
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Heuristic Prototype Selection for Regression

Debraj Basu DBASU@ADOBE.COM

Deepak Pai DPAI@ADOBE.COM

Joshua Sweetkind-Singer SWEETKIN@ADOBE.COM

Adobe Inc., San Jose

Abstract
We propose a prototype method in the regression setting, that leverages proximity measure of sam-
ples both in the feature space as well as the label space. A good set of prototypes may substantially
reduce the space- and time-complexity costs over using k-nearest-neighbors on the original dataset
and can potentially yield both improved test error and improved robustness to outliers. We for-
mulate the problem as a mixed-integer program that captures several properties that are intuitively
desirable of a good prototype set. As is typical of such formulations, exact solutions are compu-
tationally intractable, and we obtain an approximate solution via an algorithm that successively
refines the prototype set by greedily selecting samples from the dataset. Our algorithm easily gen-
eralizes to regression problems with vector-valued outputs. It also handles classification problems
as a special case, by encoding class labels as one-hot vectors, resulting in prototypes identical to the
those yielded by a popular set-cover-based method in the classification setting due to Bien and Tib-
shirani, 2012. Our experiments demonstrate that the prototypes selected by this method provides
better generalization with an average space reduction of 75%, and improved tolerance to outliers.

1. Introduction.

One of the primary motivations behind prototype selection methods is to improve upon the k-
nearest-neighbors algorithm. k-NN [9, 12] is a well-known technique for prediction [21], despite its
shortcomings: a) high storage and computation costs [10], and b) sensitivity to outliers present in
the original training set [21, 29]. To overcome these limitations, prototype-selection methods cull
from the original training set a much smaller set of instances, called prototypes, and then, typically,
run the k-NN algorithm on those. Reducing the dataset affords an additional way to control com-
plexity, by varying the maximum number of prototypes, potentially leading to better generalization
and improved tolerance to outliers. All of these advantages have been verified in the classification
setting [6–8, 17, 18, 20, 21, 23, 30]. In such settings, prototype methods exploit the separation of
samples in the feature space, based on classes they belong to, in order to identify “prototypical”
instances of local representative value. Coming up with a method that drives the discovery of such
a set of prototypes for regression with vector-valued outputs is the primary focus of this paper.

Our work is most closely related to [8, 24, 28, 31], all of which have employed integer optimiza-
tion for identifying prototypes in a classification setting. [24, 28] define the set covering machine
(SCM) for a binary classification problem in which the goal is to identify a minimal disjunction of
binary functions of the features. The proposed formulation, resembles that of [8] for a multi-class
classification dataset, which is a specialization of the general SCM formulation from [24].

The underlying premise of our method is that a “prototypical” point represents a region in which
the training points have similar labels to that of the prototype, while avoiding proximity to any train-

© D. Basu, D. Pai & J. Sweetkind-Singer.

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

ing point with a highly dissimilar label. We encode these properties into a mixed-integer program
and propose greedy heuristics for approximating the solution. Our formulation takes advantage of
proximity measures in both the feature and label space to select salient prototypes from a dataset
with continuous or discrete valued labels, or, indeed, vectors whose components are a mixture of
the two. It also handles classification problems as a special case, by encoding class labels as one-hot
vectors, resulting in prototypes identical to those yielded by [8]. (See Section 3 and Appendix E.)

Our experimental findings substantiate the benefits of embedding these properties into our
method which results in salient prototypes. We observe lower prediction errors using the k-NN
rule for prototypes selected by our method, as compared to several natural baselines, while achiev-
ing significant compression in the samples (see Figure 1a and Table 2). Furthermore, as is expected
from a good prototype set, our prototypes result in lower test errors even for smaller values of k,
unlike some of our baselines (see Figure 5). Beyond these advantages, we see that the prototypes
selected by our method are more tolerant to outliers present in the training set (see Table 1).

