
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Adaptive Gradient Tracking In Stochastic Optimization

Zhanhong Jiang STARKJIANG@GMAIL.COM
Johnson Controls International

Xian Yeow Lee XYLEE@IASTATE.EDU
Iowa State University

Sin Yong Tan TSYONG98@IASTATE.EDU
Iowa State University

Aditya Balu BADITYA@IASTATE.EDU
Iowa State University

Young M Lee YOUNG.M.LEE@JCI.COM
Johnson Controls International

Chinmay Hegde CHINMAY.H@NYU.EDU
New York University

Soumik Sarkar SOUMIKS@IASTATE.EDU

Iowa State University

Abstract
Adaptive gradient descent algorithms such as Adam have played a critical role in driving deep
learning success and emerged as the current state-of-the-art stochastic optimizer. However, adaptive
learning rate usage causes such optimizers to underperform than SGD in terms of generalization, due
to large variance, when the dataset is large and complex. In this work, we perceive the problem from
another perspective of penalizing the gradient fluctuation using the gradient tracking technique that
has been quite popular in decentralized optimization. We develop an algorithm, termed AdaTrack,
using the adaptive gradient tracking to control the degree of penalty throughout the optimization
process. We present the theoretical analysis to show the sublinear regret bound. Via empirical
experiments, we have found that AdaTrack compares favorably with RAdam by reducing the
variance in terms of gradient penalty with fewer intermediate parameters and outperforms AdaBound
and Adam convincingly by improving the training performance significantly.

1. Introduction
Machine learning (in particular deep learning) success is primarily attributed to stochastic

optimizers, such as stochastic gradient descent (SGD), which has been used tremendously in various
science and engineering problems. To accelerate stochastic optimization, adaptive learning rate
recently attracted considerable attention such that adaptive gradient descent algorithms, in particular,
Adagrad [2], RMSProp [19], Adadelta [22], and Adam [7], stand out to be superior alternatives to
SGD in numerous applications, due to their faster convergence. However, it was observed that the
generalization of these adaptive gradient-descent approaches on unseen data could be poor when

© Z. Jiang, X. Yeow Lee, S. Yong Tan, A. Balu, Y. M Lee, C. Hegde & S. Sarkar.

ADATRACK

the model and data are both complex [5, 11, 13]. Recent work [10] has revealed that the poor
generalization was due to the unbounded variance of adaptive learning rates in the early stages,
causing convergence to poor local optima. As remedies, different empirical techniques have been
applied, including warmup [16] and varying the stability parameter (ε) [9] in the update rule, which
unfortunately lacks theoretical underpinnings.

In Liu et al. [10], the authors mathematically analyzed the origin of the variance and developed
a rectification term to reduce the negative impact on the performance. However, based on Adam’s
algorithmic framework, two more intermediate parameters are required in the update law, which
increases the memory storage during the optimization, particularly for high-dimension problems.
Another recent work [12] proposed to employ dynamic bounds on learning rates such that a gradual
and smooth transition from adaptive methods to SGD was achieved to improve the generalization
performance. Intuitively, such bounds act like trust regions for the adaptive learning rate. Though
theoretical proof of convergence was provided, studying the best lower and upper bounds of learning
rates for different application scenarios was missing.

In this work, to effectively reduce the gradient’s variance, we consider the problem from the
perspective of gradient tracking [17, 20, 21], which keeps track of the difference between two
consecutive steps of (stochastic) gradients. This technique has been quite popular in decentralized
optimization, either deterministic or stochastic. We propose AdaTrack, an adaptive gradient descent
algorithm that leverages the exponential moving average (EMA) of gradient tracking, which plays a
role in penalizing the significant variations of gradients during the optimization process, enhancing
the generalization capability. To facilitate the theoretical understanding of the adaptive gradient
tracking in AdaTrack, we provide a detailed analysis of the proposed algorithm. Additionally, we note
that gradient tracking is also close to recently developed algorithms, SARAH [14] and SPIDER [3],
and provides a discussion on the difference among SARAH, SPIDER, and gradient tracking. We give
another variant of RAdam incorporating adaptive gradient tracking (termed RAT) and empirically
compare AdaTrack and RAT to RAdam, AdaBound, Adam, and SGD with benchmark four image
classification datasets. The image classification tasks show that RAT performs the best in training
and that both AdaTrack and RAT have better convergence speed than AdaBound. Regarding the
generalization for the testing dataset, AdaTrack compares favorably with RAdam and RAT with
fewer intermediate parameters in the update rule.

