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Abstract
We propose new generic distributed proximal splitting algorithms, well suited for large-scale con-
vex nonsmooth optimization. We derive sublinear and linear convergence results with new noner-
godic rates, as well as new accelerated versions of the algorithms, using varying stepsizes.

1. Introduction

We propose new algorithms for the generic convex optimization problem1:

minimize
x∈X

{
Ψ(x) :=

1

M

M∑
m=1

(
Fm(x) +Hm(Kmx)

)
+R(x)

}
, (1)

where M ≥ 1 is typically the number of parallel computing nodes in a distributed setting; the
Km : X → Um are linear operators; X and Um are real Hilbert spaces of finite dimension; R and
Hm are proper, closed, convex functions with values in R∪{+∞}, the proximity operators of which
are easy to compute; and the Fm are convex LFm-smooth functions; that is,∇Fm is LFm-Lipschitz
continuous, for some LFm > 0. For any function G, we denote by µG ≥ 0 some constant such that
G is µG-strongly convex; that is, G− (µG/2)‖ · ‖2 is convex.

The template problem (1) covers most convex optimization problems met in machine learning,
signal and image processing, operations research, control, and many other fields, and our goal is to
propose new generic distributed algorithms able to deal with nonsmooth functions using their prox-
imity operators, with acceleration in presence of strong convexity. This is important for distributed
or federated learning [16, 18].

Proximal splitting algorithms [1, 2, 7, 10, 15, 20] are particularly well suited for large-scale
convex nonsmooth optimization. They are generally designed as sequential algorithms, for M = 1,
and then they can be extended by lifting in product spaces to parallel versions, suitable to minimize
F+R+

∑
mHm◦Km, see e.g. [10, Section 8]. However, it is not straightforward to adapt lifting to

the case of a finite-sum F = 1
M

∑
m Fm, with each function Fm handled by a different node, which

is of primary importance in machine learning. This generalization is one of our contributions.
Also, there is a vast literature on distributed optimization to minimize 1

M

∑
m Fm + R, with a

focus on strategies based on (block-)coordinate or randomized activation, as well as replacing the

1. Our only assumption is that there exists a solution x? ∈ X such that 0 ∈ ∂R(x?) + 1
M

∑
m ∇Fm(x?) +

K∗
m∂Hm(Kmx?); see for instance [8, Proposition 4.3] for sufficient conditions on the functions for this property to

hold.
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gradients by cheaper stochastic estimates [3, 14, 21, 22]. Replacing the full gradient by a stochastic
oracle in the accelerated algorithms with varying stepsizes we propose is not straightforward; we
leave this direction for future research. In any case, the generalized setting, with the smooth func-
tions Fm at the nodes supplemented or replaced by nonsmooth functions Hm, possibly composed
with linear operators, seems to have received very little attention. We want to make up for that.

Our contributions are the following. They are detailed and illustrated by numerical experiments
in the long version of the paper [11].

1. New algorithms. We propose the first distributed algorithms to solve (1) in whole generality,
with proved convergence to an exact solution, and having the full splitting, or decoupling,
property: ∇Fm, proxHm

, Km and K∗m are applied at the m-th node, and the proximity op-
erator of R is applied at the master node connected to all others. No other more complicated
operation, like an inner loop or a linear system to solve, is involved.

2. Unified framework. The foundation of our distributed algorithms consists in 2 general prin-
ciples, applied in a cascade, which are new contributions in themselves and could be used in
other contexts:

(a) We show that problem (1) with M = 1, i.e. the minimization of F + R + H ◦K, can
be reformulated as the minimization of F̃ + R̃+ H̃ in a different space, with preserved
smoothness and strong convexity properties. Hence, the linear operator disappears and
the Davis–Yin algorithm [12] can be applied to this new problem. Through this lens, we
recover many algorithms as particular cases of this unified framework, like the PD3O,
Chambolle–Pock, Loris–Verhoeven algorithms.

(b) We design a non-straightforward lifting technique, so that the problem (1), with any M ,
is reformulated as the minimization of F̂ + R̂+ Ĥ ◦ K̂ in some product space.

3. New convergence analysis and acceleration. Even whenM = 1, we improve upon the state
of the art in two ways:

(a) For constant stepsizes, we recover existing algorithms, but we provide new, more pre-
cise, results about their convergence speed.

(b) With a particular strategy of varying stepsizes, we exhibit new algorithms, which are
accelerated versions of them. Even for the existing accelerated Chambolle–Pock algo-
rithm [4, 5], which we recover as a particular case but with a different stepsize rule,
our O(1/k2) rate is on the last iterate, improving upon the best known result, which is
ergodic [5].