2. Optimization Problem

Consider a labeled dataset D : {X ,Y} where X = {xi}ni=1 ∈ Rd and Y = {yi}ni=1 ∈ R, and n is
the total number of points in the dataset. Without loss of generality we assume yi ∈ [0, 1]∀i ∈ [n]
where [n] := {1, 2, . . . , n}. Let the dissimilarity measure between two points xi,xj ∈ Rd be
denoted by d(xi,xj). For a point xi and a given ε ∈ R+, let the set B(xi) be defined as {x ∈
Rd|d(x,xi) ≤ ε}. Therefore B(xi) is the ball of radius ε centered at xi. As indicated in [8],
set cover is a useful clustering algorithm that can be used to find the smallest number of ε balls,
with the corresponding centers as prototypes, that cover D. This is done by solving the following
formulation for set-cover optimization, min

αj

∑n
j=1 αj s.t.

∑
j:xi∈B(xj)

αj ≥ 1, αi ∈ {0, 1}∀i ∈ [n].

Here αi is 1 if xi is a prototype, 0 otherwise.
∑

j:xi∈B(xj) αj is the number of prototypes whose
ε balls cover xi, which must be at least 1. However, when samples belong to discrete domains,
as in the classification setting, one could utilize the labels of each point. Similarly, in a regression
setting, one could leverage the natural ordering of continuous-valued labels to come up with a more
meaningful set of prototypes that covers the dataset.

In a generic sense, we expect to ensure that each point is covered by at least one prototype with
a similar label. In addition, we prefer each point to not have any prototype with a widely dissimilar
label, covering it. This amounts to prototypes covering points only from the same class as in [8]
for classification. By selecting a small set of such prototypes, the dataset is reduced to a few salient
points thereby achieving sparsity in the samples. In order to do so, we enlist the following proper-
ties, that are desirable of the ε-covering balls induced by the selected prototype set: (a) Must cover
as many points with similar labels, as possible; (b) Must not cover points with dissimilar labels; (c)
Must be sparse (uses a few prototypes). Note that (b) could result in a few points left uncovered.
Formulation: We propose a generic mixed-integer formulation below, in variables {αi}ni=1, {ξi}ni=1,
{ηi}ni=1 for identifying prototypes from a labeled dataset D, that satisfy the above properties.

min
αi,ξi,ηi

n∑
i=1

ξi +

n∑
i=1

ηi + λ

n∑
i=1

αi∑
j:xi∈B(xj)

αj(1− |yi − yj |) ≥ 1− ξi,
∑

j:xi∈B(xj)

αj |yi − yj | ≤ ηi, αi ∈ {0, 1}, ξi, ηi ≥ 0,∀i ∈ [n] (1)

The binary variables αi indicate which xi are selected as prototypes, while ξi and ηi are non-
negative slack variables. We use |yi − yj | as a dissimilarity measure between the labels of xi and
xj . Any other dissimilarity measure could be substituted here.

2

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

The first set of constraints in (1) uses αj(1−|yi−yj |) ∈ [0, 1], which is close to 1 if xj has been
selected as a prototype and has a highly similar label to that of xi. The sum of these quantities over
all prototypes ε-close to xi must preferably be at least 1, and, when that is not the case, we penalize
the prototype set via the slack variable ξi = 1 −

∑
j:xi∈B(xj) αj(1 − |yi − yj |), which attempts

to capture the extent to which xi is not completely covered in the label space by all the prototypes
that cover it in the feature space. We point out that this formulation considers two prototypes that
half-cover xi in the label space to be as good as one prototype that fully covers it. This yields decent
prototypes, because the overall formulation discourages prototypes from clustering together.

The second set of constraints in (1) uses αj |yi − yj | ∈ [0, 1], which is close to 1 if xj has been
selected as a prototype and has a highly dissimilar label from that of xi. The sum of these quantities
over all prototypes ε-close to xi must preferably be 0, and, when that is not the case, we penalize
the prototype set via the slack variable ηi =

∑
j:xi∈B(xj) αj |yi − yj |, which captures the extent to

which xi is mis-covered in the label space by all the prototypes that cover it in the feature space.
The above penalties take into account similarities in both the feature space, by insisting that the
prototypes be ε-close to the points they represent, and in the label space, by encouraging a point to
be represented by prototypes with more similar labels.