2. Preliminaries
In this section, we formulate the stochastic optimization problem and provide a brief recap of

the adaptive gradient descent algorithm and gradient tracking technique. Consider an expected risk
minimization problem for generic deep learning models as follows:

x∗ = argminx∈RdE[f(x)] (1)
where f : Rd → R is the corresponding continuously differentiable loss. At each iteration t ∈
[T] = {0, 1, ..., T}, we denote by f0, f1, ..., fT each realization of the loss function. To solve Eq. 1,
adaptive gradient descent algorithms have been adopted popularly in diverse applications. Their
update rules can be summarized in a unified way at any time step t.

gt = ∇ft(xt, ζt), mt+1 = ht(g1, ..., gt, t)

vt+1 = ct(g1, ..., gt, t), xt+1 = xt − αtmt+1vt+1,
(2)

where ζt signifies the random seed at time step t, ht(·) is for calculating the first-order moment, ct(·)
is for attaining the second-order moment, and αt represents the learning rate. For example, Adam

2

ADATRACK

enables the second and third equations to become

mt+1 =
(1− β1)

∑t
k=1 β

t−k
1 gk

1− βt1
, vt+1 =

√
1− βt2

ε+
√

(1− β2)
∑t

k=1 β
t−k
2 g2k

, (3)

where β1, β2 are positive coefficients strictly less than 1, ε is a small constant for maintaining the
numerical stability and typically set 10−8. We next review the gradient tracking that is expressed as

yt+1 = yt +∇ft(xt, ζt)−∇ft−1(xt−1, ζt−1), (4)

where y in this context is an intermediate parameter to accumulate the difference between the current
and last steps of stochastic gradients. In decentralized optimization [17], Eq. 4 has a slightly different
variant where yt is multiplied by a (doubly) stochastic matrix to form the average of local gradients.
In a centralized setting, though without a matrix, Eq. 4 can still be interpreted by a simple moving
average, which always updates the successive values using only the last two steps of information.
Please refer to Supplementary for a brief preliminary overview of related works.

3. Proposed Algorithm
We present the proposed algorithm, AdaTrack, using the following relationship instead of the

vanilla gradient tracking in Eq. 4:

yt+1 = βyt + (1− β)(∇ft(xt, ζt)−∇ft−1(xt−1, ζt−1)), (5)

which can be interpreted as the EMA of gradient tracking, where β ∈ [0, 1). Stochastic recursive
gradient schemes such as gradient tracking and SARAH cannot induce an unbiased estimate of
∇ft(xt), but being able to reduce variance. In Nguyen et al. [14], the intermediate parameter yt+1

was periodically reset using the full gradient to reduce the bias. In our work, the reset step is dropped
for the gradient tracking to avoid full gradient calculation. Instead, we apply the EMA to reduce
the bias, with some sacrifice on variance reduction. This also makes a difference from the update
law in Carnevale et al. [1] and detailed analysis is provided in Section 4. Algorithm 1 presents the
algorithmic framework of AdaTrack, followed by an overview.
Algorithm 1 Adaptive Gradient Tracking Descent

1: Input: αt, β1, β2, β3, ε, x0,∇f−1(x−1, ζ−1) . Input params
2: m0, v0, y0, t = 0 . Initializations

while t ≤ T do
3: mt+1 = β1mt + (1− β1)∇ft(xt, ζt) . Approximate first moment
4: vt+1 = β2vt + (1− β2)∇f2t (xt, ζt) . Approximate second moment
5: yt+1 = β3yt + (1− β3)(∇ft(xt, ζt)−∇ft−1(xt−1, ζt−1)) . EMA of gradient tracking
6: m̂t+1 =

mt+1

1−βt
1

. Bias-correction for first moment

7: v̂t+1 =
vt+1

1−βt
2

. Bias-correction for second moment

8: ŷt+1 =
yt+1

1−βt
3

. Bias-correction for adaptive gradient tracking

9: xt+1 = xt − αt m̂t+1√
v̂t+1+ε

− αtŷt+1 . Update using adaptive gradient tracking descent

10: t = t+ 1
11: return xT

In Algorithm 1, Lines 3 to 5 approximate the first or second moment of gradient or gradient
tracking by computing the associated EMAs. Similar to Adam, Lines 6 to 8 correct the bias. In Line

3

ADATRACK

9, the adaptive learning rate is still applied to the gradient, but not the EMA of gradient tracking.
As we have known from [12], the adaptive learning rate can cause large variance at the early stage.
Hence, for the term ŷt+1, it is only multiplied by the negative learning rate instead of the adaptive
learning rate, which may weaken the effort of variance reduction. A different perspective that can
be imposed in this context for Line 9 is that the search for the optimal solution is via the negative
direction of m̂t+1√

v̂t+1+ε
and the variance reduction is conducted by penalizing the significant gradient

variations along the gradient trajectory, signified by the intermediate parameter ŷt+1. Therefore,
such an update explicitly shows the combined efforts between the optimality and generalization
capability for a model f . A more formal analysis of the algorithm is presented in Section 4. It is
noted that the EMA of gradient tracking can be incorporated into any adaptive gradient descent
algorithm, such as RAdam or AdaBound. Additionally, compared to Adam, AdaTrack has one
additional hyperparameter β3 to be determined. For simplicity, we set β3 = β1, and empirically
found that AdaTrack performs robustly with different values of β3 as long as it is strictly less than
1. For the following analysis, we still keep β in Eq. 5 instead of β3, which is for the algorithmic
implementation. In this context, we also extend the gradient tracking technique to RAdam to develop
a counterpart, termed RAT (included in Supplementary Materials). While RAT is more complex than
both RAdam and AdaTrack due to the additional intermediate parameters, we empirically investigate
if gradient tracking further improves RAdam on top of variance rectification.

