
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Adaptive Hessian-free optimization for training neural networks

Tetsuya Motokawa S1921649@S.TSUKUBA.AC.JP

Taro Tezuka TEZUKA@SLIS.TSUKUBA.AC.JP

University of Tsukuba, Ibaraki, Japan 305-0006

Abstract
Neural networks’ weight parameters are usually updated using a linear optimization method based
on stochastic gradient descent (SGD), but several limitations have been pointed out. For example,
linear optimization converges slowly when the learning rate is not tuned correctly. Also, it requires
many iterations, making parallelization difficult and less effective. The use of second-order and
quasi-second-order optimization has been actively researched to overcome these limitations. One
example is Hessian-free optimization (HF), which is considerably faster due to avoiding computa-
tion of the inverse of the Hessian matrix.

While it is prevalent to use adaptive parameter updates such as RMSProp, AdaGrad, or Adam
for linear optimization, it has not been used for quasi-second-order optimization methods. This
paper proposes a novel method, Adaptive HF, which adds an adaptive parameter update mechanism
to Hessian-free optimization. We give a proof that guarantees the convergence of Adaptive HF.
Experiments showed that Adaptive HF performs better than the original Hessian-free optimization
in terms of loss and accuracy. Besides, while the original HF often failed to converge for a wide
range of hyperparameter values, Adaptive HF successfully converged in most cases.

The main contributions of the paper are as follows.

• We created a new optimization algorithm for training neural networks by incorporating an adaptive
mechanism to Hessian-free optimization.

• We proved a convergence property of the algorithm when the hyperparameters are set within certain
ranges.

• We experimentally verified that the proposed method outperforms the original Hessian-free optimiza-
tion.

1. Introduction

Popular optimization algorithms for neural networks such as Momentum SGD, Nesterov accelera-
tion gradient, AdaGrad, RMSProp, and Adam are all based on the stochastic gradient descent (SGD)
method, with different types of adaptive mechanisms added. A neural network’s weight parameters
are optimized using gradients, which are the first derivatives of a loss function. In the adaptive
variants of SGD, parameters are updated by incorporating values of previous steps. These adap-
tive methods are all linear optimization and have several limitations. They require many iterations,
making parallelization difficult and ineffective. Also, there are many hyperparameters, such as the
learning rate, that are difficult to adjust. When training a neural network, training often fails if the
hyperparameters are not carefully tuned. These limitations come from the fact that linear optimiza-
tion uses only the first term in the Taylor expansion, and the remaining terms are ignored. There are
many cases that second-order or quasi-second-order optimization is far more efficient than linear

c© T. Motokawa & T. Tezuka.



ADAPTIVE HESSIAN-FREE

optimization, for example, when the condition number of the Hessian matrix for the loss function
is large. Since second-order and quasi-second-order methods converge in far fewer iterations than
first-order methods, it can benefit from parallel processing within each iteration. Recently, many
papers have proposed to use the second derivative to overcome the limitations of linear optimization
[2, 10, 11]. However, these proposals focused on extending the original SGD and did not use any
adaptive mechanism.

In this work, we propose a new algorithm that introduces adaptive parameter updates to quasi-
second-order optimization. Such an approach has not been proposed before, possibly due to popular
adaptive parameter update methods such as Adam being relatively new. The use of second-order or
quasi-second-order optimization for training deep networks is even more recent [3]. One difficulty is
that deep neural networks have a vast number of parameters, and second-order optimization requires
intensive computation to obtain the inverse of the Hessian matrix. However, the recently proposed
Hessian-free optimization, which is a type of of quasi-second-order optimization, resolves this prob-
lem by not explicitly computing the Hessian matrix but computing the Hessian-vector product [10].
In this paper, we demonstrate that Hessian-free optimization can be combined with adaptive param-
eter updating.1 The benefit of introducing the adaptive mechanism comes from exploiting curvature
information in its past trajectory, rather than looking only at the curvature around the current pa-
rameter value.

2. Related Works

2.1. Adaptive parameter optimization for training a neural network

Neural networks are usually trained using SGD or its adaptive variants. Momentum SGD [15,
17] and Nesterov Accelerate Gradient [13] are simple to implement and also theoretically well-
founded, making them popular options. Methods that use past gradients are now widely used. Most
popular among these methods are AdaGrad [5], RMSProp, and Adam [8]. In a high-dimensional
parameter space, optimizers are likely to be caught at a saddle point, where the norm of the gradient
is nearly zero. Experimental analyses suggest that adaptive linear optimization enables the optimizer
to escape from saddle points.