Finally we also penalize the total number of selected prototypes,
∑

i αi, in the objective. Note
that the feasible set of this formulation comprises all 2n possible prototype sets. λ is a hyper-
parameter that is used to trade off between consistency and sparsity by controlling the number of
prototypes selected, see Appendix C for a discussion on the same.
Optimal Solution: Arriving at the optimal solution to our formulation in (1) is provably computa-
tionally difficult, as is typical for integer optimization problems such as set cover, which can in fact
be reduced to (1), rendering our formulation at least as hard. Typically mixed-integer programs are
solved using branch and bound techniques [27], which is infeasible here as the size of the problem
is proportional to the number of samples in the dataset. Therefore in Section 2.1 we propose an
approximate solution via a greedy algorithm, Algorithm 1.

2.1. Greedy Approach

Our greedy solution can be better understood by an equivalent formulation of (1) in which the objec-
tive is given by, min

αi

∑n
i=1 max

{
0, 1−

∑
j:xi∈B(xj) αj(1−|yi−yj |)

}
+
∑n

i=1

∑
j:xi∈B(xj) αj |yi−

yj |+λ
∑n

i=1 αi such that αi ∈ {0, 1} ∀i ∈ [n]. Now consider an existing prototype set indexed by
P ⊂ [n]. Our greedy algorithm considers the effect of appending a new point, xk, to the prototype
set, i.e. P ← P ∪ {k}, on the three different terms of the objective,

The last term penalizes the total number of prototypes and increases by λ when a new proto-
type is selected. The second term can be rewritten as

∑n
j=1

[
αj
∑

i:xi∈B(xj) |yi − yj |
]
. Therefore

introducing xk as a new prototype increases the second term by
∑

i:xi∈B(xk) |yi − yk|. This can
be precomputed in O(n2) for all points. Finally, the first term, which is a summation over all
data points indexed by i ∈ [n], is only affected with respect to the data points that lie in the ε-
ball of xk. For a point xl that does lie in the ball of xk, the corresponding term in the objective
max

{
0, 1−

∑
j:xl∈B(xj) αj(1− |yl − yj |)

}
remains unaffected if it was previously 0, otherwise it

is reduced by min
{

1 −
∑

j:xl∈B(xj) αj(1 − |yl − yj |), 1 − |yl − yk|
}

. Combining these we have
Algorithm 1, where ∆Obj(xk) = ∆ξ(xk) − ∆η(xk) − λ where ∆ξ(xk) =

∑n
i=1 min

{
1 − |yk −

yi|,max{0, 1−
∑
j:xi∈B(xj)

αj(1− |yi − yj |)}
}

and ∆η(xk) =
∑

j:xj∈B(xk) |yk − yj |.

3

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Algorithm 1 Heuristic Prototype Selection
1: Initialize P = φ
2: do
3: Find i′ ← arg max

i∈[n]\P
∆Obj(xi)

4: If ∆Obj(xi′) > 0 then do P ← P ∪ { i′ }
5: while ∆Obj(xi′) > 0
6: return P

Our choice of a new prototype guarantees
a net reduction in the objective in each itera-
tion. The algorithm terminates when includ-
ing the next prototype would not decrease the
objective. Observe that ∆η(xk) can be easily
cached for speedup. Let C(k) denote the num-
ber of points in the ε covering ball of xk and p is
the cardinality of the prototype set P in the cur-
rent iteration, i.e. the number of points which
have already been selected as prototypes. The

cost of computing ∆Obj(xk) isO(C(k)). The per iteration time complexity of Algorithm 1 is there-
fore O ((n− p) maxk C(k)) which can be improved through parallelization. For a fixed number of
points, P ≤ n, selected as prototypes, the total cost of computation is O

(
nP maxk C(k)

)
.

