OPT2020: 12th Annual Workshop on Optimization for Machine Learning

An approximate gradient based hyper-parameter optimization in a
neural network architecture

Lakshman Mahto LM.OPTLEARNING @ GMAIL.COM
Arun Chauhan ARUNTAKHUR @ GMAIL.COM

Indian Institute of Information Technology Dharwad

Abstract

As we know, most of the learning algorithms arising from scientific applications involve hyper-
parameters which control model structure in order to minimize testing error (i.e. to achieve mini-
mum loss or maximum accuracy of the objective network). The objective and constraint are avail-
able only as the output of a black-box or simulation oracle that does not provide derivative infor-
mation. In this paper, to find the best architecture of a neural network architecture to classify cat
and dog images, we purpose an approximate gradient based method for optimal hyper-parameters
setting which is efficacious than both grid search and random search. Unlike grid search which is
exhaustive, the proposed method only searches in its nearest neighbourhood thus reduces compu-
tational time. Comparing with random search which does not guarantee convergence, the proposed
method converges. Several hyper-parameter settings using CNN architecture with reference to
LeNet-5 and a MNIST datasets are performed for cat and dog classification. And the numerical
results demonstrated that random search takes 5 hour to give 82% accuracy, but our method takes
2 hour to give the same accuracy.

1. Introduction

Based on nested hierarchical representation of concepts and depth of the architecture, deep learning
performs representation learning and machine learning in together. With this ability, deep Learning
has enabled remarkable progress over the last years on a variety of tasks, such as computer vi-
sion, image recognition, speech recognition, social network filtering, natural language processing,
and machine translation [5]. Most deep learning algorithms come with several hyper-parameters to
control the model complexity, which makes tuning of hyper-parameters an intractable task. How-
ever, coming up with an ideal model with good overall performance involves choosing of various
hyper-parameters e.g. architectures of the deep neural networks, activation functions and learning
rates, momentum, number of iterations etc. At smaller search space, DNN hyper-parameters can be
adjusted using manual search, grid search, or random search [2, 3, 7, 8], as search space expands
exponentially relative to the number of hyper-parameters more sophisticated hyper-parameter opti-
mization methods are required. For DNNs model, searching of an optimal set of hyper-parameter
known as hyper-parameter optimization and the process is a black-box optimization (BBO) prob-
lem. Because hyper-parameters can not be estimated to minimize the same cost function as the
model parameters, since this would favour models with excessive complexity. For example, if reg-
ularization parameters were chosen to minimize the same loss as model parameters, then models
with no regularization would always yield the smallest loss. For this reason, hyper-parameter opti-

© L.Mahto & A. Chauhan

HYPER-PARAMETER SEARCH

mization algorithms seek to optimize a criterion of model quality which is different from the cost
function used to fit model parameters. This criterion can be a goodness of fit on unseen data, such
as a cross-validation loss, or some criteria of model quality on the train set.

In this paper we append and apply an approximate gradient based search on hyper-parameter
space and try to reduce the overall computational expense and the time consumed for searching
optimal hyper-parameter settings. Our contributions can be summarized as follows:

Purposing a novel algorithm to find a approximate local minima of non-smooth and non-continuous
error function on hyper-parameter space.

2. Hyper-parameter optimization and related work

Hyper-parameter optimization is a black box optimization problems where the error f is a black box
function (i.e. we do not have an analytical expression for f nor do we know its derivatives). The
function f maps a hyper-parameter choice x of D configurable hyper-parameters to the validation
error of a machine learning algorithm with learned parameters . Optimizing f as follows gives a
way to automatically search for optimal hyper-parameters [4].

min f(x,0, Zyq) s.t. 0 = argmin f(x, 0; Ziain), (1)
r€RP 0

where Ziqin and Z,, denote the training and validation datasets, respectively, 6 is learned by
minimizing the training error, and x is in a bounded set. Solving the problem (1) is challenging
because of the high complexity of the function. The deep neural network is highly non-linear
and not smooth because of its non-linear operators (drop-out and rectified linear unit operation).
Therefore, the optimization of the classic method using the derivative of the function is impossible
to apply. The derivative-free optimization, called black box optimization, could be a solution that
does not utilize derivative information in the classical sense to find optimal solutions.