Another way of moving away from the saddle point is to use the natural gradient ([1]) where
the gradient is scaled using the Fisher information matrix. Several recent papers evaluate natural
gradient descent for training a deep learning model ([6, 14, 16, 19]).

Recently, Yao et al. [18] proposed AdaHessian, an adaptive second-order optimization method
that uses the diagonal elements of the Hessian matrix. Our approach is different from AdaHessian
in that it relies on the Hessian-vector product rather than the Hessian matrix, which makes it quasi-
second-order optimization. In contrast, our method does not explicitly compute the Hessian matrix.
It largely reduces the cost of computation while benefitting from utilizing the curvature of the loss
surface.

2.2. Hessian-free optimization

Hessian-free optimization is one example of the truncated-Newton method that has been used for
numerical analysis. It computes the product of the gradient and the Hessian matrix efficiently. [12]
used it for training a neural network. Since neural networks have many weights, the dimension of

1. Code is made available at: https://github.com/mtkwT/adaptive-hessian-free-optimization .

2



ADAPTIVE HESSIAN-FREE

the Hessian matrix tends to be quite large. The cost of computation is prohibitive in terms of both
time and space. Hessian-free optimization circumvents this problem by using the conjugate gradient
method (CGM). A parallelized version of HF has also been proposed in [7].

3. Method

We propose adaptive Hessian-free optimization (Adaptive HF), which introduces adaptive parame-
ter update mechanisms to Hessian-free optimization. More specifically, the method introduces the
adaptive mechanism used in Adam [8].

3.1. Adaptive HF

Adam (adaptive moment) is an adaptive linear optimization method that exploits past gradients
similarly to the momentum algorithm. The main difference is that Adam is based more on statistical
consideration. It computes the first and second moments from past gradients and uses them to
standardize the current gradient. Although the theoretical analyses on Adam are still ongoing [4], it
is widely used to its effectiveness in practice.

Adam standardizes the gradient using the weighted first and second moments of past gradients.
Updates in Adam can be expressed as follows. mt and vt represent the first-order and second-order
weighted moments, respectively. Like in the momentum method, at represents the acceleration at
step t, corresponding to the gradient in the case of linear optimization. β1 and β2 are hyperparame-
ters.

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂ =

mt

1− βt1

v̂ =
vt

1− βt2
(1)

θt+1 = θt +
αm̂√
v̂ + µ

Based on this mechanism, we propose to utilize the first and second moments of the Hessian-
vector product. Our proposed algorithm of Adaptive HF is indicated in Algorithm 1. It introduces
the mechanism of Adam [8] for updating the parameter vector θt using moments mt and vt of δt,
which constitutes the vector part of the Hessian-vector product H(θt)δt.

3.2. Convergence of Adaptive HF

We prove that Algorithm 1 converges under specific conditions regarding the loss function and the
range of hyperparameters. In doing so, we introduce L-conjugate smoothness, a condition that is
similar to Lipschitz continuity but defined using the conjugate gradient vector.

Definition 1 (L-conjugate smoothness):

A differential function f is L-conjugate smooth if

f(y) ≤ f(x) + 〈g(x),y − x〉+ L

2
‖y − x‖2 (2)

where is g(x) is the conjugate gradient vector at x, for any x,y ∈ Rn for some L > 0. �

3



ADAPTIVE HESSIAN-FREE

Algorithm 1 Adaptive Hessian-free optimization
Input: θ0, ε, σ, L, β2 ∈ [0, 1), µ, α, λ
δ0 ← 0, m0 ← 0, v0 ← 0, t← 1
β1 =

ε
ε+σ

while solution is not satisfactory do
Select a mini-batch S

′ ⊂ S from the training set to compute the gradient
b← −∇h(θt) on S

′

Select a mini-batch S
′′ ⊂ S from the training set to compute the curvature

Define A ≡ (H(θt) + λI)δt on S
′′

δt ← CG (b, A) (CG: conjugate gradient)
Update λ using the Levenberg-Marquardt heuristics [12]
Update α using Equation 3
mt ← β1mt−1 + (1− β1)δt
vt ← β2vt−1 + (1− β2)δ2t
m̂← mt