3. Handling Multi-Valued Outputs

Vector-Valued Regression: The formulation in (1) is directly applicable for a single output regres-
sion dataset, i.e. yi ∈ R and xi ∈ Rd, for each i ∈ [n]. A natural extension would be in a multi
output setting, i.e. yi ∈ Rm where we can use a dissimilarity measure for multi-dimensional vec-
tors, in the label space. For simplicity we use the Euclidean distance ‖yi−yj‖2 as the dissimilarity
measure between xi and xj in the label space. The generalization of the formulation for vector-
valued regression is provided in Appendix D
Multi-Class Classification: Our formulation from (1) is directly applicable to a two-class classifi-
cation problem, where yi = 0 or 1. In fact for two classes, (1) bears similarity to the formulation
in [8, Section 2.3], with the difference being that [8] allows a point to be selected as a prototype
for a class other than its own, which is unintuitive: we would expect a prototype to be an exemplar
of its own class only. In that sense, (1) is a mild improvement over [8], because the set of feasible
solutions of (1) does not allow prototypes to represent classes other than their own.

In fact, we can prove that for a multi-class classification problem, Algorithm 1 using either
of the greedy criterions from Section 2.1 or Appendix B, is equivalent to the greedy algorithm in
[8, Section 3.2], with a modest change mentioned above. The proof is provided in Appendix E.
Note that our scheme does not allow multi-membership unlike [8]. This reduces the per iteration
complexity of Algorithm 1 by a factor of L, i.e. the total number of classes, as compared to [8].

4. Experiments

We summarize our numerical findings for the regression setting here (the classification setting is
already evaluated in [8]) and present them in full with more insights in Appendix F. We conducted
experiments on four public datasets and two standard synthetic datasets detailed in Section F.1.1. As
such the application of prototype methods for regression remains relatively less explored. Besides
k-NN, set cover, and q-medoids which are natural baselines but do not incorporate the label infor-
mation, we also compare the performance of Algorithm 1 (Greedy 1 (Section 2.1) and a variant
Greedy 2 (Appendix B)) with a popular prototype method for the regression setting called decre-
mental instance selection for k-NN regression (DISKR) [33], which reduces the dataset successively
by removing samples based on their marginal contribution to the training error. Figure 1 summa-

4

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

rizes our observations on performing extensive cross validation over neighborhood sizes ε (resulting
in different number of prototypes P), number of nearest neighbors k for each algorithm on every
dataset. In our experimental setup, d(·, ·) in Section 2 is the Euclidean distance for consistency
and simplicity, however this is not necessary and (1) can potentially benefit from using other non-
Euclidean dissimilarity metrics [4]. We also set λ = 1/n, so that the number of prototypes only
plays a role when there is a tie between two different solutions.

(a) (b)

Figure 1 In Figure 1a we compare the best test RMSE given the minimum required % compression of the Diabetes dataset
[14]. Algorithm 1 denoted by Greedy 1 Section 2.1 and Greedy 2 Appendix B outperforms all other baselines
achieving lower RMSE. In Figure 1b we plot the best operating point for each dataset, identified via extensive cross-
validation and summarized in Table 2. For each dataset, the best test RMSE for different algorithms is normalized to
[0, 1]. Algorithm 1 is in the bottom right section as desirable. DISKR exhibits low test errors half the time with modest
compression. k-NN at the top left corner exhibits poorest performance overall.

We also experimentally evaluate Algorithm 1’s tolerance to outliers in Section F.3, by increasingly
corrupting the training dataset with Gaussian noise added to the labels, and computing the minimum
test error. In Table 1 the robustness of the best two algorithms in each column are in bold. Here the
average is taken across different values of k and for percentage of noisy training data between 0%
to 50%, for each dataset. Our algorithm appears among the top three for four out of six datasets in
Table 1, exhibiting a smaller increase in the minimum RMSE than the other baselines. DISKR [33]
also provides robust results as it involves a heuristic for the removal of outliers in its first phase.