4. Theoretical Analysis
4.1. Gradient Tracking

As shown in Eq. 4, the vanilla gradient tracking can be rewritten as

yt+1 =
t∑

k=0

∇fk(xk, ζk)−∇fk−1(xk−1, ζk−1), (6)

which is the cumulative gradient variations of any two consecutive steps along with the gradient
trajectory {∇f−1(x−1, ζ−1),∇f0(x0, ζ0), ...,∇ft(xt, ζt)}. By recalling the core update law in
Algorithm 1, the following relationship can be obtained by directly substituting yt+1

xt+1 = xt − αt
m̂t+1√
v̂t+1 + ε

− αtyt+1. (7)

Suppose that after a sufficiently large number of iterations, T0 ∈ N, xt converges to an ε1-ball
centered at a local minimum x∗, where ε1 > 0 can be an arbitrary constant, such that

yt+1 ≈
T0∑
k=0

∇fk(xk, ζk)−∇fk−1(xk−1, ζk−1), (8)

∀t ≥ T0, which implies that∇ft(xt, ζt) ≈ ∇ft−1(xt−1, ζt−1). Hence substituting Eq. 8 into Eq. 7
suggests that the gradient tracking term in the update law becomes a constant that is independent
of xt, ∀t > T0. Thus, instead of being the penalty on the significant gradient variations to reduce
variance, such a term may have a negative impact on updating xt afterwards. Since for any iteration
ahead of T0, yt acts like an constraint to prevent xt from deviating significantly from the trajectory
of {x−1, x0, ..., xT0}, which may not necessarily be approaching the minimum x∗. Hence, after T0,
the impact of the historical gradients prior to ∇fT0(xT0 , ζT0) on xt should be alleviated accordingly.

4

ADATRACK

We instead use Eq. 5 in the update law such that after T0, the following approximate equality can be
obtained

yt+1 ≈ (1− β)
T0∑
k=0

βT0−k(∇fk(xk, ζk)−∇fk−1(xk−1, ζk−1)), (9)

∀t ≥ T0, such that,

xt+1 ≈ xt − αt
m̂t+1√
v̂t+1 + ε

− αβt−T0 ŷt+1, (10)

where it can be observed that the third term on the right-hand side decays exponentially; hence, the
EMA of gradient tracking is more resilient than the vanilla gradient tracking in terms of controlling
the variance reduction during the optimization. Intuitively, either SARAH or SPIDER may have the
same underlying problem the vanilla gradient tracking has, though we are unaware of any algorithms
that combine either with adaptive gradient descent. Existing results on SARAH or SPIDER are
alternatives to achieve variance reduction in stochastic optimization and focus mostly on simple
datasets and models. While SARAH or SPIDER can be extended with the exponential moving
average, the following Table 1 motivates us to select the gradient tracking instead.
Table 1: Comparisons between different stochastic recursive gradient schemes based on usage of
different variables

(
∇ft(xt, ζt) &∇ft−1(xt−1, ζt−1) &∇ft(xt−1, ζt) & xt−1

)
used in the scheme.

Method ∇ft(xt, ζt) ∇ft−1(xt−1, ζt−1) ∇ft(xt−1, ζt) xt−1 Computation

SARAH 3 7 3 3 O(2dT)
SPIDER 3 7 3 3 O(2dT)

ROOT-SGD [8] 3 7 3 3 O(2dT)
Gradient Tracking 3 3 7 7 O(dT)

4.2. Sublinear Regret
To investigate the convergence of AdaTrack, we present the regret bound instead of the static error

bound. The regret analysis is based on the online learning framework given an arbitrary unknown
sequence of convex loss functions, {f0(x), f1(x), ..., fT (x)}. The regret analysis aims at predicting
the parameter xt at each iteration t and evaluate it on the previously unknown cost function ft. Hence,
the static regret is defined as the sum of all the previous difference between the online prediction
ft(xt) and the best-fixed point parameter ft(x∗) from a feasible set X ⊂ Rd. Specifically, the regret
is expressed as:

RST :=

T∑
t=0

[ft(xt)− ft(x∗)], (11)

where x∗ = argminx∈X
∑T

t=0 ft(x). Thus, we have the following informal result for AdaTrack.

