
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Can We Find Near-Approximately-Stationary Points
of Nonsmooth Nonconvex Functions?

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Weizmann Institute of Science, Israel

Abstract
It is well-known that given a bounded, smooth nonconvex function, standard gradient-based methods can
find ε-stationary points (where the gradient norm is less than ε) in O(1/ε2) iterations. However, many
important nonconvex optimization problems, such as those associated with training modern neural networks,
are inherently not smooth, making these results inapplicable. Moreover, as recently pointed out in Zhang
et al. [28], it is generally impossible to provide finite-time guarantees for finding an ε-stationary point of
nonsmooth functions. Perhaps the most natural relaxation of this is to find points which are near such ε-
stationary points. In this paper, we show that even this relaxed goal is hard to obtain in general, given only
black-box access to the function values and gradients. We also discuss the pros and cons of alternative
approaches.

1. Introduction

We consider optimization problems associated with functions f : Rd 7→ R, where f(·) is globally Lipschitz
and bounded from below, but otherwise satisfies no special structure – in particular, it is not necessarily
convex, and not necessarily differentiable everywhere. Clearly, in high dimensions, and for sufficiently
complex f(·), it is generally impossible to efficiently find a global minimum. However, if we relax our
goal to finding (approximate) stationary points of f(·), then the nonconvexity is no longer an issue. In
particular, it is known that if f(·) is smooth – namely, differentiable and with a Lipschitz gradient – then
for any ε > 0, simple gradient-based algorithms can find x such that ‖∇f(x)‖ ≤ ε, using only O(1/ε2)
gradient computations, independent of the dimension (see for example [6, 16, 22]).

Unfortunately, many optimization problems of interest are inherently not smooth. For example, when
training modern neural networks, involving max operations and rectified linear units, the associated opti-
mization problem is virtually always nonconvex as well as nonsmooth. Thus, the positive results above,
which crucially rely on smoothness, are inapplicable. Although there are positive results even for noncon-
vex nonsmooth functions, they tend to be either purely asymptotic in nature (e.g., Benaı̈m et al. [4], Davis
et al. [10], Kiwiel [17], Majewski et al. [20]), or require additional structure which many problems of inter-
est lack, such as weak convexity or some separation between nonconvex and nonsmooth components (e.g.,
Beck and Hallak [3], Bolte et al. [5], Davis and Drusvyatskiy [9], Drusvyatskiy and Paquette [11], Duchi and
Ruan [12]). This leads to the interesting question of developing black-box algorithms with non-asymptotic
guarantees, for finding stationary points of general nonsmooth nonconvex functions.

In an elegant recent work, Zhang et al. [28] raise this question, and provide several contributions. First,
they point out that in a black-box model, where the algorithm accesses the function only by computing its
values and gradients at various points, it is generally impossible in to find an approximately stationary point
with finitely many queries, simply because the gradient can change abruptly and thus “hide” a stationary
point inside some arbitrarily small neighborhood. Instead, they propose the following relaxation (based on

c© O. Shamir.

Figure 1: The function used in the proof of Proposition 1, for δ = 1. The origin (which fulfills the definition
of a (1, 0)-stationary point) is marked with a red dot. Best viewed in color.

the notion of δ-differential introduced in Goldstein [15]): Letting ∂f(x) denote the gradient set1 of f(·) at
x, we say that a point x is a (δ, ε)-stationary point, if

min{‖u‖ : u ∈ conv{∪y:‖y−x‖≤δ ∂f(y)}} ≤ ε , (1)

where conv{·} is the convex hull. In words, there exists a convex combination of gradients at a δ-neighborhood
of x, whose norm is at most ε. The authors then proceed to provide a dimension-free, gradient-based algo-
rithm for finding (δ, ε)-stationary points, using O(1/δε3) queries, as well as study related settings.

Although this constitutes a very useful algorithmic contribution to nonsmooth optimization, it is im-
portant to note that a (δ, ε)-stationary point x (as defined above) does not imply that x is δ-close to an
ε-stationary point of f(·), nor that x necessarily resembles a stationary point. Intuitively, this is because
the convex hull of the gradients might contain a small vector, without any of the gradients being particular
small. This is formally demonstrated in the following proposition:

Proposition 1 For any δ > 0, there exists a differentiable function f(·) on R2 which is 2π-Lipschitz on a
ball of radius 2δ around the origin, and the origin is a (δ, 0)-stationary point, yet minx:‖x‖≤δ ‖∇f(x)‖ ≥ 1.

Proof Fixing some δ > 0, consider the function

f(u, v) := (2δ + u) sin
(π

2δ
v
)

(see Fig. 1 for an illustration). This function is differentiable, and its gradient satisfies

∇f(u, v) =
(

sin
(π

2δ
v
)
,
π

2δ
(2δ + u) cos

(π
2δ
v
))

.

1. Under a standard generalization of gradients to nonsmooth functions – see Subsection 2.1.

2

First, we note that

1

2

(
∇f(0, δ) +

1

2
∇f(0,−δ)

)
=

1

2
((1, 0) + (−1, 0)) = (0, 0),

which implies that (0, 0) is in the convex hull of the gradients at a distance at most δ from the origin, hence
the origin is a (δ, 0)-stationary point. Second, we have that

‖∇f(u, v)‖2 = sin2
(π

2δ
v
)

+
(π

2δ

)2
(2δ + u)2 cos2

(π
2δ
v
)
. (2)

For any (u, v) of norm at most 2δ, we must have |u| ≤ 2δ, and therefore the above is at most

sin2
(π

2δ
v
)

+
(π

2δ

)2
(2δ + 2δ)2 cos2

(π
2δ
v
)
≤ 4π2

(
sin2

(π
2δ
v
)

+ cos2
(π

2δ
v
))

= 4π2 ,

which implies that the function is 2π-Lipschitz on a ball of radius 2δ around the origin. Finally, for any
(u, v) of norm at most δ, we have |u| ≤ δ, so Eq. (2) is at least

sin2
(π

2δ
v
)

+
(π

2δ

)2
(2δ − δ)2 cos2

(π
2δ
v
)
≥ sin2

(π
2δ
v
)

+ cos2
(π

2δ
v
)

= 1 .

Remark 2 Although the function f(·) in the proof has a constant Lipschitz parameter only close to the
origin, it can be easily modified to be globally Lipschitz and bounded, for example by considering the
function

f̃(x) =

{
f(x) ‖x‖ ≤ 2δ

max
{

0, 2− ‖x‖2δ

}
· f
(

2δ
‖x‖x

)
‖x‖ > 2δ

,

which is identical to f(·) in a ball of radius 2δ around the origin, but decays to 0 for larger x, and can be
verified to be globally bounded and Lipschitz independent of δ.