1−βt
1
, v̂ ← vt

1−βt
2

θt+1 ← θt +
αm̂√
v̂+µ

t← t+ 1
end while

Theorem 1 (Convergence of Adaptive HF):
Let f : Rd → R be L-conjugate smooth function, and let the norm of its conjugate gradient vector
‖gt‖ does not increase for step t beyond some natural number τ . In other words, there exists a
natural number τ and a real number σ such that σ = σt := maxk=1,...,t ‖gk‖ for all t ≥ τ . Assume
also that f has a minimum. In other words, f(x∗) = minx f(x) for some x∗.

Then for Algorithm 1, there exists a natural number T and a sequence of step sizes {αt′}t′=1,...,T

such that ‖gt′‖ ≤ ε for some t′ ≤ T , for all ε > 0, β1 < ε
ε+σ , and ξ > σ2β1

−β1σ+ε(1−β1) . �

A proof is provided in Appendix A. One option for hyperparameters that assures convergence
is using

β1 =
ε

ε+ 2σ
α̂t =

4
(
‖gt‖2(1− β1)− ‖gt‖(β1 − βt1)σ

)
3L(1− βt1)2σ

.

(3)
at step t. We used the above hyperparameter βt1 and step size α̂t in our implementation.

4. Experiments

As shown in Theorem 1, we need to set hyperparameters L and σ to assure convergence. Since they
represent bounds for the shape of the loss landscape, the search range for these hyperparameters
were determined by pre-running the algorithm and observing the dynamics of ‖g(θt)‖. In Figure
1, the left graph indicates the dynamics of ‖g(θt)‖ during pre-running. The right graph shows the
dynamics of the step size during pre-running. Pre-running requires L and σ to determine the step
size, so they were set using Bayesian optimization. More details are provided in Appendix B.

4



ADAPTIVE HESSIAN-FREE

0 10 20 30 40
0

20

40

60

80
Adaptive HF

conjugate grad norm

step
10 20 30 40

0

0.1

0.2

0.3

0.4

0.5 Adaptive HF

step size

step

Figure 1: The norm of the conjugate gradient vector and the learning rate for different values of
hyperparameters when using Adaptive HF (15 trials).

After setting up L and σ, we compared the original HF and Adaptive HF using LeNet [9]
and the Fashion-MNIST dataset. We optimized hyperparameters using Bayesian optimization and
compared training loss and test accuracy (Figure 2). The results indicate that for many values of
hyperparameters, the original HF totally fails to optimize, and therefore, the variances of the eval-
uation measures are much higher than Adaptive HF. We also observed that Adaptive HF converges
to minima that show better generalization performance (test accuracy) on average.

0 50 1000

0.5

1

1.5

2

2.5

3

Adaptive HF

HF

train loss

step
0 50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Adaptive HF

HF

test accuracy

step

Figure 2: Train loss and test accuracy for different values of hyperparameters (70 trials).

5. Conclusion

We proposed Adaptive HF, which introduces an adaptive parameter update mechanism to Hessian-
free optimization. We provided proof that assures the method to converge when used with hyper-
parameters within a specific range. Experiments showed that our method outperforms the original
Hessian-free optimization in terms of loss and accuracy. Besides, our method was more stable than
the original HF for a wide range of hyperparameters.

5



ADAPTIVE HESSIAN-FREE

References

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10:
251–276, 1998. URL http://dx.doi.org/10.1162/089976698300017746.

[2] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation
for deep learning. In Proceedings of the 34th International Conference on Machine Learn-
ing, volume 70, pages 557–565, 2017. URL http://proceedings.mlr.press/v70/
botev17a.html.

[3] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, pages 2933–2941, 2014. URL http://dl.acm.org/
citation.cfm?id=2969033.2969154.

[4] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and an empirical comparison to nesterov acceleration. In
ICML Workshop on Modern Trends in Nonconvex Optimization for Machine Learning, 2018.
URL https://arxiv.org/abs/1807.06766.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
URL http://dl.acm.org/citation.cfm?id=1953048.2021068.

