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Abstract
We consider incremental algorithms for solving weakly convex optimization problems, a wide class
of (possibly nonsmooth) nonconvex optimization problems. We will analyze incremental (sub)-
gradient, proximal point, and prox-linear methods. We show that the convergence rate of the three
incremental algorithms is O(k−1/4) under weakly convex setting. This extends the convergence
theory of incremental methods form convex optimization to nonsmooth nonconvex regime. When
the weakly convex function satisfies an additional regularity condition called sharpness property,
we show that all the three incremental algorithms with a geometrical diminishing stepsize rule and
an appropriate initialization converge even linearly to the optimal solution set. We conduct exper-
iments on robust matrix sensing and robust phase retrieval to illustrate the superior convergence
performance of incremental methods.

1. Introduction

We consider incremental methods for addressing the finite-sum optimization problem

minimize
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x), (1)

where each component function fi is weakly convex. Recall that a function σ is said to be weakly
convex if σ(·) + τ

2‖ · ‖
2 is convex for some constant τ ≥ 0 [19]. We assume the global minimum

set X of (1) is nonempty and denote f? as its minimal function value. It is worthy to mention that f
in (1) can be nonsmooth and nonconvex under the weakly convex setting, covering rich applications
in practice. As an illustration, let us present two motivating applications, in which nonsmooth
formulations have clear advantages over smooth ones.

Robust Matrix Sensing [13] One fundamental computational task in machine learning and sig-
nal processing is to recover a Positive Semi-Definite (PSD) low-rank matrix X? ∈ Rn×n with
rank(X?) = r ≤ n from a small number of corrupted linear measurements

y = A(X?) + s?, (2)
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where A is a linear measurement operator consisting of a set of sensing matrices A1, · · · ,Am and
s? is a sparse outliers vector. An effective approach to recover the low-rank matrix X? is by using a
factored representation of the matrix variable [3] (i.e., X = UUT with U ∈ Rn×r) and employing
an `1-loss function to robustify the solution against outliers:

minimize
U∈Rn×r

1

m
‖y −A(UUT)‖1 =

1

m

m∑
i=1

|yi − 〈Ai,UUT〉|. (3)

Direct calculation shows that each component function in (3) is weakly convex.

Robust Phase Retrieval [8, 9] Robust phase retrieval aims to recover a signal x? ∈ Rn from its
corrupted magnitude-wise measurements

b = |Ax?|2 + s?, (4)

the operator |.|2 in (4) means taking modulus and then squaring coordinate-wise. Here, the matrix
A ∈ Rm×n is the measurement matrix and s? ∈ Rm is the sparse outliers vector. The work [8]
formulates the following problem for recovering both the sign and magnitude information of x?:

minimize
x∈Rn

1

m

∥∥|Ax|2 − b
∥∥
1
=

1

m

m∑
i=1

∣∣|〈ai,x〉|2 − bi∣∣ . (5)

It is straightforward to verify that each component function in (5) is weakly convex.

1.1. The Algorithms

Incremental methods play an important role in large-scale optimization problems such as the train-
ing of deep neural networks. In this paper, we study a family of incremental methods, including
incremental (sub)-gradient, proximal point, and prox-linear methods. In each time, incremental
methods update the iterate with only one component function fi selected according to a cyclic
order—i.e., select component function sequentially from f1 to fm and repeating such process cycli-
cally. To be more specific, in k + 1-th iteration, incremental algorithms start with xk,0 = xk, and
then update xk,i using fi using certain method for all i = 1, · · · ,m, giving xk+1 = xk,m. The
following three incremental algorithms differ from each other in the update of xk,i.
Incremental (sub)-gradient method:

xk,i = xk,i−1 − µk∇̃fi(xk,i−1), (6)

where ∇̃fi is any (sub)-gradient belongs to the Fréchet subdifferential ∂fi (see (11)).
Incremental proximal point method:

xk,i = argmin
x∈Rn

fi(x) +
1

2µk
‖x− xk,i−1‖22. (7)