This result suggests that we should drop the conv{·} operator from the definition of (δ, ε)-stationarity
in Eq. (1), or equivalently, try to find near-approximately-stationary points: Namely, getting δ-close to a
point x such that ∂f(x) contains an element with norm at most ε. This is arguably the most natural way to
relax the goal of finding ε-stationary points, while hopefully still getting meaningful algorithmic guarantees.
Unfortunately, we will show in the following section that this already sets the bar too high: For a very large
class of gradient-based algorithms (and in fact, all of them under a mild assumption), it is impossible to
find near-approximately-stationary point with worst-case finite-time guarantees, for small enough constant
δ, ε. Thus, we cannot strengthen the notion of (δ, ε)-stationarity in this manner, and still hope to get similar
algorithmic guarantees. In Sec. 3, we further discuss the result and its implications.

2. Hardness of Finding Near-Approximate-Stationary Points

We begin by formalizing the setting in which we prove our hardness result (Subsection 2.1), followed by the
main result in Subsection 2.2. The proof appears in the appendix.

3

2.1. Preliminaries

Generalized Gradients and Stationary points. First, we formalize the notion of gradients and stationary
points for nonsmooth functions (which may not be everywhere differentiable). Given a Lipschitz function
f(·) and a point x in its domain, we let ∂f(x) denote the set of generalized gradients (following Clarke [7]
and Zhang et al. [28]), which is perhaps the most standard extension of the notion of gradients to nonsmooth
nonconvex functions. For Lipschitz functions (which are almost everywhere differentiable by Rademacher’s
theorem), one simple way to define it is

∂f(x) := conv{u : u = lim
k→∞

∇f(xk),xk → x}

(namely, the convex hull of all limit points of∇f(xk), over all sequences x1,x2, . . . of differentiable points
of f(·) which converge to x). With this definition, a (Clarke) stationary point with respect to f(·) is a point
x satisfying 0 ∈ ∂f(x). Also, given some ε ≥ 0, we say that x is an ε-stationary point with respect to f(·),
if there is some u ∈ ∂f(x) such that ‖u‖ ≤ ε. To make the problem of getting near ε-stationary points
non-trivial, and following Zhang et al. [28], we will focus on functions f(·) that are both globally Lipschitz
and bounded from below. In particular, we will assume that f(0)−infx f(x) is upper bounded by a constant
(this is without loss of generality, as 0 can be replaced by any other fixed reference point).

Oracle Complexity. We will study the algorithmic efficiency of the problem using the standard frame-
work of (first-order) oracle complexity [21]: Given a class of Lipschitz and bounded functions F as above,
we associate with each f ∈ F an oracle, which for any x in the domain of f(·), returns the value and a (gen-
eralized) gradient of f(·) at x. We focus on iterative algorithms which can be described via an interaction
with such an oracle: At every iteration t, the algorithm chooses an iterate xt, and receives from the oracle a
generalized gradient and value of f(·) at xt. The algorithm then uses the values and gradients obtained up to
iteration t to choose the point xt+1 in the next iteration. This framework captures essentially all first-order
algorithms for black-box optimization. In this framework, we fix some iteration budget T , and study the
properties of the iterates x1, . . . ,xT as a function of T and the properties of F .

Algorithmic Families. We will focus on two broad families of algorithms, which together span nearly
all algorithms of interest: The first is the class of all deterministic algorithms (denoted as Adet), which
are all oracle-based algorithms where where x1 is chosen deterministically, and for all t > 1, xt is some
deterministic function of x1 and the previously observed values and gradients. The second is the class
of all linear-span algorithms (denoted as Aspan), which are all deterministic or randomized oracle-based
algorithms that initialize at some x1 (which we will take to be 0 without loss of generality), and

∀t > 1, xt ∈ span(g1, . . . ,gt−1) ,

with gi being the gradient provided by the oracle at iteration i, given query point xi.

2.2. Main Result

Our main result is the following:

Theorem 3 There exist a large enough universal constant C > 0 and a small enough universal constant
c > 0 such that the following holds: For any algorithm in Adet ∪Aspan, any T > 1, and any d ≥ 2T , there
is a function h(·) on Rd such that

• h(·) is C-Lipschitz, and h(0)− infx h(x) ≤ C.

4

• With probability at least 1−T exp(−cd) over the algorithm’s randomness (or deterministically if the
algorithm is deterministic), the iterates x1, . . . ,xT produced by the algorithm satisfy

inf
x∈S

min
t∈{1,...,T}

‖xt − x‖ ≥ c ,

where S is the set of c-stationary points of f(·).

The theorem implies that for a very large family of algorithms, it is impossible to obtain worst-case,
finite-time guarantees for finding near-approximately-stationary points of Lipschitz, bounded-from-below
functions

Before continuing, we note that the result can be extended to any oracle-based algorithm (randomized
or deterministic) under a widely-believed assumption – see remark 8 in the proof for details. We also make
two additional remarks:

Remark 4 (More assumptions on h(·)) The Lipschitz functions h(·) used to prove the theorem are based
on a simple composition of affine functions, the Euclidean norm function x 7→ ‖x‖, and the max function.
Thus, the result also holds for more specific families of functions considered in the literature, which satisfy
additional regularity properties, as long as they contain any Lipschitz function composed as above (for
example, Hadamard semi-differentiable functions in Zhang et al. [28], Whitney-stratifiable functions in
Davis et al. [10], regular functions in Clarke [7], etc.).

Remark 5 (Strengthening of Proposition 1) The proof of Thm. 3 uses a construction that actually strength-
ens Proposition 1: It implies that for any δ, ε smaller than some constants, there is a Lipschitz, bounded-
from-below function on Rd, such that the origin is (δ, 0)-stationary, yet there are no ε-stationary points even
at a constant distance from the origin. See remark 11 in the proof for details.

The formal proof of the theorem appears in the appendix, but can be informally described as follows:
First, we construct a Lipschitz function on Rd, specified by a small vector w, which resembles the norm
function x 7→ ‖x‖ in “most” of Rd, but with a “channel” leading away from a neighborhood of the origin
in the direction of w, and reaching a completely flat region (see Fig. 2). We emphasize that the graphical
illustration is a bit misleading due to the low dimension: In high dimensions, the “channel” and flat region
contain a vanishingly small portion of Rd. This function has the property of having ε-stationary points
only in the flat region far away from the origin, in the direction of w, even though the function appears in
most places like the norm function x 7→ ‖x‖ independent of w. As a result, any oracle-based algorithm,
that doesn’t happen to hit the vanishingly small region where the function differs from x 7→ ‖x‖, receives
no information about w, and thus cannot determine where the ε-stationary points lie. As a result, such an
algorithm cannot return near-approximately-stationary points.