[6] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker-factored eigenbasis. In Advances in Neu-
ral Information Processing Systems 31 (NeurIPS 2018), 2018. URL https://arxiv.
org/abs/1806.03884.

[7] Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, and Martin Takác. Distributed hessian-free
optimization for deep neural network, 2016. URL https://arxiv.org/abs/1606.
00511.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Pro-
ceedings of the International Conference on Learning Representations 2014, 2014. URL
https://arxiv.org/abs/1412.6980.

[9] Yann LeCun, Leon Bottou, Yoshua, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pages 2278 – 2324. IEEE, 1994.

[10] James Martens. Deep learning via Hessian-free optimization. Proceedings of the 27th Interna-
tional Conference on Machine Learning, pages 735–742, 2010. URL https://dl.acm.
org/citation.cfm?id=3104416.

[11] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In Proceedings of the 32nd International Conference on Machine Learn-
ing, 2015. URL https://arxiv.org/abs/1503.05671.

6

http://dx.doi.org/10.1162/089976698300017746
http://proceedings.mlr.press/v70/botev17a.html
http://proceedings.mlr.press/v70/botev17a.html
http://dl.acm.org/citation.cfm?id=2969033.2969154
http://dl.acm.org/citation.cfm?id=2969033.2969154
https://arxiv.org/abs/1807.06766
http://dl.acm.org/citation.cfm?id=1953048.2021068
https://arxiv.org/abs/1806.03884
https://arxiv.org/abs/1806.03884
https://arxiv.org/abs/1606.00511
https://arxiv.org/abs/1606.00511
https://arxiv.org/abs/1412.6980
https://dl.acm.org/citation.cfm?id=3104416
https://dl.acm.org/citation.cfm?id=3104416
https://arxiv.org/abs/1503.05671


ADAPTIVE HESSIAN-FREE

[12] James Martens and Ilya Sutskever. Training deep and recurrent networks with Hessian-free
optimization. In Neural Networks: Tricks of the Trade, 2012.

[13] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Dokl. akad. nauk Sssr, 269:543–547, 1983.

[14] Razvan Pascanu and Yoshua. Revisiting natural gradient for deep networks. In Proceedings
of the International Conference on Learning Representations (ICLR), 2014. URL http:
//arxiv.org/abs/1301.3584.

[15] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12:145–151, 1999. URL http://dx.doi.org/10.1016/S0893-6080(98)
00116-6.

[16] Yang Song, Jiaming Song, and Stefano Ermon. Accelerating natural gradient with higher-
order invariance. In Proceedings of the 35th International Conference on Machine Learning,
2018. URL https://arxiv.org/abs/1803.01273.

[17] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28, pages 1139–1147, 2013. URL http:
//proceedings.mlr.press/v28/sutskever13.html.

[18] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W. Ma-
honey. ADAHESSIAN: An adaptive second order optimizer for machine learning.
https://arxiv.org/pdf/2006.00719.pdf, 2020.

[19] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient
as variational inference. In Proceedings of the 35th International Conference on Machine
Learning, 2018. URL https://arxiv.org/abs/1712.02390.

Appendix A. Proof

A.1. Convergence of Adaptive HF

Definition 1 (L-conjugate smoothness):

A differential function f is L-conjugate smooth if

f(y) ≤ f(x) + 〈g(x),y − x〉+ L

2
‖y − x‖2 (4)

where is g(x) is the conjugate gradient vector at x, for any x,y ∈ Rn for some L > 0. �

Theorem 1 (Convergence of Adaptive HF):
Let f : Rd → R be a L-conjugate smooth function, and let the norm of its conjugate gradient

7

http://arxiv.org/abs/1301.3584
http://arxiv.org/abs/1301.3584
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/1803.01273
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/1712.02390


ADAPTIVE HESSIAN-FREE

vector ‖gt‖ does not increase for step t beyond some natural number τ . In other words, there exists
a natural number τ and a real number σ such that σ = σt := maxk=1,...,t ‖gk‖ for all t ≥ τ . Assume
also that f has a minimum. In other words, f(x∗) = minx f(x) for some x∗.

Then for Algorithm 1, there exists a natural number T and a sequence of step sizes {αt′}t′=1,...,T

such that ‖gt′‖ ≤ ε for some t′ ≤ T , for all ε > 0, β1 < ε
ε+σ , and ξ > σ2β1

−β1σ+ε(1−β1) . �

The proof follows that of [4] up till Equation 18.