Proposition 1 Assume that ft is Lipschitz continuous and that X is compact. Let β1, β2, β3 ∈ [0, 1)

satisfy β2
1√
β2

< 1 and β1,t = β1λ
t−1, λ ∈ (0, 1). Thus, for all T ≥ 0, when the learning rate

αt = O(1√
t+1

), AdaTrack has the sublinear regret, i.e.,RST = O(
√
T).

5

ADATRACK

5. Numerical Experiments
We evaluate AdaTrack on several benchmarks: Fashion-MNIST, SVHN, CIFAR 10 and CIFAR

100. Please also refer to Supplementary for details on the model training details.

Comparing to Adam & SGD. The performance on image classification is presented in Table 2
and Fig. 1. The results show that AdaTrack outperforms SGD and Adam in all four datasets, though
for the Fashion MNIST dataset, AdaTrack’s performance is close to Adam and SGD. However, Fig. 1
demonstrates that in training performance, the convergence speed for AdaTrack is significantly faster
than either SGD or Adam. In other words, by reducing the stochastic gradient variance, AdaTrack
obtains both faster convergence and better performance. It also empirically shows from Table 2
that for different model architectures (ranging from simple to complex), AdaTrack keeps consistent
outperforming capabilities over the two most popular baseline methods, SGD and Adam. Additional
results are shown in the supplementary materials to show the training accuracies as well.

Comparing to RAdam & AdaBound. Two other recently developed advanced optimizers,
AdaBound and RAdam, are also used to compare with AdaTrack and one extensive variant equipped
with the gradient tracking, RAT, on top of RAdam. Based on Fig. 1, the results suggest that in
terms of convergence speed, the gradient tracking enables AdaTrack to perform significantly better
than AdaBound and to be favorably compared to or slightly better than RAdam. Although in
Fashion MNIST, AdaTrack performs slightly slower than RAdam. For RAT, it has almost the same
performance as RAdam. In Table 2, when datasets are simpler, such as Fashion MNIST and SVHN,
RAdam, AdaTrack, and RAT stand to be the best alternatives in the generalization performance.
However, for CIFAR datasets, AdaBound becomes the best optimizer, mainly attributed to the use of
a dynamic learning rate with the lower and upper bounds. However, these bounds can be difficult to
determine for different tasks. When the training weights approach the optimal solution, reducing
the learning rate can stabilize the convergence. Averagely speaking, RAdam has slightly better
generalization capability than AdaTrack, but the former has a more complex algorithmic framework
involving one more intermediate parameter in the update law than the latter. Overall, AdaTrack
effectively reduces the variance to achieve faster convergence and to match the best performance
of the state-of-the-art. Hence, this can provide helpful insights to the community that stochastic
recursive gradients are another way to reduce variance in adaptive gradient descent algorithms.

Figure 1: Comparison of training loss trends for six optimizers across four image datasets.

6. Conclusions
This work presented a new stochastic optimizer by leveraging the adaptive gradient tracking

developed to reduce the gradient variance. We showed the difference among different stochastic
recursive gradient schemes and presented the analytical results for the proposed algorithm, AdaTrack,
which enabled a decent sublinear regret bound for convex loss functions. Empirical results demon-

6

ADATRACK

Table 2: Testing accuracies of different optimizers for image datasets. A multi-layer CNN network
architecture was used for Fashion MNIST, VGG19 was used for SVHN and ResNet34 was used for
both CIFAR datasets.

Fashion MNIST SVHN CIFAR 10 CIFAR 100

Test Acc.(%) Test Acc.(%) Test Acc.(%) Test Acc.(%)

SGD 93.4 ± 0.17 95.8 ± 0.12 92.9 ± 0.30 71.9 ± 0.63
Adam 93.5 ± 0.09 95.6 ± 0.13 92.9 ± 0.17 71.5 ± 0.22
Adabound 93.2 ± 0.10 95.8 ± 0.10 94.9 ± 0.17 76.6 ± 0.23
RAdam 93.6 ± 0.15 96.0 ± 0.09 94.6 ± 0.24 74.4 ± 0.13
AdaTrack 93.5 ± 0.12 96.0 ± 0.11 94.3 ± 0.12 72.5 ± 0.84
RAT 93.6 ± 0.21 96.0 ± 0.04 94.4 ± 0.10 74.1 ± 0.30

strated that AdaTrack outperformed SGD and Adam and that it is competitive compared with the
state-of-the-art optimizers by introducing a different way to reduce variance.

7. Acknowledgements
This paper is based upon research partially supported by the National Science Foundation under

grant No. CAREER-1845969. Any claims, methodology and conclusions discussed in this research
work correspond to those of the authors and do not necessarily reflect the opinions of the funding
agency.

References
[1] Guido Carnevale, Francesco Farina, Ivano Notarnicola, and Giuseppe Notarstefano. Dis-

tributed online optimization via gradient tracking with adaptive momentum. arXiv preprint
arXiv:2009.01745, 2020.

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[3] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances in Neural
Information Processing Systems, pages 689–699, 2018.