Unfortunately, the construction described so far does not work as-is, since the algorithm can always
query sufficiently close to the origin (closer than roughly ‖w‖), where the gradients do provide information
about w. To prevent this, we compose the function with an algorithm-dependent affine mapping, which
doesn’t significantly change the function’s properties, but ensures that the algorithm can never get too close
to the (mapped) origin. We show that such an affine mapping must exist, based on standard oracle complexity
results, which imply that oracle-based algorithms as above cannot get too close to the minimum of a generic
convex quadratic function with a bounded number of queries. Using this mapping, and the useful property
that w can be chosen arbitrarily small, leads to our theorem. The full details appear in the appendix.

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 2: Mesh and Contour plot of the function x 7→ max{−1, gw(x)} on R2, where w = (0.3, 0) and
gw(·) is defined in Lemma 10 (as part of the proof of Thm. 3). The origin is marked with a red
dot. Best viewed in color.

Remark 6 (Extension to higher-order algorithms) Our proof approach is quite flexible, in the sense that
for any algorithm, we really only need some function which cannot be optimized to arbitrarily high accuracy,
composed with a “channel” construction as above. Since functions of this type also exist for algorithms
employing higher-order derivatives beyond gradients [1], it is unlikely that such higher-order algorithms
will circumvent our impossibility result.

3. Discussion

Thm. 3 implies that at least with black-box oracle access to the function, it is probably impossible to design
algorithms with finite-time guarantees for finding near-approximately-stationary points. This raises the
question of what alternative notions of stationarity can we consider when trying to efficiently optimize
generic nonconvex nonsmooth functions.

One very appealing notion is the (δ, ε)-stationarity of [28] that we discussed in the introduction, which
comes with clean finite-time guarantees. Our negative result in Thm. 3 provides further motivation to con-
sider it, by showing that a natural strengthening of this notion will not work. However, as we showed in
Proposition 1 and remark 5, we need to accept that this stationarity notion can have unexpected behavior,
and there exist cases where it will not resemble a stationary point in any intuitive sense.

Another possible direction is to replace the convex hull in the definition of (δ, ε)-stationarity by some
fixed convex combination of gradients in the δ-neighborhood of our point. For example, we might define
a point x as (̃δ, ε)-stationary with respect to a function f(·), if ‖Eu[∇f(x + δu)]‖ ≤ ε, where u is uni-
formly distributed in the unit origin-centered ball. For Lipschitz functions (which are almost everywhere
differentiable), this operation is well-defined, and is generally equivalent to finding ε-stationary points of the
smoothed function f̃(x) = Eu[f(x + δu)], which can be done efficiently given access to gradients of f(·)

6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Mesh and Contour plot of the function from Eq. (3). Best viewed in color.

(see Duchi et al. [13], Ghadimi and Lan [14]). However, it is important to note that the gradient Lipschitz
parameter of f̃(·) is generally dimension-dependent, and thus we will not get dimension-free guarantees if
we simply plug in existing results for smooth functions. Moreover, this notion of (̃δ, ε)-stationarity still does
not rule out counter-intuitive behaviors similar to Proposition 1, where a point is (̃δ, 0)-stationary without
actually having a near-zero gradient in its δ-neighborhood.

In a related direction, one might consider finding ε-stationary points of other smooth approximations of
the original function, which have a better behavior. For example, for nonconvex functions, a well-known
smoothing operation with dimension-free guarantees is the Lasry-Lions regularization [2, 19], which is
closely related to the Moreau-Yosida regularization for smoothing convex functions. However, this operation
does not appear to be efficiently computable in general.

Finally, it is important to step back and point out that when considering optimization of nonsmooth non-
convex functions, it is generally difficult to relate stationarity properties to any meaningful local optimality
properties, even more so than in the smooth case. For example, consider the simple nonsmooth bivariate
function studied in [8, 26],

f(u, v) =
∣∣∣ |u|+ v

∣∣∣+
1

2
u , (3)

which is illustrated in Fig. 3. It can be shown that the origin is a (Clarke) stationary point. However, it is not
even approximately-stationary with respect to standard smooth approximations of the function, regardless
of how tight we make them. Also, it is clearly not a point we would like our algorithm to converge to, if we
actually try to minimize the function. This suggests looking for notions beyond stationarity, for which we
can still provide algorithmic guarantees even for nonconvex nonsmooth functions.

7

References

[1] Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for smooth
convex optimization. Mathematical Programming, 178(1-2):327–360, 2019.

[2] Hédy Attouch and Dominique Aze. Approximation and regularization of arbitrary functions in hilbert
spaces by the lasry-lions method. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis,
volume 10, pages 289–312. Elsevier, 1993.

[3] Amir Beck and Nadav Hallak. On the convergence to stationary points of deterministic and randomized
feasible descent directions methods. SIAM Journal on Optimization, 30(1):56–79, 2020.

[4] Michel Benaı̈m, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and differential inclu-
sions. SIAM Journal on Control and Optimization, 44(1):328–348, 2005.

[5] Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods beyond
convexity and lipschitz gradient continuity with applications to quadratic inverse problems. SIAM
Journal on Optimization, 28(3):2131–2151, 2018.

[6] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, pages 1–50, 2019.

[7] Frank H Clarke. Optimization and nonsmooth analysis, volume 5. Siam, 1990.

[8] Marc-Olivier Czarnecki and Ludovic Rifford. Approximation and regularization of lipschitz functions:
convergence of the gradients. Transactions of the American Mathematical Society, 358(10):4467–
4520, 2006.

[9] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[10] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method
converges on tame functions. Foundations of computational mathematics, pages 1–36, 2018.

[11] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex func-
tions and smooth maps. Mathematical Programming, 178(1-2):503–558, 2019.

[12] John C Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

[13] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[14] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[15] AA Goldstein. Optimization of lipschitz continuous functions. Mathematical Programming, 13(1):
14–22, 1977.

[16] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1724–1732. JMLR. org, 2017.

8

[17] Krzysztof C Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth nonconvex opti-
mization. SIAM Journal on Optimization, 18(2):379–388, 2007.

[18] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, 171(1-2):167–215, 2018.

[19] Jean-Michel Lasry and Pierre-Louis Lions. A remark on regularization in hilbert spaces. Israel Journal
of Mathematics, 55(3):257–266, 1986.