Proof:
Let us assume to the contrary that ‖gt‖ ≥ ε for any natural number t. We will prove that this
assumption will lead to a contradiction. From L-conjugate smoothness of f ,

f(xt+1) ≤ f(xt) + 〈gt,xt+1 − xt〉+
L

2
‖xt+1 − xt‖2. (5)

By defining a diagonal matrix D :=

(
V

1
2
t + diag(ξ1d)

)−1
and substituting the update rule of

Algorithm 1 to xt+1 − xt,

f(xt+1) ≤ f(xt)− ηt〈gt,Dmt〉+
Lη2t
2
‖Dmt‖2 (6)

where ηt > 0 is a dummy step length. It can be rewritten as

f(xt+1)− f(xt) ≤ ηt
(
−〈gt,Dmt〉+

Lηt
2
‖Dmt‖2

)
. (7)

Since the roots of the quadratic in the right-hand side are 0 and 2〈gt,Dmt〉
L‖Dmt‖2 , the minimum is at

their midpoint. We set a candidate step length α∗t to the midpoint, 〈gt,Dmt〉
L‖Dmt‖2 . It guarrantees decrease

in the loss function,

f(xt+1)− f(xt) ≤ −
〈gt,Dmt〉2

2L‖Dmt‖2
. (8)

To upper bound the right-hand side of Equation 8, we bound the numerator and the denominator
separately.

Upper bound for ‖Dmt‖:

We first construct an upper bound for ‖Dmt‖ in Equation 8. By definition, the largest eigen-
value λmax of D fulfills

λmax ≤
1

ξ +mini=1,...,d

√
(vt)i

(9)

since (vt)i is the i-th column vector of Vt. By solving the recursive definition of vt in Algorithm 1,

8



ADAPTIVE HESSIAN-FREE

vt = (1− β2)
t∑

k=1

βt−k2 g2
k. (10)

Using εt := mink=1,...,tmini=1,...,d(g
2
k)i,

λmax ≤
1

ξ +
√
(1− βt2)εt

. (11)

Solving the recursive definition of mt in Algorithm 1 gives mt = (1 − β1)
∑t

k=1 β
t−k
1 gk.

Using the triangle inequality and σt := maxi=1,,...,t ‖gi‖ gives ‖mt‖ ≤ (1− βt1)σt, then

‖Dmt‖ ≤
(1− βt1)σt

ξ +
√
εt(1− βt2)

≤ (1− βt1)σt
ξ

. (12)

Lower bound for 〈gt,Dmt〉2:

Next, we construct a lower bound for 〈gt,Dmt〉2 in Equation 8. Using Qt,i := 〈gt,Dmi〉,

Qt,i − β1Qt,i−1 = 〈gt,D(mi − β1mi−1)〉 = (1− β1)〈gt,Dgi〉. (13)

With Qt := Qt,t,

Qt − β1Qt−1 ≥ (1− β1)‖gt‖2λmin (14)

where λmin is the smallest eigenvalue of D. Defining σt−1 := maxi=1,...,t−1 ‖gi‖ gives

Qi − β1Qi−1 ≥ −(1− β1)‖gt‖σt−1λmax (15)

for i = 1, ..., t− 1. Note the following identity

t−1∑
i=1

βt−i1 (1− β1) = β1 − βt1. (16)

Using Equations / Inequalities 14, 15, and 16,

Qt − βt1Q0 = Qt − β1Qt−1 +
t−1∑
j=1

βj1(Qt−j − β1Qt−j−1) (17)

= Qt − β1Qt−1 +
t−1∑
i=1

βt−i1 (Qi − β1Qi−1)

≥ (1− β1)‖gt‖2λmin −
t−1∑
i=1

βt−i1 (1− β1)‖gt‖σt−1λmax

= (1− β1)‖gt‖2λmin − (β1 − βt1)‖gt‖σt−1λmax.