[4] Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games.
arXiv preprint arXiv:1708.00075, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] Chris Junchi Li, Wenlong Mou, Martin J Wainwright, and Michael I Jordan. Root-sgd:
Sharp nonasymptotics and asymptotic efficiency in a single algorithm. arXiv preprint
arXiv:2008.12690, 2020.

7

ADATRACK

[9] Liyuan Liu, Xiang Ren, Jingbo Shang, Jian Peng, and Jiawei Han. Efficient contextualized rep-
resentation: Language model pruning for sequence labeling. arXiv preprint arXiv:1804.07827,
2018.

[10] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[11] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[12] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

[13] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182, 2017.

[14] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for ma-
chine learning problems using stochastic recursive gradient. arXiv preprint arXiv:1703.00102,
2017.

[15] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch, 2017.

[16] Martin Popel and Ondřej Bojar. Training tips for the transformer model. The Prague Bulletin
of Mathematical Linguistics, 110(1):43–70, 2018.

[17] Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical
Programming, pages 1–49, 2020.

[18] Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Algorithmic Learning Theory, pages 845–861, 2020.

[19] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[20] Ran Xin and Usman A Khan. Distributed heavy-ball: A generalization and acceleration of
first-order methods with gradient tracking. IEEE Transactions on Automatic Control, 2019.

[21] Ran Xin, Anit Kumar Sahu, Usman A Khan, and Soummya Kar. Distributed stochastic
optimization with gradient tracking over strongly-connected networks. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pages 8353–8358. IEEE, 2019.

[22] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

8

ADATRACK

Supplementary Materials
Related works

SARAH & SPIDER. To reduce the gradient variance, the authors in [14] and [3] respectively
developed the recursive stochastic gradient update that has slight difference compared with gradient
tracking:

yt+1 = yt +∇ft(xt, ζt)−∇ft(xt−1, ζt), (12)

where at the time step t, the difference is obtained by calculating the gradients of f at xt and xt−1
using the same sampled data. They also periodically reset yt+1 using the full gradient ∇ft(xt) to
reduce the bias as yt+1 is not the unbiased estimate of ∇ft(xt), different from another approach,
SVRG [6]. Either Eq. 4 or Eq. 12 is interpreted as the stochastic recursive gradient scheme to
estimate the full gradient by using the stochastic gradient ∇ft(xt, ζt) and the gradient correction
term yt−∇ft(xt−1, ζt) (or yt−∇ft−1(xt−1, ζt−1)), which has been theoretically shown to improve
the convergence rate compared to vanilla SGD form [14]. In this work we perceive the problem in a
different perspective, namely, the penalty on gradient variations based on Eq. 4, which motivated us
to present a novel algorithm in Section 3, followed by the detailed analysis of why gradient tracking
is selected for reducing variance instead of SARAH or SPIDER.

ROOT-SGD. Li et al. [8] recently proposed a novel algorithm that is still based on stochastic
recursive gradients, termed ROOT-SGD (Recursive One-Over-T SGD) for reducing the variance.
They considered the first-order stochastic optimization problem in a general statistical point of
view using the recursive averaging of past stochastic gradients. The core update of ROOT-SGD is
expressed as

yt+1 = ∇ft(xt, ζt) +
t

t+ 1
(yt −∇ft(xt−1, ζt)), (13)

which can be connected with SARAH with the following rewritten formula:

yt+1 =
1

t+ 1
∇ft(xt, ζt) +

t

t+ 1
(yt +∇ft(xt, ζt)−∇ft(xt−1, ζt)). (14)

We can clearly observe that the above equation can be viewed as the convex combination between the
current stochastic gradient and the SARAH, with a time-varying ratio. When t is sufficiently large,
the SARAH part becomes dominating. ROOT-SGD is a generalized SARAH and we mainly discuss
the property of SARAH in this paper, but the conclusions can also be adaptive to ROOT-SGD.

Concurrent Work. One concurrent work [1] leverages the gradient tracking and adaptive
momentum, resulting in a new approach called GTAdam. While the idea sounds similar to ours, the
specific implementation is quite different. The authors approximated the first and second moment
using directly the gradient tracking term instead of the stochastic gradient and defined a saturation
for the second moment. However, determining the saturation constant can be challenging, depending
on different problems. Additionally, GTAdam was developed for the distributed online optimization
with strongly convex losses, which is quite different from our problem formulation. Though we did
not theoretically investigate the difference between the GTAdam and AdaTrack, in our empirical
work we tested the performance of GTAdam-like approaches for the stochastic optimization, without
a saturation constant. The results showed us that GTAdam-like approaches performed poorly with
complex datasets and models (e.g., CIFAR 100 and ResNet), which haven’t been adopted in [1].
Thus, for a fair comparison, GTAdam will not be included in the final baseline methods.