2. Deriving the Nonstationary PD3O and PDDY Algorithms

Let us first focus on the case M = 1; that is, we consider minimizing F (x) +R(x) +H(Kx). The
dual problem is to minimize (F + R)∗(−K∗u) + H∗(u), where K∗ is the adjoint operator of K
and G∗ denotes the convex conjugate of a function G.
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Algorithm 1 Distributed PD3O Alg.

input: (γk)k∈N, η ≥ ‖K̂‖2, (ω)Mm=1,
(q0m)Mm=1 ∈ XM , (u0m)Mm=1 ∈ UM

initialize: a0m := q0m −K∗mu0m, m = 1...M
for k = 0, 1, . . . do

at master, do
xk+1 := proxγkR

(γk
M

∑M
m=1 a

k
m

)
broadcast xk+1 to all nodes

at all nodes, for m = 1, . . . ,M , do
qk+1
m := Mωm

γk+1
xk+1 −∇Fm(xk+1)

uk+1
m := proxMωmH∗

m/(γk+1η)

(
ukm

+ 1
ηKm(Mωm

γk
xk+1 + qk+1

m − qkm)
)

ak+1
m := qk+1

m −K∗muk+1
m

transmit ak+1
m to master

end for

Algorithm 2 Distributed PDDY Alg.

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1,
x0R ∈ X , (u0m) ∈ UM

initialize: p0m := K∗mu
0
m, m = 1, ...,M

for k = 0, 1, . . . do
at all nodes, for m = 1, . . . ,M , do
uk+1
m := proxMωmH∗

m/(γkη)

(
ukm

+ Mωm
γkη

Kmx
k
R

)
pk+1
m := K∗mu

k+1
m

xk+1
m := xkR −

γk
Mωm

(pk+1
m − pkm)

akm := Mωmx
k+1
m − γk+1∇Fm(xk+1

m )
− γk+1p

k+1
m

transmit akm to master
at master, do
xk+1
R := proxγk+1R

(
1
M

∑M
m=1 a

k
m

)
broadcast xk+1

R to all nodes
end for

If K = I , the Davis–Yin algorithm [12] is well suited to minimize the sum of three functions2.
To make this algorithm applicable to K 6= I , we reformulate the problem as follows:

1) Choose η ≥ ‖K‖2; we recommend to set η = ‖K‖2 in practice. Then there exists a real
Hilbert spaceW and a linear operator C :W → U such that KK∗ + CC∗ = ηI . C is not unique,
for instance, C = (ηI −KK∗)1/2. We actually don’t need to exhibit C, its existence is sufficient
here!

2) Then the problem can be rewritten as:

minimize
x∈X ,w∈W

F̃ (x,w) + R̃(x,w) + H̃(x,w), (2)

where F̃ : (x,w) 7→ F (x) + µF
2 ‖w‖

2, R̃ : (x,w) 7→ R(x) + ı0(w), where ı0 : w 7→ {0 if w = 0,
+∞ else}, and H̃ : (x,w) = H(Kx+Cw). We have∇F̃ (x,w) = (∇F (x), µFw), prox

R̃
(x,w) =

(proxR(x), 0). Importantly, for every γ > 0, we have [19]: prox
H̃∗/γ(x,w) = (K∗u,C∗u), where

u = proxH∗/(γη)

(
(Kx+Cw)/η

)
. Note that in [19], the authors use F̃ (x,w) = F (x), whereas we

add µF
2 ‖w‖

2. This difference is essential, so that F̃ is LF -smooth and µF -strongly convex. Also,
R̃ is µR-strongly convex.

Then, we can apply the Davis–Yin algorithm to solve the problem (2). When we write the
algorithm, some simplifications are made naturally; most notably, whenever CC∗ appears, it is
replaced by ηI − KK∗. It turns out that the obtained algorithm is not new but is a nonstationary
version of the PD3O algorithm [23]. On the other hand, if we exchange the roles of the two functions
H̃ and R̃, we obtain a different algorithm: it is a nonstationary version of the PDDY algorithm
proposed recently [22]. With constant stepsizes γk ≡ γ ∈ (0, 2/LF ), for both the PD3O and PDDY
algorithms, xk and uk converge to some primal and dual solutions x? and u?, respectively.

2. There is a minor mistake in the way Algorithm 3 in [12] is initialized. This has been corrected in this work.
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Particular cases of the PD3O and PDDY algorithms are the following:

1. If K = I and η = 1, the PD3O algorithm reverts to the Davis–Yin algorithm; the PDDY
algorithm too, but with H and R exchanged.

2. If F = 0, the PD3O and PDDY algorithms revert to the forms I and II [10] of the Chambolle–
Pock algorithm [4], respectively.

3. IfR = 0, the PD3O and PDDY algorithms revert to the Loris–Verhoeven algorithm [17], also
discovered independently as the PDFP2O [6] and PAPC [13] algorithms; see also [9, 10] for
an analysis as a primal-dual forward-backward algorithm.

4. If F = 0 in the Davis–Yin algorithm or K = I and η = 1 in the Chambolle–Pock algorithm,
we obtain the Douglas–Rachford algorihm; it is equivalent to the ADMM, see the discussion
in [10].

5. If H = 0, with L = I and η = 1, the Davis–Yin algorithm reverts to the forward–backward
algorithm, a.k.a. proximal gradient descent. The Loris–Verhoeven algorithm with L = I and
η = 1, too.