Figure 2 Minimum test RMSE for different % corruption of
the Diabetes training dataset for k = 2.

FR1 FR2 DB IN WN WA

Greedy_1 4.3 1.1 6.4 8.9 2.6 1.2

Greedy_2 3.6 1.3 7.8 9.0 2.6 1.6

DISKR 4.0 1.5 9.2 8.4 4.5 1.5

k-NN 4.1 2.8 13.1 14.9 9.0 1.9

Set cover 5.3 1.7 11.6 12.7 4.9 1.3

q-medoids 4.6 1.8 12.3 9.4 4.9 2.1

Table 1 Mean percentage increase in minimum test RMSE
for (FR1) Friedman 1, (FR2) Friedman 2, (DB) Diabetes,
(IN) Insurance, (WI) Wine Quality, (WA) Water Quality
datasets.

5

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

References

[1] Friedman #2 dataset. https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_friedman3, . Accessed: 2020-10-01.

[2] Friedman #1 dataset. https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_friedman1, . Accessed: 2020-10-01.

[3] Swedish auto insurance dataset. http://college.cengage.com/mathematics/
brase/understandable_statistics/7e/students/datasets/slr/
frames/slr06.html. Accessed: 2020-02-05.

[4] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behav-
ior of distance metrics in high dimensional spaces. In Database Theory - ICDT 2001, 8th
International Conference, London, UK, January 4-6, 2001, Proceedings. Springer, 2001.

[5] Álvar Arnaiz-González, José-Francisco Díez-Pastor, Juan José Rodríguez Diez, and César Ig-
nacio García-Osorio. Instance selection for regression: Adapting DROP. Neurocomputing,
201:66–81, 2016.

[6] Dimitris Bertsimas and Romy Shioda. Classification and regression via integer optimization.
Operations Research, 55(2):252–271, 2007.

[7] Binay K. Bhattacharya, Ronald S. Poulsen, and Godfried T. Toussaint. Application of prox-
imity graphs to editing nearest neighbor decision rule. In International Symposium on Infor-
mation Theory, 1981.

[8] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification. Ann.
Appl. Stat., 5(4):2403–2424, 12 2011. doi: 10.1214/11-AOAS495. URL https://doi.
org/10.1214/11-AOAS495.

[9] Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007.

[10] Henry Brighton and Chris Mellish. Advances in instance selection for instance-based learning
algorithms. Data Mining and Knowledge Discovery, 6(2):153–172, Apr 2002.

[11] JA Cornell and RD Berger. Factors that influence the value of the coefficient of determination
in simple linear and nonlinear regression models. Phytopathology, 77(1), 1987. doi: 10.1094/
phyto-77-63.

[12] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Informa-
tion Theory, 13(1):21–27, Jan 1967. doi: 10.1109/TIT.1967.1053964.

[13] Y. Dodge. Statistical data analysis based on the L1-norm and related methods. Computational
statistics & data analysis ; v.6, no.3,4. ISBN 9780444702739.

[14] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

6

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1
http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr06.html
http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr06.html
http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr06.html
https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1214/11-AOAS495
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

[15] Sahibsingh A. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Systems,
Man, and Cybernetics, 6(4):325–327, 1976.

[16] Sašo Džeroski, Damjan Demšar, and Jasna Grbović. Predicting chemical parameters of river
water quality from bioindicator data. Applied Intelligence, 13(1):7–17, Jul 2000.

[17] Ehsan Elhamifar, Guillermo Sapiro, and S. Shankar Sastry. Dissimilarity-based sparse subset
selection. IEEE Trans. Pattern Anal. Mach. Intell., 38(11), 2016.