The most widely known methods in this issue are grid search and random search. When the grid
search for the machine learning model is utilized for the optimization, it is possible to find the best
hyper-parameter by setting the appropriate range and interval; however, a massive amount of time is
required to learn the model. In particular, as the number of hyper-parameters increases, the number
of grid points to be tried increases exponentially, making it almost impossible to find optimized
hyper-parameter. Therefore, when the number of hyper-parameters is large, the grid search method
has huge computational complexity. Therefore, a random search could be a solution as it gives an
improved result of hyper-parameter optimization [3]. Random search is one of the simplest ways to
optimize DNN hyper-parameters. This method iteratively generates hyper-parameter settings and
evaluates the objective function. Random search has excellent parallelism and can handle integer
and categorical hyper-parameters naturally. Bergstra and Bengio demonstrated that random search
outperforms a manual search by a human expert and grid search [2, 6].

3. Purposed method

3.1. An approximate gradient based method

Here, in this work, we purpose an approximate gradient based method to find a optimal hyper-
parameters setting of a standard neural network architecture. Approximated gradient can be esti-
mated on predefined set of values taken from the grid on hyper-parameter space using either finite

HYPER-PARAMETER SEARCH

differences or linear interpolation or Gaussian smoothing and smoothing. The purposed method
starts by setting a non-uniform grid, where each dimension is a different hyper-parameter and each
coordinate of a grid is hyper-parameter value. After setting the grid, we randomly initialize a point
in the grid and calculate the initial accuracy (say InitialAcc) of chosen neural network architecture
on the randomly selected initial point. Next, we find neighbouring values of the initialised point and
calculate the accuracy of the neural network architecture on these neighbouring points. Now, we
select a neighbouring point with maximum accuracy (say MaxAcc) based on approximate gradient
and compare with InitialAcc. If MaxAcc is less than InitialAcc, then hyper-parameter correspond-
ing to InitialAcc is the optimal hyper-parameter value else Max acc is greater than InitialAcc then
hyper-parameter corresponding to MaxAcc would be starting value for the next step. By repeating
this, we assume that the algorithm converges and gets stuck in the vicinity of optimal value.

Algorithm 1: Algorithm for approximate gradient based HPO of a neural network architecture.
Input : Grid point from hyper-parameter space
Output: Optimal hyper-parameters setting

Initialization: Choose x(and step size 1y

for (i =1tom)do
Poll step based on approximated gradient descent
update

end

4. Experiment set up
4.1. Convergence to an optimal hyper-parameter setting of a NN architecture

Here, we performed an empirical experiment of our purposed method on a neural network archi-
tecture in which the cost function is the validation error with a five dimensional non uniform grid.
Each dimension of the non uniform grid represents a one hyper-parameter. We set up a five layer
neural network architecture where first layer consist of 12888 inputs, second layer is a hidden layer
with 20 hidden units and Relu activation function, third layer is with 7 hidden units and Relu acti-
vation function, fourth layer is with 5 hidden units and sigmoid as activation function and the final
layer is a single output unit. Among the hyper-parameter, two are two continuous (learning rate and
drop-out rate) and four are integer (no. of hidden units in Ist hidden layer, no. of hidden layers
in 2nd hidden layer, choice of activation functions and number of iterations). Again we initialize
randomly a point in the non-uniform grid and calculate validation error at the initial point. Now we
calculate validation error at all the 10 neighbouring points of the initial point. The neighbouring
point with minimum validation error is compared with the validation error at the initial point. If
the minimum validation error of the neighbouring point is relatively less the validation error at the
initial point, it replace the initial point for next next step similar to first first experiment. We keep on
repeating above steps till the convergence of algorithm. After performing several such experiment
several times, we get several minimum values of validation error. The point corresponding to the
overall minimum validation error is our optimal hyper-parameter point. From this experiment, we
conclude that the algorithm is convergence for non uniform grids as well.

