (x∗)− γE [〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1; zτ,h)〉] +

Lγ2

2
V2 +

ρH2
maxγ

2

2
V2

≤ F (xτ,h−1)− F (x∗)− γE [〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1; zτ,h)〉] + γ2O(ρH2
maxV2).

Taking ρ large enough such that −(1 + 2ρ+ ε)V1 + ρ2‖xτ,h−1 − xτ‖2 − ρ
2‖xτ,h−1 − xτ‖

2 ≥
0,∀xτ,h−1, xτ , and write ∇gxτ (xτ,h−1; zτ,h) as∇gxτ (xτ,h−1) for convenience, we have

〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1)〉 − ε‖∇F (xτ,h−1)‖2

8



ASYNCHRONOUS FEDERATED OPTIMIZATION

= 〈∇F (xτ,h−1) + ρ(xτ,h−1 − xτ ),∇f(xτ,h−1) + ρ(xτ,h−1 − xτ )〉 − ε‖∇F (xτ,h−1)‖2

= 〈∇F (xτ,h−1),∇f(xτ,h−1)〉+ ρ 〈∇F (xτ,h−1) +∇f(xτ,h−1), xτ,h−1 − xτ 〉
+ ρ2‖xτ,h−1 − xτ‖2 − ε‖∇F (xτ,h−1)‖2

≥ −1

2
‖∇F (xτ,h−1)‖2 −

1

2
‖∇f(xτ,h−1)‖2 −

ρ

2
‖∇F (xτ,h−1) +∇f(xτ,h−1)‖2

− ρ

2
‖xτ,h−1 − xτ‖2 + ρ2‖xτ,h−1 − xτ‖2 − ε‖∇F (xτ,h−1)‖2

≥ −1

2
‖∇F (xτ,h−1)‖2 −

1

2
‖∇f(xτ,h−1)‖2 − ρ‖∇F (xτ,h−1)‖2 − ρ‖∇f(xτ,h−1)‖2

− ρ

2
‖xτ,h−1 − xτ‖2 + ρ2‖xτ,h−1 − xτ‖2 − ε‖∇F (xτ,h−1)‖2

≥ −(1 + 2ρ+ ε)V1 + ρ2‖xτ,h−1 − xτ‖2 −
ρ

2
‖xτ,h−1 − xτ‖2

= aρ2 + bρ+ c ≥ 0,

where a = ‖xτ,h−1 − xτ‖2 > 0, b = −2V1 − 1
2‖xτ,h−1 − xτ‖

2, c = −(1 + ε)V1. Thus, we have
γ 〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1)〉 ≤ γε‖∇F (xτ,h−1)‖2.

Using τ − (t − 1) ≤ K, we have ‖xτ − xt−1‖2 ≤ ‖(xτ − xτ+1) + . . . + (xt−1 − xt−1)‖2 ≤
K‖xτ − xτ+1‖2 + . . .+K‖xt−1 − xt−1‖2 ≤ α2γ2K2H2

maxO(V2).
Also, we have ‖xτ − xt−1‖ ≤ ‖(xτ − xτ+1) + . . .+ (xt−1 − xt−1)‖ ≤ ‖xτ − xτ+1‖2 + . . .+

‖xt−1 − xt−1‖2 ≤ αγKHmaxO(
√
V2).

Thus, we have

E [F (xτ,h)− F (x∗)]
≤ F (xτ,h−1)− F (x∗)− γE [〈∇Gxτ (xτ,h−1),∇gxτ (xτ,h−1; zτ,h)〉] + γ2O(ρH2

maxV2)

≤ F (xτ,h−1)− F (x∗)− γε‖∇F (xτ,h−1)‖2 + γ2O(ρH2
maxV2)

By rearranging the terms and telescoping, we have

E [F (xτ,H)− F (xτ )] ≤ −γε
H−1∑
h=0

E‖∇F (xτ,h)‖2 + γ2O(ρH3
maxV2).

