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Abstract

We introduce a mixed integer program (MIP) for assigning importance scores to each neuron in
deep neural network architectures which are guided by the impact of their simultaneous pruning
on the main learning task of the network. By carefully devising the objective function of the MIP,
we drive the solver to minimize the number of critical neurons (i.e., with high importance score)
that need to be kept for maintaining the overall accuracy of the trained neural network. Further, the
proposed formulation generalizes the recently considered lottery ticket optimization by identify-
ing multiple “lucky” sub-networks resulting in optimized architecture that not only performs well
on a single dataset, but also generalizes across multiple ones upon retraining of network weights.
We demonstrate the ability of our formulation to prune neural networks with marginal loss in ac-
curacy and generalizability on popular datasets and architectures. Finally, we present a scalable
implementation of our method by decoupling the importance scores across layers using auxiliary
networks.

Keywords: Deep learning, Pruning Neural Networks, Mixed-Integer Programming, Neurons Rank-
ing, Combinatorial Optimization, Architecture Optimization.

1. Introduction

Deep learning has proven its power to solve complex tasks and to achieve state-of-the-art results
in various domains such as image classification, speech recognition, machine translation, robotics
and control [3, 18]. Over-parameterized deep neural models with more parameters than the training
samples can be used to achieve state-of-the art results on various tasks [23, 31]. However, the large
number of parameters comes at the expense of computational cost in terms of memory footprint,
training time and inference time on resource-limited IOT devices [14, 20].

In this context, pruning neurons from an over-parameterized neural model has been an active
research area. This remains a challenging open problem whose solution has the potential to in-
crease computational efficiency and to uncover potential sub-networks that can be trained effec-
tively. Neural Network pruning techniques [5, 11, 12, 15, 19, 24-27, 30] have been introduced
to sparsify models without loss of accuracy. Most existing work focus on identifying redundant
parameters and non-critical neurons to achieve a lossless sparsification of the neural model. The
typical sparsification procedure includes training a neural model, then computing parameters im-
portance and pruning existing ones using certain criteria, and fine-tuning the neural model to regain
its lost accuracy. Existing pruning and ranking procedures are computationally expensive, requiring
iterations of fine-tuning on the sparsified model and no experiments were conducted to check the
generalization of sparsified models across different datasets.
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We remark that sparse neuron connectivity is often used by modern network architectures, and
perhaps most notably in convolutional layers. Indeed, the limited size of the parameter space in
such cases increases the effectiveness of network training and enables the learning of meaningful
semantic features from the input images [9]. Inspired by the benefits of sparsity in such architecture
designs, we aim to leverage the neuron sparsity achieved by our framework to attain optimized
neural architectures that can generalize well across different datasets.

Contributions. In our proposed framework, we formalize the notation of neuron importance as a
score between 0 and 1 for each neuron in a neural network and the associated dataset. The neuron
importance score reflects how much activity decrease can be inflicted in it, while controlling the
loss on the neural network model accuracy. Concretely, we propose a mixed integer programming
formulation (MIP) that allows the computation of each fully connected’s neuron and convolutional
feature map importance score and that takes into account the error propagation between the different
layers. In addition, we extend the proposed formulation to support convolutional layers computed
as matrices multiplication using Toeplitz format [10] with an importance score associated with each
feature map [21].

2. Preliminaries

Consider layer [ of a trained ReLU neural network with W as the weight matrix, w! row i of W,
and b' the bias vector. For each input data point z, let A! be a decision vector denoting the output
value of layer [, i.e. h! = ReLU(W!h!=! 4+ b!) for I > 0 and h° = z, and 2! be a binary variable
taking value 1 if the unit ¢ is active, i.e. wéhl_l + bﬁ > 0, and 0 otherwise. Finally, let Lé and
Uil be constants indicating a valid lower and upper bound for the input of each neuron ¢ in layer
. We discuss the computation of these bounds in Sec. 3.2. For now, we assume that Lé and Uil
are sufficiently small and large numbers, respectively, i.e., the so-called Big-M values. Next, we
provide the representation of ReLU neural networks of [7] called big-M formulation. Although,
Anderson et al. [1] proposed an ideal MIP formulation, where there is an exponential number of
facets defining constraints that can be separated efficiently, we used only the big-M formulation
which performed well since we can compute tight local bounds. For sake of simplicity, we describe

the formulation for one layer [ of the model at neuron ¢ and one input data point x:

h? =x; ifl =0, otherwise (1a)

hi >0, (1b)