Incremental prox-linear method: We now consider a special class of weakly convex functions
that are of the composite form (cf. (3) and (5))

f(x) = h(c(x)) =
1

m

m∑
i=1

fi(x) =
1

m

m∑
i=1

hi(ci(x)), (8)
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where each hi : Rd → R is a (possibly nonsmooth) Lipschitz convex mapping and ci : Rn → Rd is
a smooth function with Lipschitz continuous Jacobian. We denote by

fi(x;xk,i−1) = hi
(
ci(xk,i−1) +∇ci(xk,i−1)T (x− xk,i−1)

)
. (9)

The incremental prox-linear method update as

xk,i = argmin
x∈Rn

fi(x;xk,i−1) +
1

2µk
‖x− xk,i−1‖22. (10)

1.2. Prior Arts

Though incremental methods are broadly used, its theoretical insights are far from being well un-
derstood. The main prior achievements for analyzing incremental methods are based on convexity
assumption. The starting work may date back to [20] for solving least square problems. Then vari-
ous works [2, 10, 11, 14, 18] extended incremental gradient descent to training shallow linear neural
networks and solving other smooth convex problems. When the component function fi is convex
but nonsmooth, incremental (sub)-gradient method was proposed in [12] for solving finite-sum non-
smooth convex optimization problems. Later, Nedic and Bertsekas [15, 16] provided convergence
results for incremental (sub)-gradient method using different stepsize rules.

On the other hand, stochastic methods for weakly convex optimization are recently studied in
[5, 6]. We remark that incremental methods are fundamentally different from the stochastic ones,
as the former are essentially deterministic algorithms.

To the best of our knowledge, there is no convergence result for incremental methods when the
function f in (1) is nonsmooth and nonconvex. Thus, it is fundamentally important to ask:

Are the incremental methods studied in this paper guaranteed to converge if f in (1) is
nonsmooth and nonconvex? If yes, what is the convergence rate?

In this paper, we answer this question positively under the assumption that each component
function fi in (1) is weakly convex. Our work builds upon the original proofs in [15, 16] which
analyzed the convergence of incremental (sub)-gradient method when used to solve nonsmooth
convex problems. We also adapt the surrogate stationarity measure from [5] for analyzing weakly
convex minimization.

2. Main Convergence Results

2.1. Preliminaries

Subdifferential Since f can be nonsmooth, we utilize tools from generalized differentiation. The
(Fréchet) subdifferential of a function σ at x is defined as (see, e.g., [17])

∂σ(x) :=

{
∇̃σ(x) ∈ Rn : lim inf

y→x

σ(y)− σ(x)− 〈∇̃σ(x),y − x〉
‖y − x‖

≥ 0

}
, (11)

where each ∇̃σ(x) ∈ ∂σ(x) is called a subgradient of σ at x.
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Sharpness Property The sharpness property characterizes how fast the function increases when
x is away from the set of global minima. We say that a mapping σ : Rn → R is α-sharp where
α > 0 if (see, e.g., [4])

σ(x)− σ? ≥ α dist(x,X ) (12)

for all x ∈ Rn. Here X denotes the set of global minimizers of σ, σ? represents the minimal value
of σ, and dist(x,X ) is the distance of x to X , i.e., dist(x,X ) = infx′∈X ‖x− x′‖2.

Moreau Envelope We will utilize the concept of Moreau envelope for defining stationarity mea-
sure. For any λ > 0, the Moreau envelope of σ : Rn → R is defined as (see [17, Definition
1.22])

σλ(x) := min
y∈Rn

σ(y) +
1

2λ
‖y − x‖2. (13)

The corresponding proximal mapping is defined as

proxλ,σ(x) := argmin
y∈Rn

σ(y) +
1

2λ
‖y − x‖2. (14)

2.2. Global Convergence

In this section, we study the iteration complexities of the incremental methods under weakly convex
setting.

Assumptions and Stationarity Measure In addition to weak convexity, the following is assumed
throughout this section, which is standard for analyzing incremental methods; see, e.g., [1, 15, 16].

Assumption 1 (bounded subgradients) For any i ∈ {1, · · · ,m}, there exists a constant L > 0,
such that ‖∇̃fi(x)‖ ≤ L, for all ∇̃fi(x) ∈ ∂fi(x) and x ∈ dom f .