[20] Szymon Majewski, Błażej Miasojedow, and Eric Moulines. Analysis of nonsmooth stochastic approx-
imation: the differential inclusion approach. arXiv preprint arXiv:1805.01916, 2018.

[21] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method effi-
ciency in optimization. Wiley, 1983.

[22] Yurii Nesterov. How to make the gradients small. Optima. Mathematical Optimization Society Newslet-
ter, (88):10–11, 2012.

[23] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[24] Max Simchowitz. On the randomized complexity of minimizing a convex quadratic function. arXiv
preprint arXiv:1807.09386, 2018.

[25] Tomasz Tkocz. An upper bound for spherical caps. The American Mathematical Monthly, 119(7):
606–607, 2012.

[26] Jack Warga. Fat homeomorphisms and unbounded derivate containers. Journal of Mathematical
Analysis and Applications, 81(2):545–560, 1981.

[27] Blake Woodworth and Nathan Srebro. Lower bound for randomized first order convex optimization.
arXiv preprint arXiv:1709.03594, 2017.

[28] Jingzhao Zhang, Hongzhou Lin, Suvrit Sra, and Ali Jadbabaie. On complexity of finding stationary
points of nonsmooth nonconvex functions. arXiv preprint arXiv:2002.04130, 2020.

Appendix A. Proof of Thm. 3

We begin by stating the following theorem, which follows from well-known results in oracle complexity
(see Nemirovsky and Yudin [21], Nesterov [23]):

Theorem 7 For any T > 1, any algorithm in Adet ∪ Aspan and any dimension d ≥ 2T , there is a
vector x∗ ∈ Rd (where ‖x∗‖ ≤ 1

2) and a positive definite matrix M ∈ Rd×d (with minimal and maximal
eigenvalues satisfying 1

2 ≤ λmin(M) ≤ λmax(M) ≤ 1), such that the iterates x1, . . . ,xT produced by the
algorithm when ran on the strictly convex quadratic function f(x) := (x− x∗)>M(x− x∗) satisfy

min
t∈{1,...,T}

‖xt − x∗‖ ≥ exp(−T) .

9

For completeness, we provide a self-contained proof in Appendix B. Basically, the theorem states that for
any algorithm inAdet∪Aspan, there is a relatively well-conditioned2 but still “hard” strictly convex quadratic
function, whose minimum cannot be detected with accuracy better than exp(−Ω(T)).

Remark 8 (Extension to any gradient-based algorithm) Up to the constants, a lower bound as in Thm. 7
is widely considered to hold (with high-probability) for all oracle-based algorithms, not just for deterministic
or linear-span algorithms (see [21, 24]). In that case, our Thm. 3 can be easily extended to apply to all
oracle-based algorithms which utilize function values and gradients, since the only point in the proof where
we really need to restrict the algorithm class is in Thm. 7. Unfortunately, we are not aware of a result in
the literature which quite states this, explicitly and in the required form. For example, there are algorithm-
independent lower bounds which rely on non-quadratic functions [27], or apply to quadratics, but not in a
regime where λmax(M)/λmin(M) is a constant as in our case [24].

Given the theorem, our first step will be to reduce it to a hardness result for optimizing convex Lipschitz
functions of the form x 7→ ‖M1/2(x− x∗)‖:

Lemma 9 For any algorithm in Adet ∪ Aspan, any T > 1 and any dimension d ≥ 2T , there is a vector
x∗ ∈ Rd (where ‖x∗‖ ≤ 1

2) and a positive definite matrix M ∈ Rd×d (with 1
2 ≤ λmin(M) ≤ λmax(M) ≤

1), such that the convex function
f̃(x) := ‖M1/2(x− x∗)‖

satisfies the following:

• f̃(·) is 1√
2
-Lipschitz, and f̃(0) ≤ 1

2 .

• If we run the algorithm on f̃(·), then mint∈{1,...,T} ‖xt − x∗‖ ≥ exp(−T).

Proof We will start with the second bullet. Fix some algorithm A in Adet ∪ Aspan, and assume by con-
tradiction that for any x∗,M satisfying the conditions in the lemma, the algorithm runs on f̃(·) and pro-
duces iterates such that mint∈{1,...,T} ‖xt − x∗‖ < exp(−T) (either deterministically if the algorithm is
deterministic, or for some realization of its random coin flips, if it is randomized). But then, we argue
that given access to gradients and values of f(x) := f̃2(x) = (x − x∗)>M(x − x∗), we can use A to
specify another algorithm in Adet ∪ Aspan that runs on f(·) and produces points x1, . . . ,xT such that
mint∈{1,...,T} ‖xt − x∗‖ < exp(−T), contradicting Thm. 7. To see why, note that given access to an oracle
returning values and gradients of f(·) at x, we can simulate an oracle returning gradients and values of f̃(·)
at x via the easily-verified formulaes

f̃(x) =
√
f(x) and ∇f̃(x) =

1

2
√
f(x)

∇f(x)

(and for x = x∗ where f̃(·) is not differentiable, we can just return the value 0 and the generalized gradient
0). We then feed the responses of this simulated oracle toA, and get the resulting x1, . . . ,xT . This give us a
new algorithmA′, which is easily verified to be inAdet∪Aspan if the original algorithmA is inAdet∪Aspan.

It remains to prove the second bullet in the lemma. First, we have f̃(0) = ‖M1/2x∗‖ ≤
√
‖M‖‖x∗‖ ≤

1
2 . Second, we note that for any x 6= x∗, f̃(·) is differentiable and satisfies

‖∇f̃(x)‖ =
‖M(x− x∗)‖

2‖M1/2(x− x∗)‖
≤ λmax(M) · ‖x− x∗‖

2
√
λmin(M) · ‖x− x∗‖

=
λmax(M)

2
√
λmin(M)

,

2. In the sense that λmax(M)/λmin(M) ≤ 2.

10

which by the conditions on M , is at most 1

2
√

1/2
= 1√

2
.

Next, we define a function g(·) with two properties: It is identical to x 7→ ‖x‖ in parts of Rd (in fact,
as we will see later, in “almost” all of Rd), yet unlike the function x 7→ ‖x‖, it has no stationary points, or
even ε-stationary points.

Lemma 10 Fix some vector w 6= 0 in Rd, and define the function

gw(x) := ‖x‖ −
[
4w̄>(x + w)− 2‖x + w‖

]
+
,

where ū := u/‖u‖ for any vector u, and [v]+ := max{v, 0}. Then gw(·) is 7-Lipschitz, and has no
ε-stationary points for any ε < 1√

2
.