Rl + (1 —2HLt < wln!=t + b, (1c)
ht < AUt (1d)

hl > wih!=1 bl (le)

zb e {0,1}. (1)

In (1a), the initial decision vector h is forced to be equal to the input z of the first layer. When
zf is 0, constraints (1b) and (1d) force hé to be zero, reflecting a non-active neuron. If an entry of
zf is 1, then constraints (1c) and (1e) enforce hé to be equal to wﬁhl_l + bé. After formulating the
ReLU, if we relax the binary constraint (1f) on zi to [0, 1], we obtain a linear programming problem
which is easier and faster to solve. Furthermore, the quality (tightness) of such relaxation highly
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depends on the choice of tight upper and lower bounds, Uil, Lﬁ. In fact, the determination of tight
bounds reduces the search space and hence, the solving time.

3. MIP formulation

In what follows, we adapt the MIP constraints (1) to quantify neuron importance, and we describe
the computation of the bounds Lé and Uil. Our goal is to compute importance scores for all layers in
the model in an integrated fashion, as Yu et al. [29] have shown to lead to better predictive accuracy
than layer by layer.

3.1. ReLU layers

In RelLU activated layers, we keep the previously introduced binary variables zll-, and continuous
variables hé. Additionally, we create the continuous decision variables sé € [0, 1] representing
neuron ¢ importance score in layer /. In this way, we modified the ReLU constraints (1) by adding

the neuron importance decision variable sﬁ to constraints (1c¢) and (le):

At (1 —2HLk < wih'=t + bl — (1 — st) max (U}, 0) (2a)
AL > wih!=t + bk — (1 — sb) max (U}, 0). (2b)

In (2), when neuron 7 is activated due to the input 2!, i.e. zf =1, hé is equal to the right-hand-
side of those constraints. This value can be directly decreased by reducing the neuron importance
sﬁ. When neuron ¢ is non-active, i.e. zzl- = 0, constraint (2b) becomes irrelevant as its right-hand-
side is negative. This fact together with constraints (1b) and (1d), imply that hﬁ is zero. Now, we
claim that constraint (2a) allows sé to be zero if that neuron is indeed non-important, i.e., for all
possible input data points, neuron ¢ is not activated. This claim can be shown through the following
observations. Note that decisions h and z must be replicated for each input data point x as they
present the propagation of = over the neural network. On the other hand, s evaluates the importance
of each neuron for the main learning task and thus, it must be the same for all data input points.
Thus, the key ingredients are the bounds Lé and Uil that are computed for each input data point,
as explained in Sec. 3.2. In this way, if Uil is non-positive, slz- can be zero without interfering with
the constraints (2). The latter is enforced by the objective function derived in Sec. 3.3. We note
that this MIP formulation can naturally be extended to convolutional layers converted to matrix
multiplication using toeplitz matrix [10] and with an importance score associated with each feature
map. We refer the reader to the appendix for a detailed explanation.

3.2. Bounds Propagation

In the previous MIP formulation, we assumed a large upper bound Uil and a small lower bound Lli.
However, using large bounds may lead to long computational times and a lost on the freedom to
reduce the importance score as discussed above. In order to overcome these issues, we tailor these
bounds accordingly with their respective input point x by considering small perturbations on its
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value:
IP=x—c¢ (3a)
U=z +e¢ (3b)
Ll — W(l—)Ul—l + W(l+)Ll—l (3C)
Ul = witHyl-t L w1 (3d)
w ) 2 min (Ww® o) (3e)
W) 2 max (W®)0). (3f)

Propagating the initial bounds of the input data points throughout the trained model will create the
desired bound using simple arithmetic interval [22]. The obtained bounds are tight, narrowing the
space of feasible solutions.