[18] H. A. Fayed and A. F. Atiya. A novel template reduction approach for the k-nearest neighbor
method. IEEE Transactions on Neural Networks, 20(5):890–896, May 2009. doi: 10.1109/
TNN.2009.2018547.

[19] Jerome H. Friedman. Multivariate adaptive regression splines. Ann. Statist., (1):1–67, 03 .
doi: 10.1214/aos/1176347963.

[20] Salvador García, José Ramón Cano, and Francisco Herrera. A memetic algorithm for evolu-
tionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693–2709,
2008.

[21] Salvador García, Joaquín Derrac, José Ramón Cano, and Francisco Herrera. Prototype selec-
tion for nearest neighbor classification: Taxonomy and empirical study. IEEE Trans. Pattern
Anal. Mach. Intell., 34(3), 2012.

[22] Mihajlo Grbovic and Slobodan Vucetic. Regression learning vector quantization. In ICDM
2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9
December 2009, pages 788–793.

[23] P. Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on Information
Theory, 14(3):515–516, May 1968. doi: 10.1109/TIT.1968.1054155.

[24] Zakria Hussain, Sandor Szedmak, and John Shawe-Taylor. The linear programming set cov-
ering machine. 2004.

[25] Mirosław Kordos and Marcin Blachnik. Instance selection with neural networks for regression
problems. In Artificial Neural Networks and Machine Learning – ICANN 2012.

[26] B. Li, Y. Wang, H. K. Lee, A. Dempster, and C. Rizos. Method for yielding a database of
location fingerprints in wlan. IEEE Proceedings - Communications, 152(5), Oct 2005. doi:
10.1049/ip-com:20050078.

[27] Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational study of search strategies for
mixed integer programming. INFORMS J. Comput., 11(2):173–187, 1999.

[28] Mario Marchand and John Shawe Taylor. The set covering machine. J. Mach. Learn. Res., 3:
723–746, March 2003. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=944919.944952.

[29] Seishi Okamoto and Yugami Nobuhiro. An average-case analysis of the k-nearest neighbor
classifier for noisy domains. In Proceedings of the 15th International Joint Conference on
Artifical Intelligence - Volume 1, IJCAI’97, San Francisco, CA, USA, 1997.

7

http://dl.acm.org/citation.cfm?id=944919.944952
http://dl.acm.org/citation.cfm?id=944919.944952

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

[30] Elzbieta Pekalska, Robert P. W. Duin, and Pavel Paclík. Prototype selection for dissimilarity-
based classifiers. Pattern Recognition, 39(2):189–208, 2006.

[31] Carey E. Priebe, David J. Marchette, Jason G. DeVinney, and Diego A. Socolinsky. Classifi-
cation using class cover catch digraphs. Journal of Classification, 20(1):003–023, May 2003.
ISSN 1432-1343.

[32] Diego Furtado Silva and Laboratorio De Intelligencia Computacional. How k-nearest neighbor
parameters affect its performance. In Simposio Argentino de Inteligencia Artificial (ASAI
2009), 95 – 106, 2009.

[33] Yunsheng Song, Jiye Liang, Jing Lu, and Xingwang Zhao. An efficient instance selection
algorithm for k nearest neighbor regression. Neurocomputing, 251:26–34, 2017.

Appendix A. Omitted figure from Section 2.1

We numerically demonstrate the efficacy of Algorithm 1 by comparing it with the optimal solution
of the LP relaxation of (1) that results from relaxing αi ∈ [0, 1] for all i ∈ [n], see Figure 3.

Figure 3 Comparison of the progress of our greedy algorithm for the wine quality dataset [14], with the optimal solution
of the LP relaxation. Note that the optimal solution of our formulation is expected to lie in the range between the lowest
point of the greedy algorithm and the LP objective value.