Proof In the proof, we will drop the w subscript and refer to gw(·) as g(·).
The functions x 7→ ‖x‖, x 7→ 4w̄>(x + w), x 7→ 2‖x + w‖ and x 7→ max{0, x} are respectively 1-

Lipschitz, 4-Lipschitz, 2-Lipschitz and 1-Lipschitz, from which it immediately follows that g(·) is 1+4+2 =
7 Lipschitz. Thus, it only remains to show that g(·) has no ε-stationary points.

It is easily seen that the function g(·) is not differentiable at only 3 possible regions: (1) x = 0, (2)
x = −w, and (3) {x : 4w̄>(x + w) − 2‖x + w‖ = 0} (or equivalently, {x : w̄>(x + w) = 1

2} if we
exclude x = −w), which are all measure-zero sets in Rd. At any other point, g(·) is differentiable and the
gradient satisfies

∇g(x) = x̄− 1w̄>(x+w)> 1
2
· (4w̄ − 2(x + w)) .

Moreover, at those differentiable points, if w̄>(x + w) < 1
2 then

‖∇g(x)‖ = ‖x̄‖ = 1 ,

and if w̄>(x + w) > 1
2 , then by the triangle inequality,

‖∇g(x)‖ = ‖x̄− (4w̄ − 2(x + w)) ‖ = ‖4w̄ − 2(x + w)− x̄‖
≥ 4‖w̄‖ − 2‖x + w‖ − ‖x̄‖ = 4− 2− 1 = 1 .

Thus, no differentiable point of g is even 0.99-stationary. It remains to show that even the non-differentiable
points of g are not ε-stationary for any ε < 1√

2
. To do so, we will use the facts that ∂(g1 + g2) ⊆ ∂g1 + ∂g2,

and that if g1 is univariate, ∂(g1 ◦ g2)(x) ⊆ conv{r1r2 : r1 ∈ ∂g1(g2(x)), r2 ∈ ∂g2(x)} (see Clarke [7]).

• At x = 0, we have

∂g(x) ⊆ conv{u− 2w̄ : ‖u‖ ≤ 1} = {u− 2w̄ : ‖u‖ ≤ 1} .

Any element in this set has a norm of ‖u − 2w̄‖ = ‖2w̄ − u‖ ≥ 2‖w̄‖ − ‖u‖ ≥ 2 − 1 = 1 by the
triangle inequality. Thus, x = 0 is not ε-stationary for any ε < 1.

• At x = −w, we have

∂g(x) ⊆ conv{−w̄ − v · (4w̄ − 2u) : v ∈ [0, 1], ‖u‖ ≤ 1}
= conv{2vu− (1 + 4v)w̄ : v ∈ [0, 1], ‖u‖ ≤ 1} .

11

For any element in the set {2vu− (1 + 4v)w̄ : v ∈ [0, 1], ‖u‖ ≤ 1} (corresponding to some v,u), its
inner product with −w̄ is

−2vw̄>u + (1 + 4v) ≥ −2v + (1 + 4v) ≥ 1 .

Thus, any element in the convex hull of this set, which contains ∂g(x), has an inner product of at least
1 with −w̄. Since −w̄ is a unit vector, it follows that the norm of any element in ∂g(x) is at least 1,
so this point is not ε-stationary for any ε < 1.

• At any x in the set {x : w̄>(x + w) = 1
2} \ {0,−w}, we have

∂g(x) ⊆ conv {x̄− v · (4w̄ − 2(x + w)) : v ∈ [0, 1]}
= {x̄− v · (4w̄ − 2(x + w)) : v ∈ [0, 1]} (4)

=

{(
1

‖x‖
+

2v

‖x + w‖

)
x−

(
4v

‖w‖
− 2v

‖x + w‖

)
w : v ∈ [0, 1]

}
. (5)

Let x = x|+x⊥, where x⊥ = (I−w̄w̄>)x is the component of x orthogonal to w, and x| ∈ span(w).
Thus, any element in ∂g(x) can be written as(

1

‖x‖
+

2v

‖x + w‖

)
x⊥ + a ·w

for some scalar a. Since w is orthogonal to x⊥, the norm of this element is at least(
1

‖x‖
+

2v

‖x + w‖

)
‖x⊥‖ ≥

1

‖x‖
· ‖x⊥‖ .

Noting that

‖x⊥‖2 = x>(I − w̄w̄>)2x = x>(I − w̄w̄>)x = ‖x‖2 − (w̄>x)2 = ‖x‖2(1− (w̄>x̄)2)

and plugging into the above, it follows that the norm is at least
√

(1− (w̄>x̄)2).

Now, let us suppose that there exists an element in ∂g(x) with norm at most ε. By the above, it follows
that √

(1− (w̄>x̄)2) ≤ ε . (6)

However, we will show that for any ε < 1√
2
, we must arrive at a contradiction, which implies that x

cannot be ε-stationary for ε < 1√
2
. To that end, let us consider two cases:

– If w̄>x̄ ≤ 0, then by Eq. (6), we must have w̄>x̄ ≤ −
√

1− ε2. But then, for any u ∈ ∂g(x),
by Eq. (4) and our assumption that w̄>(x + w) = 1

2 ,

w̄>u = w̄>x̄− v ·
(

4− 2 · 1

2

)
≤ −

√
1− ε2 − 3v ≤ −

√
1− ε2.

This implies that ‖u‖ ≥
√

1− ε2 for any u ∈ ∂g(x). Thus, if there was some u ∈ ∂g(x) with
norm at most ε, we get that ε ≥

√
1− ε2, which cannot hold if ε < 1√

2
.

12

– If w̄>x̄ > 0, then by Eq. (6), we have w̄>x̄ ≥
√

1− ε2. Hence,

w̄>(x + w) ≥ ‖x‖
√

1− ε2 + ‖w‖ ≥ (‖x‖+ ‖w‖)
√

1− ε2 ≥ ‖x + w‖
√

1− ε2 .

However, dividing both sides by ‖x + w‖, we get that w̄>(x + w) ≥
√

1− ε2. If ε < 1√
2
, it

follows that w̄>(x + w) > 1√
2
, which contradicts our assumption that x satisfies w̄>(x + w) =

1
2 .