Then, we have

E [F (xt)− F (xt−1)]
≤ E

[
Gxt−1(xt)− F (xt−1)

]
≤ E

[
(1− α)Gxt−1(xt−1) + αGxt−1(xτ,H)− F (xt−1)

]
≤ E

[
α (F (xτ,H)− F (xt−1)) +

αρ

2
‖xτ,H − xt−1‖2

]
≤ αE [F (xτ,H)− F (xt−1)] + αρ‖xτ,H − xτ‖2 + αρ‖xτ − xt−1‖2

≤ αE [F (xτ,H)− F (xt−1)] + αρ
(
γ2H2

maxO(V2) + α2γ2K2H2
maxO(V2)

)
≤ αE [F (xτ,H)− F (xt−1)] + αρ

(
γ2K2H2

maxO(V2)
)

≤ αE [F (xτ,H)− F (xτ ) + F (xτ )− F (xt−1)] + αγ2K2H2
maxO(V2).
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Using L-smoothness, we have

F (xτ )− F (xt−1)

≤ 〈∇F (xt−1), xτ − xt−1〉+
L

2
‖xτ − xt−1‖2

≤ ‖∇F (xt−1)‖‖xτ − xt−1‖+
L

2
‖xτ − xt−1‖2

≤
√
V1αγKHmaxO(

√
V2) +

L

2
α2γ2K2H2

maxO(V2)

≤ αγKHmaxO(
√
V1V2) + α2γ2K2H2

maxO(V2).

Thus, we have

E [F (xt)− F (xt−1)]

≤ −αγε
H−1∑
h=0

E‖∇F (xτ,h)‖2 + αγ2O(ρH3
maxV2)

+ α2γKHmaxO(
√
V1V2) + α3γ2K2H2

maxO(V2)
+ αγ2K2H2

maxO(V2).

By rearranging the terms, we have

H′t−1∑
h=0

E‖∇F (xτ,h)‖2

≤ E [F (xt−1)− F (xt)]
αγε

+
γH3

max

ε
O(V2)

+
αKHmax

ε
O(
√
V1V2) +

α2γK2H2
max

ε
O(V2) +

γK2H2
max

ε
O(V2),

where H ′t is the number of local iterations applied in the tth iteration.
By telescoping and taking total expectation, after T global epochs, we have

T−1
min
t=0

E
[
‖∇F (xt)‖2

]
≤ 1∑T

t=1H
′
t

T∑
t=1

H′t−1∑
h=0

‖∇F (xτ,h)‖2

≤ E [F (x0)− F (xT )]
αγεTHmin

+
γTH3

max

εTHmin
O(V2)

+
αKTHmax

εTHmin
O(
√
V1V2) +

α2γK2TH2
max

εTHmin
O(V2) +

γK2TH2
max

εTHmin
O(V2)

≤ E [F (x0)− F (xT )]
αγεTHmin

+O
(
γH3

max

εHmin

)
+O

(
αKHmax

εHmin

)
+O

(
α2γK2H2

max

εHmin

)
+O

(
γK2H2

max

εHmin

)
.
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Using δ = Hmax
Hmin

, and taking α = 1√
Hmin

, γ = 1√
T

, T = H5
min, we have

T−1
min
t=0

E
[
‖∇F (xt)‖2

]
≤ O

(
1

εH3
min

)
+O

(
δ3

ε
√
Hmin

)
+O

(
Kδ

ε
√
Hmin

)
+O

 K2δ2

ε
√
H5
min

+O

 K2δ2

ε
√
H3
min

 .

Appendix B. Experiment details

B.1. NN architecture

In Table 2, we show the detailed network structures of the CNN used in our experiments.

Table 2: CNN Summary

Layer (type) Parameters Input Layer
conv1(Convolution) channels=64, kernel_size=3, padding=1 data
activation1(Activation) null conv1
batchnorm1(BatchNorm) null activation1
conv2(Convolution) channels=64, kernel_size=3, padding=1 batchnorm1
activation2(Activation) null conv2
batchnorm2(BatchNorm) null activation2
pooling1(MaxPooling) pool_size=2 batchnorm2
dropout1(Dropout) probability=0.25 pooling1
conv3(Convolution) channels=128, kernel_size=3, padding=1 dropout1
activation3(Activation) null conv3
batchnorm3(BatchNorm) null activation3
conv4(Convolution) channels=128, kernel_size=3, padding=1 batchnorm3
activation4(Activation) null conv4
batchnorm4(BatchNorm) null activation4
pooling2(MaxPooling) pool_size=2 batchnorm4
dropout2(Dropout) probability=0.25 pooling2
flatten1(Flatten) null dropout2
fc1(FullyConnected) #output=512 flatten1
activation5(Activation) null fc1
dropout3(Dropout) probability=0.25 activation5
fc3(FullyConnected) #output=10 dropout3
softmax(SoftmaxOutput) null fc3
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