Due to the nonsmoothness of the objective function, we borrow ideas from the recent works
[5, 7] on weakly convex minimization, which propose to use the gradient of the Moreau envelope
of the weakly convex function at hand as a surrogate stationarity measure. Formally, we have [5]

1

λ
‖x− x‖ = ‖∇σλ(x)‖ ,

dist (0, ∂σ(x)) ≤ ‖∇σλ(x)‖ ,
(15)

where σλ and x = proxλ,σ(x) are defined in (13) and (14), respectively. Clearly, we see from
(15) that x is a stationary point of problem (1) when ‖∇σλ(x)‖ = 0. Thus, we call x an ε-nearly
stationary point of problem (1) if ‖∇σλ(x)‖ ≤ ε. The main result of this section is presented in the
following theorem.

Theorem 1 Suppose that Assumption 1 is valid. Let the constant τ̂ > 2τ and the sequence {xk}
be generated by any of the three incremental methods for solving (1) with arbitrary initialization.
Suppose further the stepsize µk = µ = 1

mτ
√
N+1

is constant for all k ≥ 0, where integer N is the
total iteration number. Then we have

min
0≤k≤N

∥∥∇f1/τ̂ (xk)∥∥2 ≤ C1(
τ̂
2 − τ

)√
N + 1

+
C2(

τ̂
2 − τ

)
(N + 1)

= O
(

1√
N + 1

)
,

(16)
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where C1 and C2 are positive numerical constants.

In terms of iteration complexity, Theorem 1 implies that the incremental methods requires at most
O(ε−4) number of iterations to obtain an ε-nearly stationary point.

2.3. Local Linear Convergence

In this section, we show that by exploiting the sharpness property of f , the incremental methods can
even converge locally linearly for weakly convex minimization. In addition to weak convexity and
Assumption 1, we make the following additional assumption in this section.

Assumption 2 (sharpness) The function f in (1) is α-sharp; see Section 2.1 for definition.

We now state the main result of this section in the following theorem, which indicates the local
linear convergence rate of the incremental methods with a suitably designed geometrically decaying
stepsize and an appropriate initialization.

Theorem 2 Suppose that Assumption 1 and 2 are valid. Let the sequence of iterates {xk} be
generated by any of the three incremental methods with initialization x0 satisfying dist(x0,X ) ≤
α
2τ . If the stepsize µk in all the three incremental methods is updated as µk = ρkµ0, with 0 < µ0 ≤
α2

5mτL2 , and 0 <
√
1− 2mτµ0 +

5m2τ2L2

α2 µ20 ≤ ρ < 1. Then, we have

dist(xk,X ) ≤ ρk ·
α

2τ
, ∀ k ≥ 0.

3. Simulations

In this section, we conduct a series of experiments on robust matrix sensing (2)-(3). We generate
U? ∈ Rn×r andm sensing matrices A1, . . . ,Am ∈ Rn×n (which forms the linear operatorA) with
i.i.d. standard Gaussian entries. The ground truth low-rank matrix is generated by X? = U?U?T.
We generate the outliers vector s? ∈ Rm by first randomly selecting pm locations, where p is the
preset outliers ratio. Then, each of the selected location is filled with an i.i.d. mean 0 and variance 10
Gaussian entry, while the value on the remaining locations are set to 0. According to (2), the linear
measurement y ∈ Rm is generated by yi = 〈Ai,X

?〉+ s?i , i = 1, . . . ,m. We set the parameters as
n = 50, r = 5, m = 5nr, p = 0.3. In this case, it is shown in [13] that the global optimal solution
set of (3) is exactly U = {U?R : R ∈ Rr×r,RRT = I}. We compare our incremental (sub)-
gradient method (ISGM) and incremental prox-linear method (IPL) with (sub)-gradient method
(SGM), stochastic (sub)-gradient method (SGD), and stochastic prox-linear method (SPL). We tune
the best stepsize decay factor β for each algorithm. The results are shown in Figure 1. One can
observe that the incremental methods outperform other algorithms in terms of convergence speed.
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Figure 1: Performance on robust matrix sensing.
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