Remark 11 The function
g̃w(x) := max{gw(0)− 1 , gw(x)} ,

where gw(·) is as defined in Lemma 10, actually strengthens Proposition 1 from the introduction: According
to the lemma, gw(·) is 7-Lipschitz and has no ε-stationary points for ε < 1/

√
2. Therefore, it is easily

verified that for any w, g̃w(·) is 7-Lipschitz, bounded from below, and any ε-stationary point is at a distance
of at least 1/7 from the origin3. However, we also claim that the origin is a (δ, 0)-stationary point for any
δ ∈ (0, 1/7). To see this, note first that for such δ, by the Lipschitz property of gw(·), we have g̃w(x) =
gw(x) in a δ-neighborhood of the origin. Fix any w such that ‖w‖ = δ

2 , and let v be any vector of norm δ
orthogonal to w. It is easily verified that w̄>(v + w) < 1

2 , in which case

∇g̃w(v) = ∇gw(v) = v̄ ,

and therefore 1
2 (∇g̃w(v) +∇g̃w(−v)) = 0.

Lemma 12 Fix any algorithm in Adet ∪ Aspan, any T > 1 and any d ≥ 2T . Define the function

hw(x) := max{−1 , gw(M1/2(x− x∗))}

= max

{
−1, ‖M1/2(x− x∗)‖ −

[
4w̄>(M1/2(x− x∗) + w)− 2‖M1/2(x− x∗) + w‖

]
+

}
,

where M,w∗ are as defined in Lemma 9, gw(·) is as defined in Lemma 10, and w is a vector of norm
1

300 exp(−T) in Rd. Then:

• hw(·) is 7-Lipschitz, and satisfies hw(0)− infx hw(x) ≤ 3
2 .

• Any ε-stationary point x of hw(·) for ε < 1
2
√

2
satisfies hw(x) = −1.

• There exists a choice of w, such that if we run the algorithm on hw(·), then with probability at
least 1 − T exp(−d/18) over the algorithm’s randomness (or deterministically if the algorithm is
deterministic), the algorithm’s iterates x1, . . . ,xT satisfy mint∈{1,...,T} hw(xt) > 0.

3. The last point follows from the fact that if y is an ε-stationary point of g̃w(·), then we can find an arbitrarily close point x
such that g̃w(x) 6= gw(x), hence gw(x) < gw(0) − 1, and as a result gw(0) − gw(x) > 1. But gw(·) is 7-Lipschitz, hence
‖x‖ > 1/7, and therefore ‖y‖ ≥ 7.

13

Proof The Lipschitz bound follows from the facts that z 7→ max{−1, z} is 1-Lipschitz, x 7→ M1/2(x −
x∗) is ‖M1/2‖ ≤ 1-Lipschitz, and that gw is 7-Lipschitz by Lemma 10. Moreover, we clearly have
infx hw(x) ≥ −1, and by definition of hw(·) and Lemma 9,

hw(0) ≤ ‖ −M1/2x∗‖ = f̃(0) ≤ 1

2
.

Combining the two observations establishes the first bullet in the lemma.
As to the second bullet, let g̃(x) := gw(M1/2(x− x∗)) (so that hw(x) = max{−1, g̃(x)}). It is easily

verified that u ∈ ∂gw(x) if and only if M1/2u ∈ ∂g̃(x + x∗). By Lemma 10, gw has no ε-stationary point
for ε < 1√

2
, which implies that g̃(x) has no ε-stationary points for any ε less than λmin(M1/2) 1√

2
≥ 1

2
√

2
.

But since hw(x) = max{−1, g̃(x)}, it follows that any ε-stationary points of hw(·) must be arbitrarily
close to the region where hw(·) is different than g̃(·), namely where it takes a value of −1. Since hw(·) is
Lipschitz, it follows that its value is −1 at the ε-stationary point as well.

We now turn to establish the third bullet in the lemma. A crucial observation here is that

hw(x) = gw(M1/2(x− x∗)) = f̃(x) ∀x : w̄>
(
M1/2(x− x∗) + w

)
≤ 1

2
, (7)

where f̃(x) = ‖M1/2(x− x∗)‖ is the “hard function” defined in Lemma 94. To see why, note first that by
definition of gw(·) in Lemma 10, for any x which satisfies the condition in the displayed equation above,
we have gw(M1/2(x − x∗)) = ‖M1/2(x − x∗)‖ = f̃(x). On the other hand, since this is a non-negative
function, it follows that it also equals max{−1, gw(M1/2(x− x∗))} = hw(x) for such x, establishing the
displayed equation above.

Next, we will show that Eq. (7) also holds over a set of x’s which have a more convenient form. To
do so, fix some x which satisfies the opposite condition w̄>

(
M1/2(x− x∗) + w

)
> 1

2 . Then multiplying

both sides by ‖M1/2(x− x∗) + w‖, we get

w̄>M1/2(x− x∗) + w̄>w >
1

2
‖M1/2(x− x∗) + w‖ ≥ 1

2

(
‖M1/2(x− x∗)‖ − ‖w‖

)
.

Since 1
2 ≤ λmin(M) ≤ λmax(M) ≤ 1 by Lemma 9, it follows that

w̄>M1/2(x− x∗) + ‖w‖ > 1

2

(
1√
2
‖x− x∗‖ − ‖w‖

)
.

For x = x∗, the condition above is trivially satisfied. For x 6= x∗, dividing both sides by ‖M1/2(x − x∗)‖
(which is between ‖x− x∗‖ and 1

2‖x− x∗‖) and simplifying a bit, we get that

w̄>
(
M1/2(x− x∗)

)
>

1

2
√

2
− 3‖w‖

2 · 1
2‖x− x∗‖

=
1

2
√

2
− exp(−T)

100‖x− x∗)‖
.

Noting that any x which does not satisfy the condition in Eq. (7) satisfy the condition above, we get that
Eq. (7) implies

hw(x) = f̃(x) = ‖M1/2(x− x∗)‖ ∀x 6= x∗ s.t. w̄>
(
M1/2(x− x∗)

)
≤ 1

2
√

2
− exp(−T)

100‖x− x∗‖
. (8)

4. Also, the equation can be verified to hold in the corner case where M1/2(x− x∗) +w = 0, in which the condition in Eq. (7)
is undefined.

14

With this equation in hand, let us first establish the third bullet of the lemma, assuming the algorithm we
consider is deterministic. In order to do so, let xf̃1 , . . . ,x

f̃
T be the (fixed) iterates produced by the algorithm

when ran on f̃(·), and choose w in hw(·) to be any vector orthogonal to {M1/2(xf̃t − x∗)}Tt=1 (which is

possible since the dimension d is larger than T). By Lemma 9, we know that for all t, ‖xf̃t −x∗‖ ≥ exp(−T),
in which case we have

w̄>
(
M1/2(xf̃t − x∗)

)
= 0 <

1

2
√

2
− exp(−T)

100 exp(−T)
≤ 1

2
√

2
− exp(−T)

100‖xf̃t − x∗‖
.