3.3. Objective

The aim for the proposed framework is to sparsify non-critical neurons without reducing the pre-
dictive accuracy of the pruned ANN To this end, we combine two optimization objectives.

Our first objective is to maximize the set of neurons sparsified from the trained ANN. Let n be
the number of layers, N! the number of neurons at layer [, and I' = Zi\: l(sé — 2) be the sum of
neuron importance scores at layer [ with st scaled down to the range [—2, —1].

In order to create a relation between neurons’ importance score in different layers, our objective
becomes the maximization on the amount of neurons sparsified from the n — 1 layers with higher

score I'. Hence, we denote A = {I' : | = 1,...,n} and formulate the sparsity loss as
max Z I

A'cA A |=(n—1
C7| ‘(n )IGA/

sparsity = STV

)

Table 1: Importance of re-scaling sparsification objective to prune more neurons shown empiri-
cally on LeNet-5 model using threshold 0.05, by comparing accuracy on test set between
reference model (Ref.), and pruned model (Masked).

DATASET SCALING REF. Acc. MASKED ACC. PRUNING PERCENTAGE (%)
sk —2 98.7% £ 0.1  13.2% £ 2.9
MNIST sﬁ -1 98.9% +0.1 98.8% +0.1 9.6% £+ 1.1
sk 98.9% 4 0.2 8% 4 1.6
st —2 89.1% +0.3  17.1% + 1.2
FASHION-MNIST sﬁ -1 89.9% +0.2 89.2% 0.1 17% + 3.4
sk 89% + 0.4 10.8% + 2.1
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Here, the objective is to maximize the number of non-critical neurons at each layer compared to
other layers in the trained neural model. Note that only the n — 1 layers with the largest importance
score will weight in the objective, allowing to reduce the pruning effort on some layer that will
naturally have low scores. The sparsity quantification is then normalized by the total number of
neurons.

In Table 1, we compare re-scaling the neuron importance score in the objective function to
[—2, —1], to [—1, 0] and no re-scaling [0, 1] using LeNet-5 [16] trained on MNIST [17] and Fashion-
MNIST [28]. This comparison shows empirically the importance of re-scaling the neuron impor-
tance score to optimize sparsification through neuron pruning.

Our second objective is to minimize the loss of important information due to the sparsification
of the trained neural model. Additionally, we aim for this minimization to be done without relying
on the values of the logits, which are closely correlated with neurons pruned at each layer. To
that end, we formulate this optimization objective using the marginal softmax as proposed in [8].
Using marginal softmax allows the solver to focus on minimizing the misclassification error without
relying on logit values. Formally, we write the objective

N N
softmax = Z log [Z exp(hﬁc)] - Z Z Yivch?,m )
i=1 c =1 ¢

where index c stands for the class label. The used marginal softmax objective keeps the correct
predictions of the trained model for the input batch of images x having one hot encoded labels Y
without considering the logit value.

Finally, we combine the two objectives to formulate the multi-objective loss

loss = sparsity + A - softmax 6)

as a weighted sum of sparsification regularizer and marginal softmax, as proposed by Ehrgott [6].
Our experiments revealed that A = 5 generally provides the right trade-off between our two objec-
tives; see the appendix for experiments with value of \.

4. Experiments

In this section, we validate our proposed approach in revealing efficient sub-networks from ANN
architectures. We introduce the steps used to generate the efficient sub-network using our framework
in Algorithm 1.

Algorithm 1: Optimizing ANN Architectures using a MIP.
Result: Efficient sub-network
Input: Trained ANN, dataset D, threshold.
Step 1: Select subset of images D' C D to be fed into the MIP.
Step 2: Solve MIP restricted to D’ and save the vector of neuron importance scores s.
Step 3: Remove every neuron ¢ from layer [ with sé < threshold from ANN resulting in an
efficient sub-network.