Appendix B. Modified Greedy Criterion

We also try another less-than-standard greedy approach for solving (1): in each iteration we select
the point xk that has the best tradeoff of covering points with similar labels, that remain uncov-
ered, while avoiding covering points with dissimilar labels. For doing so, we define Set(ξk) :=
X ∩ (B(xk)

∖⋃
xj′∈P

B(xj′)) i.e. the set of previously uncovered points that are covered by xk;

Set(ηk) := X∩B(xk); and ∆Obj(xk) = ∆ξ(xk)−∆η(xk)−λ, where ∆ξ(xk) =
∑

j:xj∈Set(ξk)

(
1−

|yj−yk|
)
, ∆η(xk) =

∑
j:xj∈Set(ηk)|yj−yk|. Numerically we observe both the approaches perform-

ing similarly, with minor variations in the selected prototypes, and the one in Section 2.1 gaining an
upper hand at times, as is expected.

8

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Appendix C. Dataset Condensation

The prototypes chosen by Algorithm 1 adhere to a set of properties, which trade off between con-
sistency (properties (a) and (b) in Section 2), and sparsity (property (c) in Section 2) via the λ
parameter. Therefore for smaller values of λ, Algorithm 1 returns a set of prototypes which hold
more value in terms of prediction performance, whereas for larger values, it primarily serves as a
dataset condensation algorithm.

Well-known condensation schemes such as in [23] aim to preserve accuracy by maintaining
decision surfaces of k-NN with a minimal consistent subset of the data. This set often comprises of
prototypes which lie closer to the decision boundaries, as also in [7, 18]. Our algorithm, on the other
hand, selects prototypes greedily based on their ability to represent points in their neighborhood.
However, as discussed earlier, for larger values of λ we move our intent of prototype selection from
consistency more towards condensation of data.

Figure 4 Breakpoints for Algorithm 1 run on wine quality dataset, for a given ε in term of different values of λ and the
corresponding sparsity induced.

Algorithm 1 iteratively selects a point x as a prototype based on its ∆Obj(x) which is ∆ξ(x)−
∆η(x) − λ. Here ∆ξ(x) − ∆η(x), which can be easily shown to be non-increasing as the algo-
rithm progresses, describes a marginal score of representation while providing a natural ordering of
prototypes based on their ability for covering new points in close proximity both in the feature and
label space, and not covering points that are further away. λ controls the sparsity without affecting
the order of selection of points as prototypes.

In Figure 4, the horizontal lines denote termination points for our algorithm, corresponding to
the values that λ takes. 70 prototypes are selected for λ = 1, whereas for λ = 4, 8, and 20, only
20, 8 and 2 prototypes are selected respectively. The order in which prototypes are selected remains
preserved and the corresponding values on the y-axis demonstrate the strength of representation, for
each prototype. However, note that the ordering of prototypes is in fact, an artifact of the greedy
algorithm, and the marginal reduction in objective due to each prototype may differ in the optimal
solution.

9

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Appendix D. Vector Valued Regression
With ∆ymax := maxyi,yj∈Y ‖yi − yj‖2, the formulation in (1) can be modified as follows,

min
αi,ξi,ηi

n∑
i=1

ξi +

n∑
i=1

ηi+λ

n∑
i=1

αi

∑
j:xi∈B(xj)

αj

(
1− ‖yi − yj‖2

∆ymax

)
≥ 1− ξi,

∑
j:xi∈B(xj)

αj
‖yi − yj‖2

∆ymax
≤ ηi, αi ∈ {0, 1}, ξi, ηi ≥ 0, ∀i ∈ [n]

(2)

The corresponding greedy algorithm from Section 2.1 would remain the same, except that now

∆ξ(xk =

n∑
i=1

min

{
1− ‖yk − yi‖2

∆ymax
,max

{
0, 1−

∑
j:xi∈B(xj)

αj

(
1− ‖yi − yj‖2

∆ymax

)}}
. (3)

and ∆η(xk) =
∑

j:xj∈B(xk)
‖yk−yj‖2

∆ymax
.