To derive distributed versions of the algorithms, to solve (1) for any value of M , we developed
a specific lifting technique in product spaces, which we don’t detail here by lack of space. Let
(ωm)Mm=1 be a sequence of positive weights, whose sum is 1; they can be used to mitigate different
‖Km‖, by setting ωm ∝ 1/‖Km‖2, or different LFm , by setting ωm ∝ L2

Fm
, as a rule of thumb.

So, we recast the minimization of R(x) + 1
M

∑M
m=1

(
Fm(x) +Hm(Kmx)

)
as the minimization of

R̂(x̂) + F̂ (x̂) + Ĥ(K̂x̂), for appropriate ‘hat’-terms, which are defined using the weights ωm. The
constants L

F̂
and ‖K̂‖ have closed forms.

3. Convergence Analysis

Theorem B.1 (convergence rate of the Distributed PD3O Algorithm) In the Distributed PD3O Al-
gorithm, suppose that γk ≡ γ ∈ (0, 2/L

F̂
); if Fm ≡ 0, we can choose any γ > 0. Also, suppose

that η ≥ ‖K̂‖2. Then xk converges to some solution x? of (1). Also, ukm converges to some element
u?m ∈ Um, for every m = 1, . . . ,M . In addition, suppose that every Hm is continuous on a ball
around Kmx

?. Then the following hold:

(i) Ψ(xk)−Ψ(x?) = o(1/
√
k). (3)

Define the weighted ergodic iterate x̄k = 2
k(k+1)

∑k
i=1 ix

i, for every k ≥ 1. Then

(ii) Ψ(x̄k)−Ψ(x?) = O(1/k). (4)

Furthermore, if every Hm is Lm-smooth for some Lm > 0, we have a faster decay for the best
iterate so far:

(iii) min
i=1,...,k

Ψ(xi)−Ψ(x?) = o(1/k). (5)

We now give accelerated convergence results using varying stepsizes, in presence of strong con-
vexity. For this, we define µ

F̂
as the strong convexity constant of the average function 1

M

∑M
m=1 Fm.

That is, µ
F̂
≥ 0 is such that the function x ∈ X 7→ 1

M

∑M
m=1 Fm(x)− µ

F̂
2 ‖x‖

2 is convex.
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Theorem B.2 (Accelerated Distributed PD3O Algorithm) Suppose that µ
F̂

+ µR > 0. Let x? be
the unique solution to (1). Let κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/L

F̂
). Set γ1 = γ0 and

γk+1 =
−γ2kµF̂κ+ γk

√
(γkµF̂κ)2 + 1 + 2γkµR

1 + 2γkµR
, for every k ≥ 1. (6)

Then in the Distributed PD3O Algorithm, there exists ĉ0 > 0 such that, for every k ≥ 1, ‖xk+1 −
x?‖2 ≤ γ2k+1

1−γk+1µF̂ κ
ĉ0 = O

(
1/k2

)
.

Theorem B.4 (Accelerated Distributed PDDY Algorithm) Suppose that µ
F̂
> 0. Let x? be the

unique solution to (1). Let κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/L
F̂

). Set γ1 = γ0 and

γk+1 = −γ2kµF̂κ+ γk

√
(γkµF̂κ)2 + 1, for every k ≥ 1. (7)

Then in the Distributed PDDY Algorithm, there exists ĉ0 > 0 such that, for every k ≥ 1,

M∑
m=1

ωm‖xk+1
m − x?‖2 ≤

γ2k+1

1− γk+1µFκ
c0 = O

(
1/k2

)
. (8)

Consequently, for every m = 1, . . . ,M , ‖xkm − x?‖2 = O
(
1/k2

)
.

Theorem B.3 (linear convergence of the Distributed PD3O Algorithm) Suppose that µ
F̂

+µR > 0
and that every Hm is Lm-smooth, for some Lm > 0. Let x? be the unique solution to (1). We
assume constant stepsizes: γk ≡ γ, for some γ ∈ (0, 2/L

F̂
). Then the Distributed PD3O Algorithm

converges linearly: there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for every k ∈ N, ‖xk+1 − x?‖2 ≤
(1− ρ)k ĉ0.

Theorem B.5 (linear convergence of the Distributed PDDY Algorithm) Suppose that µ
F̂

+µR > 0
and that every Hm is Lm-smooth, for some Lm > 0. Let x? be the unique solution to (1). We
assume constant stepsizes: γk ≡ γ, for some γ ∈ (0, 2/L

F̂
). Then the Distributed PDDY Algorithm

converges linearly: there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for every k ∈ N, ‖xk+1
R − x?‖2 ≤

(1− ρ)k ĉ0.

Lower bounds for ρ in Theorems B.3 and B.5 can be derived from Theorem D.6 in the preprint
version of [12]. We emphasize that linear convergence comes for free with the algorithms, if the
conditions are met, without any modification. That is, there is no need to know the values of the
strong convexity constants, since the conditions on the two parameters γ and η do not depend on
them.
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