9

ADATRACK

A Generalization Gap. A generalization gap in this context is referred to as the difference
between training and testing accuracies. Such a gap can be underlyingly attributed to the tradeoff
between model bias and variance. Due to the usage of deep models that typically have millions or
even billions of parameters, high variance in the training is one of most challenging topics in modern
machine learning, which yields the overfitting that weakens the model generalization to unseen data.
Instead of using the bias-variance tradeoff, we leverage the tradeoff between convergence speed and
generalization capability in terms of optimizers. It has been well acknowledged that SGD has the
averagely best generalization capability, while under some constraint of computational budget such
as time, it may not be the best optimizer. Alternatively, most adaptive gradient descent algorithms
using adaptive learning rates can enjoy the faster convergence rate, but unfortunately the ultimate
generalization error is larger than that of SGD. The proposed AdaTrack may not thoroughly solve
this problem, but leading us to explore another way for reducing variance, while maintaining the fast
training convergence speed in adaptive gradient descent type of algorithms.

Comparison among different optimizers
A detailed comparison between different optimization algorithms is shown in Table 3.

Table 3: Comparisons between different optimization algorithms
Method V.R. I.P. Regret Regret Bound

SGD – – Static O(
√
T)

Adam – 2 Static O(
√
T)

AdaBound Bounded L.R. 2 Static O(
√
T)

RAdam Rectification 4 – –

AdaTrack Gradient Tracking 3 Static O(
√
T)

Dynamic O(
√
T + PTT)

V.R.: variance reduction
I.P: intermediate parameters
PT is defined below
L.R.: learning rate

Iterative Performance
We have observed that for the recursive stochastic gradient update (i.e., gradient tracking,

SARAH, or SPIDER), an intermediate parameter is defined as the summation between the stochastic
gradient and a correction term. The update for SARAH or SPIDER is expressed as

yt+1 = yt +∇ft(xt, ζt)−∇ft(xt−1, ζt).

We can observe that in an iteration, the correction term necessitates the computation of the stochastic
gradient of f at the point xt−1 using a sampled data at the current iteration, represented by ζt and the
memory storage of xt−1. However, based on Eq. 4,

yt+1 = yt +∇ft(xt, ζt)−∇ft−1(xt−1, ζt−1).

the correction term only requires the memory storage of ∇ft−1(xt−1, ζt−1) from the last iteration.
The memory storage for either xt−1 or∇ft−1(xt−1, ζt−1) is the same in this context as the dimension
for x is assumed to be Rd and f is a nonlinear mapping from Rd to R. For an iteration of computation,
SARAH or SPIDER requires O(d) more computation than the gradient tracking. So in T iterations,
the extra computation is O(dT) for SARAH or SPIDER.

Dynamic regret
Proposition 1 reveals that using a static regret in Eq. 11, AdaTrack achieves the sublinear regret

that matches the best result in online learning when the losses are convex. We also observe that the

10

ADATRACK

learning rate in Proposition 1 is diminishing, which is consistent with the setup in [7] for Adam.
However, the static regret is not always applicable to be an effective metric due to the fixed x∗. We
then naturally extend the regret to a dynamic scenario where it is expressed by the following equation

RDT :=

T∑
t=0

[ft(xt)− ft(x∗t)], (15)

where x∗t = argminx∈X ft(x). Before characterizing the regret bound, we introduce another important
concept to set a constraint on the unknown losses, which is a regularity for the path variation in terms
of the optimizer.

Assumption 1 An arbitrary unknown sequence of convex loss function, {f0(x), f1(x), ..., fT (x)}
is assumed to be selected from the following set,

P :=

{
{f0, f1, ..., fT } : maxx∗t∈argminx∈X ft(x)

T−1∑
t=0

‖x∗t − x∗t+1‖ ≤ PT , PT > 0

}
, (16)

where ‖ · ‖ is the l2 norm.

This assumption signifies the bounded worst-case variation of the optimal solution x∗t of ft(·) along
the trajectories {x∗0, x∗1, ...x∗T }. Intuitively, such an assumption restricts that each optimal solution
cannot deviate from the trajectory significantly. If for any t ∈ [T], x∗t+1 = x∗t , PT = 0 such thatRDT
degenerates toRST . With this assumption in hand, we have the following claim for AdaTrack.

Proposition 2 Let Assumption 1 hold. Suppose that ft is Lipschitz continuous and thatX is compact.
Let β1, β2, β3 ∈ [0, 1) satisfy β2

1√
β2
< 1 and β1,t = β1λ

t−1, λ ∈ (0, 1). Thus, for all T ≥ 0, when the
learning rate αt = O(1√

T
), AdaTrack has the sublinear regret, i.e.,

RDT = O(
√
T + PTT).