HYPER-PARAMETER SEARCH

4.2. Dataset used

Cat vs Non-cat dataset which is used by Andrew Ng for teaching Deep Learning course on coursera
[9]. There are 209 training images in which X are cat images and Y are non-cat images. For testing
there are 50 test images in which X are cat images and Y are non-cat images. The dimension of each
images in both training and testing dataset are 64 x 64 x 3 which results in flat vector of dimension
12,228 x 1.

4.3. Machine configuration

Processor : Intel(R) Core i7 — 6700HQ CPU @2.60GH z, RAM : 4.00G B, System Type : 64-bit
operating system.

4.4. Hyper-parameters of the framework

A variety of hyper-parameters must be chosen to tune a DNN for a given application.These hyper-
parameters affect different aspects of the network: the architecture, the optimization process and
the handling of the data. The following section lists the hyper-parameters considered in this study
along with their respective types and scopes.

4.5. The network architecture

A convolutional neural network (CNN) is a deep neural network consisting of a succession of con-
volution layers followed by fully connected layers. Table (4.5) summarizes the hyper-parameters
responsible for defining the structure of the neural network along with performance comparison of
various methods for hyper-parameter optimization.

Hyperparameter Range Type Method Time | Acc
ri rch (4 1 4
No of iterations (ITR) [1002000] | integer | |—ndsearch@ | 10 | 8

- - Rand. search(4) 5 82

Learning rate (LR) [0.0034,0.0078] | contin.
— - - Our method (4) 2 82

units in 1st hidden layer,h [1.30] integer .

— - - Grid search (5) 12 82

units in 1st hidden layer,ho [1,10] integer
units in 1st hidden layer,h [1,6] integer Rand. search(5) > 80
yerl3 : £ Our method (5) 2 80

Table 1: Various hyper-parameter for the neural network structure and performance comparison of
various methods for hyper-parameter optimization

5. Result

Firstly, we performed hyper-parameters tuning on our neural network architecture by grid search.
with cat vs non-cat dataset where training images were 209 and validation images were 50. The
chosen hyper-parameters were learning rate, number of Iteration, number of units in the first hidden
layer, number of units in the second hidden layer and number of units in the third hidden layer.
Five different value of each hyper-parameter were taken in each dimension. As every dimension

HYPER-PARAMETER SEARCH

had 5 different values and there are 5 dimensions, a total of 3125 different combinations of hyper-
parameters were there. The search iterated over 3125 times. And the grid search took approximately
12 hours with the best validation accuracy 84%.

Secondly, we performed hyper-parameter tuning on the same architecture based on random
search RandomSearchCV of scikit-learn [1] on the same cat vs non-cat dataset as above with best
validation accuracy of 82% in approximately 5 hours.

Again we perform hyper-parameter tuning on same architecture and on the same dataset as
above using our purposed method, with best validation accuracy of 82% in approximately 2 hours.
Hyper-parameter optimization results on 4- dimension and 5-dimension are summarized below in
the following tables:

GP No | ITR | LR h1 | hy | Acc GP No | ITR | LR hi | ho | hg | Acc
1 100 | 0.0078 | 15| 3 | 34 1 300 | 0.0077 | 15| 7 | 6 | 78
2 100 | 0.0077 | 15| 9 | 34 2 500 | 0.0077 | 15| 7 | 6 | 76
3 300 | 0.0045 |25 9 | 60 3 100 | 0.0077 | 15| 7 | 6 | 62
4 300 | 0.0077 |20 | 7 | 78 4 300 | 0.0034 | 15| 7 | 6 | 66
5 400 | 0.0077 | 25| 3 | 44 5 300 | 0.0077 | 25| 7 | 6 | 36
6 300 | 0.0077 |30 | 5 | 34 6 300 | 0.0077 | 15| 9 | 6 | 58
7 700 | 0.0077 | 20| 9 | 80 7 300 | 0.0077 |30 | 7 | 6 | 42
8 300 | 0.0034 |20 | 9 | 34 8 300 | 0.0077 | 15| 5 | 6 | 82
9 400 | 0.0077 | 10 | 5 | 34 9 300 | 0.0077 | 15| 7 | 5 | 42
10 400 | 0.0077 | 15| 3 | 34 10 500 | 0.0077 | 15| 5 | 6 | 76
11 400 | 0.0045 | 20| 5 | 66 11 100 | 0.0077 | 15| 5 | 6 | 74
12 400 | 0.0077 | 15| 3 | 34 12 300 | 00034 | 15| 5 | 6 | 68
13 300 | 0.0077 | 15 | 10 | 46 13 300 | 0.0077 | 25| 5 | 6 | 72
14 700 | 0.0077 | 30| 5 | 56 14 300 | 0.0077 |30 | 5 | 6 | 40
15 700 | 0.0034 | 20| 7 | 78 15 300 | 0.0077 | 15| 3 | 6 | 36
16 400 | 0.0077 | 10 | 10 | 84 16 300 | 0.0077 | 15| 5 | 5| 70