Thus, xf̃t satisfies the condition in Eq. (8), and as a result, hw(xf̃t) = f̃(xf̃t) for all t. Moreover, using

the fact that xf̃t is bounded away from x∗, it is easily verified that the condition in Eq. (8) also holds for

x in a small local neighborhood of xf̃t , so actually hw(·) is identical to f̃(·) on these local neigborhoods,

implying the same values and gradients at xf̃t . As a result, if we run the algorithm on hw(·) rather than

f(·), then the iterates x1, . . . ,xT produced are identical to xf̃1 , . . . ,x
f̃
T . Since ‖xf̃t − x∗‖ > 0, we have

hw(xt) = f̃(xf̃t) = ‖M1/2(xf̃t − x∗)‖ > 0 for all t as required.
We now turn to establish the third bullet of the lemma, assuming the algorithm is randomized. As

before, we let xf̃1 , . . . ,x
f̃
T denote the iterates produced by the algorithm when ran on f̃(·) (only that now

they are possibly random, based on the algorithm’s random coin flips). The proof idea is roughly the same,
but here the iterates may be randomized, so we cannot choose w in some fixed manner. Instead, we will
pick w independently and uniformly at random among vectors of norm 1

300 exp(−T), and show that for
any realization of the algorithm’s random coin flips, with probability at least 1 − T exp(−d/18) over w,
mint hw(xt) > 0. This implies that there exists some fixed choice of w, for which mint hw(xt) > 0
with the same high probability over the algorithm’s randomness, as required5. To proceed, we collect two
observations:

1. By Lemma 9, we know that for any realization of the algorithm’s random coin flips, mint∈{1,...,T} ‖xt−
x∗‖ ≥ exp(−T) > 0.

2. If we fix some unit vectors u1, . . . ,uT in Rd, and pick a unit vector u uniformly at random, then
by a union bound and a standard large deviation bound (e.g., [25]), Pr(maxt u

>ut ≥ a) ≤ T ·

Pr(u>u1 ≥ a) ≤ T exp(−da2/2). Taking w = u, ut = M1/2(xf̃t − x∗) for all t (for some

realization of xf̃t), and a = 1/3, it follows that for any realization of the algorithm’s random coin

flips, maxtw
>(M1/2xf̃t − x∗) ≥ 1/3 with probability at most T exp(−d/18) over the choice of w.

Combining the two observations, we get that for any realization of the algorithm’s coin flips, with probability
at least 1− T exp(−d/18) over the choice of w, it holds for all xf̃1 , . . . ,x

f̃
T that

w̄>
(
M1/2(xf̃t − x∗)

)
<

1

3
<

1

2
√

2
− exp(−T)

100 exp(−T)
≤ 1

2
√

2
− exp(−T)

100‖x− x∗‖
,

5. To see why, assume on the contrary that for any fixed choice of w, the bad event mint hw(xt) ≤ 0 occurs with probability
larger than T exp(−d/18) over the algorithm’s randomness. In that case, any randomization over the choice of w will still
yield mint hw(xt) ≤ 0 with probability larger than T exp(−d/18) over the joint randomness of w and the algorithm. In
particular, this bad event will hold with probability larger than T exp(−d/18) for some realization of the algorithm’s coin flips.

15

as well as ‖xf̃t − x∗‖ > 0. Using the same argument as in the deterministic case, it follows from Eq. (8)

that hw(·) and f̃(·) coincide in small neighborhoods around xf̃1 , . . . ,x
f̃
T , with probability at least 1 −

T exp(−d/18). Since the algorithm’s iterates depend only on the local values/gradients returned by the ora-
cle, it follows that for any realization of the algorithm’s coin flips, with probability at least 1−T exp(−d/18)

over the choice of w, the iterates x1, . . . ,xT and xf̃1 , . . . ,x
f̃
T are going to be identical, and satisfy

min
t
hw(xt) = min

t
hw(xf̃t) = min

t
f̃(xf̃t) > 0 .

This holds for any realization of the algorithm’s random coin flips, which as discussed earlier, implies the
required result.

The theorem is now an immediate corollary of the lemma above: With the specified high probability (or
deterministically), mint hw(xt) > 0, even though all ε-stationary points (for any ε < 1

2
√

2
) have a value

of −1. Since hw is also 7-Lipschitz, we get that the distance of any xt from an ε-stationary point must be
at least 0−(−1)

7 = 1
7 . Simplifying the numerical terms by choosing a large enough constant C and a small

enough constant c, the theorem follows.

Appendix B. Proof of Thm. 7

In the proof, we let bold-faced letters (e.g., x) denote vectors, and xi denote the i-th coordinate of the vector
x. Also, we let e1, e2, . . . denote the standard basis vectors.

Our proof will closely follow the analysis employed in Lan and Zhou [18, Theorem 3] for a slightly
different setting.

Fix an iteration budget T and some dimension d ≥ T . Let A be the symmetric d× d tridiagonal matrix
defined as

∀1 ≤ i < T A(i, i) = 2 , A(i, i+ 1) = −1

∀1 < i ≤ T A(i, i− 1) = −1

A(T, T) = k :=

√
2 + 3√
2 + 1

A(i, j) = 0 for all other (i, j) .

Also, for some constant b to be determined later, define the quadratic function

g(x) := x>Mx− 1

4
e>1 x + b where M =

1

8
(A+ 4I) .

It is easily verified that this function can be equivalently written as

g(x) =
1

8

(
x2

1 +

T−1∑
i=1

(xi − xi+1)2 + (k − 1)x2
T − 2x1

)
+

1

2
‖x‖2 + b . (9)

We first collect a few useful facts about g(·), stated in the following two lemmas:

Lemma 13 M satisfies 1
2 ≤ λmin(M) ≤ λmax(M) ≤ 1. As a result, M is positive definite, and g(·) is

strictly convex and has a unique minimum.

16

Proof A is symmetric, and for any x ∈ RT , we have

x>Ax = x2
1 +

T−1∑
i=1

(xi − xi+1)2 + (k − 1)x2
T .