9



ADAPTIVE HESSIAN-FREE

Using Equation 10 and λmin ≥ 1

ξ+
√

maxi=1,...,d(vt)i
,

λmin ≥
1

ξ +
√
(1− βt2)σ2t

. (18)

Since Q0 = 0 from the initial condition, and also because εt = mink=1,...,tmini=1,...,d(g
2
k)i ≤

mink=1,...,t ‖gk‖2 ≤ maxk=1,...,t ‖gk‖2 = σ2t and 1− βt2 < 1,

Qt ≥ −(β1 − βt1)‖gt‖σt−1
1

ξ +
√
(1− βt2)εt

+ (1− β1)‖gt‖2
1

ξ +
√
(1− βt2)σ2t

(19)

≥
(
−(β1 − βt1)‖gt‖σt−1 + (1− β1)‖gt‖2

) 1

ξ +
√
(1− βt2)σ2t

≥
(
−(β1 − βt1)‖gt‖σt−1 + (1− β1)‖gt‖2

)
ξ + σt

=
‖gt‖σt−1(β1 − βt1)

ξ + σt

(
(1− β1)‖gt‖
(β1 − βt1)σt−1

− 1

)
.

Using θt :=
(1−β1)ε
β1σt−1

− 1, we get (1−β1)‖gt‖
(β1−βt

1)σt−1
− 1 ≥ θt, since by the assumption, ‖gt′‖ ≥ ε for

all t′. As a result,

Qt ≥
‖gt‖(β1 − βt1)σt−1θt

ξ + σt
. (20)

Combining the bounds:

Substituting the upper bound in Equation 12 and the lower bound in Equation 20 to Equation 8
gives

f(xt+1)− f(xt) ≤ −〈gt,Dmt〉2

2L‖Dmt‖2
(21)

≤ − Q2
t

2L
(
(1−βt

1)σt
ξ

)2
≤ −

‖gt‖2(β1 − βt1)2σ2t−1θ2t ξ2

2L(ξ + σt)2(1− βt1)2σ2t

which can be rewritten as

f(xt)− f(xt+1) ≥
‖gt‖2(β1 − βt1)2σ2t−1θ2t ξ2

2L(ξ + σt)2(1− βt1)2σ2t
. (22)

Define θ by substituting σ to σt−1 in θt. Using the existance of a natural number τ such that
σ = σt = σt−1 for all t ≥ τ , we can sum over Equation 22 for t = max(τ, 2), ..., T , where
max(τ, 2) is the larger number of τ and 2.

10



ADAPTIVE HESSIAN-FREE

T∑
t=max(τ,2)

(f(xt)− f(xt+1)) ≥
T∑

t=max(τ,2)

‖gt‖2(β1 − βt1)2σ2t−1θ2t ξ2

2L(ξ + σt)2(1− βt1)2σ2t
(23)

=
T∑

t=max(τ,2)

‖gt‖2(β1 − βt1)2θ2ξ2

2L(ξ + σ)2(1− βt1)2
.

The first line becomes an equality when max(τ, 2) ≥ T . The terms in the left-hand side cancels
out and makes f(xmax(τ,2))− f(xT+1). To get a lower bound for the right-hand side, define C that
is smaller than each term and does not depend on t, as

C =
(β1 − β21)2θ2ξ2

2L(ξ + σ)2
. (24)

It holds that C ≤ (β1−βt
1)

2θ2ξ2

2L(ξ+σt)2(1−βt
1)

2 for all t = max(τ, 2), ..., T , since β1 ≥ 0 from 1− βt1 ≤ 1,

and β21 ≥ βt1 for all t ≥ 2. Combining with f(x∗) = minx f(x) gives

f(xmax(τ,2))− f(x∗) ≥ f(xmax(τ,2))− f(xT+1) ≥
T∑

t=max(τ,2)

‖gt‖2C (25)

which reduces to

min
t=max(τ,2),...,T

‖gt‖2 ≤
f(xmax(τ,2))− f(x∗)
(T −max(τ, 2) + 1)C

. (26)

As T is increased, T − max(τ, 2) + 1 continues to increase, and mint=max(τ,2),...,T ‖gt‖2 can
be made arbitrary small. It makes mint=max(τ,2),...,T ‖gt‖ arbitrary small as well, which contradicts
the original assumption that ‖gt′‖ ≥ ε for all t′. For any ε > 0, there exists some step t′ such that
‖gt′‖ < ε, which fulfills the convergence criterion.�

Construction of the step size:

In Algorithm 1, the step size α∗t is determined as

α∗t =
Qt

L‖Dmt‖2
. (27)