Table 2 shows that pruning non-critical neurons results in marginal loss and gives better per-
formance. On the other hand, we observe a significant drop on the test accuracy when critical or a
random set of neurons are removed compared with the reference model. If we fine-tune for just 1
epoch the sub-network obtained through our method, the model’s accuracy can surpass the reference
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Table 2: Pruning results on convolutional (Lenet-5, VGG-16) network architectures using three
different datasets. We compare the test accuracy between the unpruned reference network
(REF.), randomly pruned model (RP.), model pruned based on critical neurons selected
by the MIP (CP.) and our non-critical pruning approach with (OURS + FT) and without
(OURS) fine-tuning for 1 epoch. We used A = 5 in the MIP objective

Dataset MNIST Fashion-MNIST CIFAR-10
Architecture LeNet-5 ‘ VGG-16
Ref. 98.9% 4+ 0.1 89.7% £ 0.2 72.2% 4+ 0.2 83.9% £+ 0.4
RP. 56.9% + 36.2 33% 4 24.3 50.1% + 5.6 85% + 0.4
CP. 38.6% £ 40.8 28.6% =+ 26.3 27.5% £ 1.7 83.3% £ 0.3
Ours 98.7% + 0.1 87.7% + 2.2 67.7% £ 2.2 N/A
Ours + ft 98.9% + 0.04 89.8% +0.4 68.6% +1.4 |85.3% +0.2
Prune (%) ‘ 17.2% £ 2.4 17.8% £ 2.1 9.9% +1.4 ‘ 36% +1.1
threshold | 0.2 0.2 0.3 \ 0.3

model. This is due to the fact that the MIP, while computing neuron scores, is solving its marginal
softmax (5) on true labels.

Table 3 displays our Table 3: Cross-dataset generalization from dataset dy to dataset da.
experiments and respective Test accuracies are presented for masked and unmasked
results. When we com- (REF.) networks on ds, as well as pruning percentage.
pare generalization results
to pruning using our ap-
proach on Fashion-MNIST

MODEL SOURCE DATASET d;  TARGET DATASET ds REF. Acc. MASKED ACC. PRUNING (%)

and CIFAR-10, we dis- LENETS MNIST FASHION MNIST  80.7% 0.3 892%+05 o0 o)

cover that Computing the : CIFAR-10 72.2% +0.2  68.1%+25 e
.. MNIST 99.1% £ 0.1 99.4% £ 0.1

critical sub-network LeNet- ~ V6G-16  CIFAR-10 FAsHiON-MNIST  923%£04 921%+06  SOAEL1

5 architecture on MNIST, is
creating a more sparse sub-network with test accuracy better than zero-shot pruning without fine-
tuning using our approach, and comparable accuracy with the original ANN.

5. Conclusion

We proposed a mixed integer program to compute neuron importance scores in ReLU-based deep
neural networks. Our contributions focus on providing scalable computation of importance scores
in fully connected and convolutional layers. We presented results showing these scores can be ef-
fectively used to prune unimportant parts of the network without significantly affecting its main
task (e.g., showing small or negligible drop in classification accuracy). Further, our results indicate
this approach allows automatic construction of efficient sub-networks that can be transferred and re-
trained on different datasets. The presented model introduces one of the first steps in understanding
which components in a neural network are critical for its model capacity to perform a given task,
which can have further impact in future work beyond the pruning applications presented here.
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Appendix A. MIP formulations

In Appendix A.1, details on the MIP constraints for convolutional layers are provided. Appendix A.2
explains the formulation used to represent pooling layers.

A.1. MIP for convolutional layers

We convert the convolutional feature map to a Toeplitz matrix and the input image to a vector. This
allow us to use simple matrix multiplication which is computationally efficient. Moreover, we can
represent the convolutional layer using the same formulation of fully connected layers presented in
Sec. 3.1.