Proposition 2 shows clearly that due to the adoption of dynamic regret, the regret bound is more
complex than that of Proposition 1. Roughly speaking, RDT still remains sublinear, but its order
depends on the order of PT . If PT = O(T

1
3), then RDT = O(T

2
3), which is obviously worse than

that ofRST . However, this intuitively makes sense as the dynamic regret also takes into account the
variations of optimizers. For most deep learning models, they are highly non-convex and in this paper,
we still assume that the loss functions are convex. This is because the regret instead of static error has
been applied in this context. Different from offline non-convex learning, online non-convex learning
is still an active research area where there is no a well-known regret bound, though the authors [18]
showed a sublinear regret O(

√
T), which required an approximate offline optimization oracle. This

is unfortunately out of the scope of our work and will be left as a future direction. Optionally, one
can leverage the computationally tractable notion of local regret proposed in [4], but this cannot
guarantee vanishing regret for general non-convex losses.

Training details
Results shown in Table 2 were trained using a Nvidia Titan RTX GPU with codes implemented

using PyTorch [15] framework. Specific training details and procedures for each dataset are listed
below.

11

ADATRACK

• Fashion-MNIST: We trained a convolutional neural network with three convolutional layers
with 32, 64 and 64 filters respectively, followed by one max-pooling later and two fully-
connected layers. A 3 x 3 filter size and stride values of 1 was used for all convolutional
layers. ReLU activation functions were also used in between all layers. The model was trained
for 200 epochs for this dataset. All optimizers were initialized with a initial learning rate of
1E-3, except SGD, which was initialized with a learning rate of 1E-1. For this dataset, we
implemented a learning rate schedule which scales the initial learning rate by a factor of 0.1 at
the 80th and 120th epoch. A constant weight decay of 5E-4 was also used for all optimizers.

• SVHN: A standard VGG-19 model architecture was used for this dataset. The model was
trained for 200 epochs for this dataset and all optimizers were initialized with a initial learning
rate of 1E-3, except SGD, which was initialized with a learning rate of 1E-1. For this dataset,
we implemented a learning rate schedule which scales the initial learning rate by a factor of 0.1
at the 80th and 120th epoch. A constant weight decay of 5E-4 was also used for all optimizers.

• CIFAR 10 and CIFAR 100: For both CIFAR 10 and CIFAR 100 dataset, we train the model
using a standard ResNet34 architecture. For CIFAR 10, the model was trained for 200 epochs
and for CIFAR 100, the model was trained for 250 epochs. All optimizers were initialized with
a initial learning rate of 1E-3, except SGD, which was initialized with a learning rate of 1E-1.
For this dataset, we implemented a learning rate schedule which scales the initial learning rate
by a factor of 0.1 at the 150th epoch. A constant weight decay of 5E-4 was also used for all
optimizers.

Simple nonconvex functions
We leverage two nonconvex functions, i.e., Rastrigin and Rosenbrock, in this context to test the

performance of different optimizers. Though Rastrigin and Rosenbrock functions are simple non-
convex problems, they have been used widely to test the performance for many numerical optimizers.
Also, they both possess only one global optimal solution such that it is easy to evaluate the specific
performance of any optimizer. In this context, we test four different baseline methods, SGD, Adam,
AdaBound and RAdam with the proposed AdaTrack. According to Fig. 2, it can be visualized that
SGD has the worse performance as it converges directly to a local optimum for either of them. Both
Adam and AdaBound perform well on Rosenbrock, but fail to converge to the global optimum of
Rastrigin function. RAdam and AdaTrack perform similarly as they all converge to the uniquely
global optimum for either Rastrigin or Rosenbrock function. As analyzed before, AdaTrack utilizes a
novel way that is different from what has been adopted in AdaBound as well as RAdam to reduce the
variance. Hence, we use four benchmark image datasets to show the comparison among SGD, Adam
and AdaTrack in terms of convergence speed (training performance) and generalization capability
(testing accuracy). Additionally, we also compare our proposed schemes to the recently proposed
AdaBound and RAdam to investigate empirically how the gradient tracking reduces variance.

Training scores
Table 4 details the training accuracies of each optimizer for the four image dataset shown in the

main manuscript.

Additional Results
We provide additional experimental results for CIFAR 10 and CIFAR 100 datasets here. A

ResNet20 architecture was used to train the model for the results shown in Fig. 3 and Table 5 while

12

ADATRACK

Figure 2: Convergence trajectories of different optimizers for Rastrigin and Rosenbrock functions.
Green dots signify the global optima.

Table 4: Training accuracies of different optimizers corresponding to results in main manuscript.