In the denominator of the right-hand side, ‖Dmt‖ can be bounded by the upper bound obtained
in Equation 12. The numerator Qt can be bounded by the second line of Equation 19. We define a
step size αt which fulfills αt ≤ α∗t as

αt :=
ξ2

L(1− βt1)2σ2t

(
−(β1 − βt1)‖gt‖σt−1 + (1− β1)‖gt‖2

ξ +
√
1− βt2σt

)
≤ Qt
L‖Dmt‖2

= α∗t . (28)

By definition, ‖gt‖ > ε until the convergence criterion is fulfilled. Using β1 < ε
ε+σ ,

11



ADAPTIVE HESSIAN-FREE

(1− β1)‖gt‖ − (β1 − βt1)σt−1 ≥ (1− β1)‖gt‖ − (β1 − βt1)σ > (1− β1)ε− (β1 − βt1)σ (29)

>

(
σ

ε+ σ

)
ε− (β1 − βt1)σ =

(
ε

ε+ σ
− β1 + βt1

)
σ > βt1σ ≥ 0.

After facoring out ‖gt‖ from Equation 28, the left-hand side of Equation 29 can be substituted.
Since other factors of Equation 28 are positive, αt > 0. It means that until the convergence criterion
‖gt‖ ≤ ε is fulfilled, αt will not be negative nor zero. In other words, 0 < αt ≤ α∗t .

The reason for using αt instead of α∗t is to avoid the computation of the inverse matrix. Since
0 ≤ αt ≤ α∗t , using αt prohibits the loss function to increase up to quadratic approximation.

Approximations to αt :

Define α̃t by setting β2 = 0 in αt. Then

α̃t =
ξ2

L(1− βt1)2σ2t

(
−(β1 − βt1)‖gt‖σt−1 + (1− β1)‖gt‖2

ξ + σt

)
. (30)

β1 = ε
ε+2σ fulfills the condition β1 < ε

ε+σ . Substituting it to the condition ξ > σ2β1
−β1σ+ε(1−β1)

simplifies to ξ > σ.
From β2 < 1, α̃t < αt. Define α̂t by subsituting σ = σt = σt−1 and ξ = 2σ to α̃t.

α̂t =
4
(
‖gt‖2(1− β1)− ‖gt‖(β1 − βt1)σ

)
3L(1− βt1)2σ

. (31)

α̂t and α̃t approximates αt and are easier to compute. However, since they set β2 = 0, it maybe
a little less efficient than αt.

Appendix B. Experimental setup

Programs were implemented using Tensorflow. All activation functions in any layers were ReLU,
and LeNet is trained with the cross-entropy. The batch size for the Fashion-MNIST dataset is set
to 128 in all runs. All reported values were evaluated on the whole training and test sets of sizes
50,000 and 10,000, respectively. We describe the detailed setup of the experiments we presented in
Section 4. Code is made available at: https://github.com/mtkwT/adaptive-hessian-free-optimization
.

B.1. Plotting error bars

The error bars in Figures 2 and 1 are centered at the mean value of the observed quantity. The bars
indicate the standard error around the mean in positive and negative directions.

B.2. Range of hyperparameter search

We evaluated various values of hyperparameters using Bayesian optimization. The ranges used for
the hyperparameters search are presented below.

12



ADAPTIVE HESSIAN-FREE

The search range of hyperparameterL that should fulfillL-conjugate smoothness criterion (Def-
inition 1) was determined by pre-running. Since Equation 2 can be transformed to

L ≥ 2(f(y)− f(x)− 〈g(x),y − x〉)
‖y − x‖2

, (32)

we computed the right-hand side to determine the range of hyperparameter optimization.

• HF

– learning rate α from {1.0−3, 1.0}
– damping λ from {1, 30}

• Adaptive HF

– β2 from {1.0−10, 1.0−4}
– damping λ from {1, 30}
– ε from {1.0−5, 0.1}
– σ from {30, 100}
– L from {50, 300}

13


	Introduction
	Related Works
	Adaptive parameter optimization for training a neural network
	Hessian-free optimization

	Method
	Adaptive HF
	Convergence of Adaptive HF

	Experiments
	Conclusion
	Proof
	Convergence of Adaptive HF

	Experimental setup
	Plotting error bars
	Range of hyperparameter search