Table 2: Results of Grid search with four hyper-parameters and approximate gradient method with
five hyper-parameters respectively for hyper-parameter optimization of a neural network
architecture.

6. Conclusion

From the above results we conclude that grid search gave best result of 84% test accuracy in 12
hours, which is too long. Random searches gave 82% test accuracy which is slightly less than
optimal value but it only took 5 hours and our method gave approximately 82% test accuracy in
only 2 hours which is very less time. So we conclude that our method gives best results in very less
time on optimal hyper-parameter value.

HYPER-PARAMETER SEARCH

GPNo | ITR | LR hi | ho | hg | Acc

GPNo | ITR | LR hi | ho | hg | Acc 1 400 | 0.0045 |15 3 | 5 | 34
1 700 | 0.0078 |20 | 3 | 4 | 52 2 700 | 0.0078 | 20 | 10 | 5 | 80
2 500 | 00045 |30 9 | 4 | 78 3 500 | 0.0078 | 25| 3 | 2 | 34
3 100 | 0.0045 | 15| 3 | 2 | 38 4 700 | 0.0078 | 15| 3 | 6 | 76
4 700 | 0.0075 |25 3 | 4 | 70 5 100 | 0.0075 |20 | 10| 5 | 34
5 100 | 0.0045 |20 | 7 | 2 | 68 6 700 | 0.0077 |20 | 5 | 5 | 50
6 700 | 0.0078 |20 | 5 | 4 | 80 7 500 | 0.0034 | 25| 3 | 4 | 34
7 400 | 00045 |15 3 | 5 | 34 8 700 | 0.0045 | 20| 7 | 3 | 64
8 400 | 00045 | 15| 9 | 2 | 40 9 300 | 0.0034 | 10 | 10 | 1 34
10 400 | 00034 | 25| 5 | 2 | 42

Table 3: Results of random search with 1000 and 2000 iterations respectively for hyper-parameter

optimization of a neural network with five hyper-parameters.

References

[1]

(2]

[3]

Bergstra, James, et al. "Theano: a CPU and GPU math expression compiler.” Proceedings of
the Python for scientific computing conference (SciPy). Vol. 4. No. 3. 2010.

Bergstra, James S., et al. ”Algorithms for hyper-parameter optimization.” Advances in neural
information processing systems. 2011.

Bergstra, James, and Yoshua Bengio. ”Random search for hyper-parameter optimization.”
Journal of Machine Learning Research 13.Feb (2012): 281-305.

Ilievski, Ilija, et al. ”Efficient hyperparameter optimization for deep learning algorithms using
deterministic rbf surrogates.” Thirty-First AAAI Conference on Artificial Intelligence. 2017.

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” Proceedings
of the IEEE 86.11 (1998): 2278-2324.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. vol. 1,
no. 2. Cambridge: MIT press, 2016.

Swersky, Kevin, Jasper Snoek, and Ryan Prescott Adams. “Freeze-thaw Bayesian optimiza-
tion.” arXiv preprint arXiv:1406.3896 (2014).

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. ”Practical bayesian optimization of ma-
chine learning algorithms.” Advances in neural information processing systems. 2012

Andrew Ng course on deep learning in coursera, https://www.coursera.org/specializations/deep-
learning.

	Introduction
	Hyper-parameter optimization and related work
	Purposed method
	An approximate gradient based method

	Experiment set up
	Convergence to an optimal hyper-parameter setting of a NN architecture
	Dataset used
	Machine configuration
	Hyper-parameters of the framework
	The network architecture

	Result
	Conclusion