Fashion MNIST SVHN CIFAR 10 CIFAR 100

Train Acc.(%) Train Acc.(%) Train Acc.(%) Train Acc.(%)

SGD 98.7 ± 0.13 99.8 ± 0.03 98.6 ± 0.10 97.6 ± 0.12
Adam 98.6 ± 0.09 98.3 ± 0.41 99.3 ± 0.08 98.4 ± 0.15
Adabound 98.3 ± 0.12 99.9 ± 0.01 99.9 ± 0.01 99.9 ± 0.01
RAdam 99.5 ± 0.03 99.9 ± 0.01 99.9 ± 0.01 99.9 ± 0.01
AdaTrack 99.3 ± 0.06 99.9 ± 0.01 99.9 ± 0.01 99.9 ± 0.01
RAT 99.6 ± 0.08 99.9 ± 0.01 99.9 ± 0.01 99.9 ± 0.01

a VGG-19 architecture is used to train the model for the results shown in Fig. 4 and Table 6. The
models were trained for 200 and 250 epochs for CIFAR 10 and CIFAR 100 respectively. An initial
learning rate of 1E-3 was used for all optimizers except SGD, which had an initial learning rate of
1E-1. A learning rate schedule which scales the initial learning rate by a factor of 0.1 at the 80th and
120th epoch was used to train the ResNet20 models and a learning rate schedule which scales the
initial learning rate by a factor of 0.1 at the 150th epoch was used to train the VGG-19 models . All
optimizers had a weight-decay factor of 5E-4.
Table 5: Comparison of different optimizers for Cifar10 and Cifar100 datasets using ResNet20
architectures with two steps in the learning rate schedule.

Cifar10 Cifar100

Train Acc.(%) Test Acc.(%) Train Acc.(%) Test Acc.(%)

SGD 99.4 ± 0.06 91.9 ± 0.23 87.6 ± 0.17 67.2 ± 0.21
Adam 99.0 ± 0.13 91.0 ± 0.18 84.4 ± 0.34 66.6 ± 0.14
Adabound 98.9 ± 0.05 90.7 ± 0.19 83.3 ± 0.14 65.6 ± 0.18
RAdam 99.2 ± 0.05 89.7 ± 0.20 83.5 ± 0.35 63.0 ± 0.24
AdaTrack 99.2 ± 0.05 89.8 ± 0.38 83.6 ± 0.20 62.6 ± 0.45
RAT 99.2 ± 0.10 89.7 ± 0.29 83.5 ± 0.19 62.6 ± 0.58

13

ADATRACK

Figure 3: Additional results for CIFAR datasets using a ResNet20 architecture with two steps in the
learning rate schedule.

Figure 4: Additional results for CIFAR datasets using a VGG-19 architecture with one step in the
learning rate schedule.

Table 6: Comparison of different optimizers for Cifar10 and Cifar100 datasets using VGG19
architectures with one step in the learning rate schedule.

Cifar10 Cifar100

Train Acc.(%) Test Acc.(%) Train Acc.(%) Test Acc.(%)

SGD 97.8 ± 0.08 90.7 ± 0.40 92.1 ± 0.46 65.9 ± 0.45
Adam 99.2 ± 0.08 91.8 ± 0.04 92.5 ± 2.11 65.0 ± 0.93
Adabound 99.9 ± 0.01 93.1 ± 0.11 99.9 ± 0.02 71.5 ± 0.22
RAdam 99.9 ± 0.01 93.2 ± 0.13 99.9 ± 0.01 70.7 ± 0.21
AdaTrack 99.9 ± 0.01 92.4 ± 0.16 99.8 ± 0.01 67.0 ± 0.25
RAT 99.9 ± 0.01 93.2 ± 0.21 99.9 ± 0.02 70.7 ± 0.28

14

ADATRACK

Algorithm 2 Rectified AdaTrack

Input: αt, β1, β2, β3, ε, x0,∇f−1(x−1, ζ−1),m0, v0, y0, t = 0 . Input params & initialization
ρ∞ = 2/(1− β2)− 1 . Compute the maximum length of the approximated SMA
while t ≤ T do
mt+1 = β1mt + (1− β1)∇ft(xt, ζt) . Approximate first moment
vt+1 = β2vt + (1− β2)∇f2t (xt, ζt) . Approximate second moment
yt+1 = β3yt + (1− β3)(∇ft(xt, ζt)−∇ft−1(xt−1, ζt−1)) . EMA of gradient tracking
m̂t+1 =

mt+1

1−βt
1

. Bias-correction for first moment

v̂t+1 =
vt+1

1−βt
2

. Bias-correction for second moment

ρt = ρ∞ − 2tβt2/(1− βt2) . Compute the length of the approximated SMA
ŷt+1 =

yt+1

1−βt
3

. Bias-correction for adaptive gradient tracking

if the variance is tractable, i.e., ρt > 4 then
rt =

√
(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt . Compute the rectification term

xt+1 = xt − αtrt m̂t+1√
v̂t+1+ε

− αtŷt+1 . Update using adaptive gradient tracking descent

else
xt+1 = xt − αtm̂t+1 − αtŷt+1 . Update parameters with un-adapted momentum

t = t+ 1
return xT

15

	Introduction
	Preliminaries
	Proposed Algorithm
	Theoretical Analysis
	Gradient Tracking
	Sublinear Regret

	Numerical Experiments
	Conclusions
	Acknowledgements