This is non-negative, which establishes that A is a positive semidefinite matrix. Hence, by definition of M ,
λmin(M) = 1

8(λmin(A) + 4) ≥ 1
8 · 4 = 1

2 , which implies that M is positive definite. As a result, g(·) is
strictly convex and has a unique minimum. Also, by the displayed equation above,

x>Ax ≤ x2
1 + 2

T−1∑
i=1

(x2
i + x2

i+1) + (k − 1)x2
T ≤ 3x2

1 +
T−1∑
i=2

(2x2
i + 2x2

i+1) + (k − 1)x2
T

= 3x2
1 + 4

T−1∑
i=2

x2
i + (k + 1)x2

T ≤ 4‖x‖2 ,

where we use the fact that k ≤ 3. This establishes that λmax(A) ≤ 4, and therefore λmax(M) =
1
8(λmax(A) + 4) ≤ 1.

Lemma 14 The minimum x∗ of g(·) is of the form x∗ = (q, q2, . . . , qT , 0, . . . , 0), where q =
√

2−1√
2+1

.

Moreover, ‖x∗‖ ≤
√√

2−1
2 < 1

2 .

Proof By the previous lemma and the fact that g(·) is differentiable, x∗ is the unique point satisfying
∇g(x∗) = 0. Thus, it is enough to verify that the formula for x∗ stated in the lemma indeed satisfies this
equation. Computing the gradient of g(·) using the formulation in Eq. (9)), we just need to verify that

6q − q2 − 1 = 0 , ∀i ∈ {2, . . . , T − 1} qi−1 − 6qi + qi+1 = 0 , (k + 4)qT − qT−1 = 0 ,

or equivalently,
1− 6q + q2 = 0 , (k + 4)q − 1 = 0 ,

which is easily verified to hold for the value of q stated in the lemma. Finally, we have

‖x∗‖2 =
d∑
i=1

(x∗i)
2 =

T∑
i=1

qi <
∞∑
i=1

qi =
q

1− q
=

√
2− 1

2
,

implying ‖x∗‖ ≤
√√

2−1
2 as required.

Finally, we assume that the constant term b in Eq. (9) is fixed so that g(x∗) = 0, which means that g(·)
can be written in the form

g(x) = (x− x∗)>M(x− x∗) . (10)

With this construction in hand, we now turn to prove the theorem. We will start with the family of
linear-span algorithms Aspan, using any dimension d ≥ T , and take g(·) as the “hard” function on which
we will prove a lower bound (note that by the lemmas above and Eq. (10), it satisfies the conditions stated
in the theorem).

17

Consider any algorithm in Aspan, and note that by the structure of g(·) as specified in Eq. (9), when
the algorithm picks its first query x1 = 0, it receives a gradient in span{e1}. Because of the linear-span
assumption, it means that x2 ∈ span(e1), which again by Eq. (9) means that the returned gradient is in
span{e1, e2}. Continuing this process, it is easily seen by induction that

xt ∈ span {e1, . . . , et−1}

for all t, and in particular, {x1, . . . ,xT } ⊂ span (e1, . . . , eT−1). As a result,

min
t∈{1,...,T}

‖xt − x∗‖2 ≥ inf
x∈span{e1,...,eT−1}

‖xt − x∗‖2 ≥ (x∗T)2,

which by Lemma 14 is at least q2T =
(√

2−1√
2+1

)2T
. Taking a square root, we get that

min
t∈{1,...,T}

‖xt − x∗‖ ≥

(√
2− 1√
2 + 1

)T
≥ exp(−T) ,

as stated in the theorem.
We now turn to prove the theorem for deterministic algorithms. This time, we will let the dimension be

any d ≥ 2T . Fixing an algorithm, and letting u1, . . . ,uT be orthonormal vectors to be specified shortly, we
prove the lower bound for the function

g̃(x) :=
1

8

(
(u>1 x)2 +

T−1∑
i=1

(u>i x− u>i+1x)2 + (k − 1)(u>T x)2 − 2u>1 x

)
+

1

2
‖x‖2 + b . (11)

Importantly, we note that
g̃(x) = g(Ux)

where g(·) is the function defined previously in Eq. (9), and U is an orthogonal matrix whose first T rows
are u1, . . . ,uT , and the rest of the rows are some arbitrary completion of the first T rows to an orthonormal
basis. Thus, g̃(·) is equivalent to g(·) up to a rotation of the coordinate system specified by U . In particular,
using Eq. (10), it follows that

g̃(x) = (Ux− x∗)>M(Ux−w∗) = (x− U>x∗)>(U>MU)(x− U>x∗)
= (x− x̃∗)>M̃(x− x̃∗) ,

where M̃ = U>MU and x̃∗ = U>x∗. Thus, we see that g̃(·) has the form required in the theorem, with a
matrix M̃ whose spectrum is identical to M , and a minimizer x̃∗ = U>x∗ whose norm is the same as ‖x∗‖
(and therefore satisfying the conditions in the theorem).

We now specify how to choose u1, . . . ,uT in the function definition, so as to get the lower bound on
mint ‖xt − x̃∗‖: Since the algorithm is deterministic, its first query point x1 is known in advance. We
therefore choose u1 to be some unit vector orthogonal to x1. Assuming that u2,u3, . . . are orthogonal
to {u1,x1} (which we shall justify shortly), we have by Eq. (11) that g̃(x1) and ∇g̃(x1) depend only on
x1,u1, and not on u2,u3, As the algorithm is deterministic and depends only on the observed values
and gradients, this means that even before choosing u2,u3, . . ., we can already simulate its next iteration,
and determine the next query point x2. We now pick u2 to be some unit vector orthogonal to u1 as well
as to x1,x2. Again by the same considerations, if we assume u3,u4, . . . are orthogonal to {ui,xi}2i=1, we

18

have that g̃(x2) and ∇g̃(x2) depend only on {ui,xi}2i=1, and independent of u3,u4, So again, we can
simulate it and determine the next query point x3. We continue this process up to iteration T , where we
fix uT orthogonal to {ui,xi}T−1

i=1 and to xT (this process is possible as long as the dimension d is at least
2(T − 1) + 1 + 1 = 2T , as we indeed assume).

As a result of this process, we get that u>T xt = 0 for all t ∈ {1, . . . , T}. Also, since x̃∗ = U>x∗, we
also have u>T x̃

∗ = u>TU
>x̃∗ = x∗T . Using Lemma 14, we get that for all t ∈ {1, . . . , T},

‖xt − x̃∗‖2 ≥ (u>T (xt − x̃∗))2 = (0− x∗T)2 =

(√
2− 1√
2 + 1

)2T

,

which implies that

min
t∈{1,...,T}

‖xt − x∗‖ ≥

(√
2− 1√
2 + 1

)T
≥ exp(−T)

as required.

19

	Introduction
	Hardness of Finding Near-Approximate-Stationary Points
	Preliminaries
	Main Result

	Discussion
	Proof of Thm. 3
	Proof of Thm. 7