Toeplitz Matrix is a matrix in which each value is along the main diagonal and sub diagonals
are constant. So given a sequence a,,, we can create a Toeplitz matrix by putting the sequence in the
first column of the matrix and then shifting it by one entry in the following columns:

ao CLfl a72 e e .. e a/—(N—l)
a1 ap a-1 G-2
a2 ai ag a—1
a2
@)
a_2
al ay a—q a_9
a9 al a a_—1
a(N-1) az a1 ao

Feature maps are flipped and then converted to a matrix. The computed matrix when multiplied
by the vectorized input image will compute the fully convolutional output. For padded convolution
we use only parts of the output of the full convolution, for strided convolutions we used sum of 1
strided convolution as proposed by Brosch and Tam [4]. First, we pad zeros to the top and right of
the input feature map to become same size as the output of the full convolution. Next, we create
a Toeplitz matrix for each row of the zero padded feature map. Finally, we arrange these small
Toeplitz matrices in a big doubly blocked Toeplitz matrix. Each small Toeplitz matrix is arranged
in the doubly Toeplitz matrix in the same way a Toeplitz matrix is created from input sequence with
each small matrix as an element of the sequence.

A.2. Pooling Layers

We represent both average and max pooling on multi-input units in our MIP formulation. Pooling
layers are used to reduce spatial representation of input image by applying an arithmetic operation
on each feature map of the previous layer.

10



IDENTIFYING EFFICIENT SUB-NETWORKS USING MIXED INTEGER PROGRAMMING

Avg Pooling layer applies the average operation on each feature map of the previous layer. This
operation is linear and thus, it can directly be included in the MIP constraints:

N!
1
At = AvgPool (R, - -- ,hﬂvl) =N Z hi. (8)
i=1

Max Pooling takes the maximum of each feature map of the previous layer:
R+ = MaxPool(hY, - -- ,hﬂ\,l) = max{h}, - ,hé\,l}. 9)

This operation can be expressed by introducing a set of binary variables mq, - - - , m 1, where m; =
1 implies x = MaxPool(h!, - - - ,th,):

Nl
d mi=1 (10a)
=1
x> hé,
& < hlm; +U;(1—my) pi=1,---,N. (10b)
m; € {0, 1}

Appendix B. Scalability improvements

In Appendix B.1, we describe a methodology that aims at speed-up the computation of neuron
importance scores by relying on decoupled greedy learning.

B.1. Decoupled Greedy Learning

We use decoupled greedy learning [2] to parallelize learning of each layer by computing its gradients
and using an auxiliary network attached to it. By using this procedure, we have auxiliary networks
of the deep neural network that represent subsets of layers thus allowing us to solve the MIP in
sub-representations of the neural network.

Training procedure We start by constructing auxiliary networks for each convolutional layer
except the last convolutional layer that will be attached to the classifier part of the model. During the
training each auxiliary network is optimized with a separate optimizer and the auxiliary network’s
output is used to predict the back-propagated gradients. Each sub-network’s input is the output
of the previous sub-network and the gradients will flow through only the current sub-network. In
order to parallelize this operation a replay buffer of previous representations should be used to avoid
waiting for output from previous sub-networks during training.

Auxiliary Network Architecture We use a spatial averaging operation to construct a scalable
auxiliary network applied to the output of the trained layer and to reduce the spatial resolution by
a factor of 4, then applying one 1 x 1 convolution with batchnorm [13] followed by a reduction to
2 x 2 and a one-layer MLP. The architecture used for the auxiliary network is smaller than the one
mentioned in the paper leading to speed up the MIP solving time per layer.

11
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MIP representation After training each sub-network, we create a separate MIP formulation for
each auxiliary network using its trained parameters and taking as input the output of the previous
sub-network. This operation can be easily parallelized and each sub-network can be solved inde-
pendently. Then, we take the computed neuron importance scores per layer and apply them to the
main deep neural network. Since these layers were solved independently, we fine tune the network
for one epoch to back-propagate the error across the network. The created sub-network can be
generalized across different datasets and yields marginal loss.

12
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