Similarly the modified greedy criterion in Appendix B would now be using the following,
∆ξ(xk) =

∑
j:xj∈Set(ξk)

(
1− ‖yj−yk‖2

∆ymax

)
, ∆η(xk) =

∑
j:xj∈Set(ηk)

‖yj−yk‖2
∆ymax

.

Appendix E. Omitted proof from Section 3

We will now show that for a multi-class classification problem, Algorithm 1 is equivalent to the
greedy algorithm in [8, Section 3.2], with a modest change mentioned above.
Proof For a general L class classification problem, where D := {xi, yi}ni=1, xi ∈ Rd and yi ∈ [L]

for all i ∈ [n], we can directly apply (2) after one-hot encoding Y . Note that ∆ymax =
√

2 here
when the dissimilarity measure being used is euclidean distance. We will first consider the greedy
criterion proposed in Section 2.1. In [8], ∆ξ(xk, l) denotes the number of points in class l lying in
the ε radius ball centered at xk, which remain uncovered by previously chosen prototypes for the
same class. In our case, we use

max

{
0, 1−

∑
j:xi∈B(xj)

αj

(
1− ‖yi − yj‖2

∆ymax

)}
.

which is 0 when xi lies in the ε ball of at least one prototype belonging to the same class, and 1 other-
wise. Therefore the expression for ∆ξ(xk) in (3) is essentially reduced to

∑
j:xj∈Set(ξk)

(
1− ‖yj−yk‖2

∆ymax

)
where Set(ξk) is defined in Appendix B which coincidentally also results from our modified greedy
criterion. Observe that 1− ‖yj−yk‖2

∆ymax
is 1 when xk and xj are from the same class, and 0 otherwise.

This is summed over all points xj which are covered by the ε ball of xk and are uncovered by pre-
viously selected prototypes. Therefore we have shown that ∆ξ(xk) used in Algorithm 1 with either
of our greedy criterions is equivalent to ∆ξ(xk, l) in [8] for l = yk.

Similarly, ∆η(xk, l) in [8] denotes the number of data points which belong to a class that is
different from l, and are being covered by the ε ball of xk. Analogously, ∆η(xk) in our algorithm
uses ‖yj−yk‖2

∆ymax
which is 0 when xk and xj are from the same class, and 1 otherwise. Since this is

summed over all points xj which lie in the ε ball of xk, it is equivalent to ∆η(xk, l) from [8] for
l = yk. Therefore we observe that our scheme does not allow multi-membership.

10

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Appendix F. Omitted Experiments from Section 4

We provide extensive experiment results in a regression setting, demonstrating the efficacy of the
prototypes selected by our method. As such, Algorithm 1 handles classification as a special case
resulting in prototypes identical to [8] as discussed in Section 3 under Multi-Class Classification,
which is why we restrict our experiments to regression. Along the lines of [5, 8, 21, 22, 25, 33], we
evaluate our method by comparing its prediction performance, tolerance to outliers and goodness of
fit with other natural baselines.

F.1. Experiment Setup

F.1.1. DATASETS

We performed experiments on both synthetic and several public datasets, all of which have contin-
uous valued outputs. The two synthetic datasets with multi-dimensional inputs are as mentioned in
[19, Section 4.3, 4.4], also available at [1, 2], comprising 100 samples each labeled using non linear
functions of the inputs, with additive gaussian noise drawn from N (0, 0.25), and for which a good
prototype set would possibly be more informative than a linear model.

We also performed experiments on the following datasets, (a) Diabetes dataset [14]; (b) Wine
quality dataset [14]; (c) Swedish auto insurance dataset [3]; (d) Water quality dataset [16]. Datasets
(a-c) have single output labels, whereas (d) consists of multi-output labels comprising 14 different
targets. Our datasets contain both categoric and real-valued features; however, the labels are either
all continuous-valued scalars, such as in Datasets (a-c), or vectors, as in (d).

F.1.2. METHODOLOGY AND BASELINES

In our experiments, d(·, ·) is Euclidean distance for simplicity, λ is set to 1/n, and we evaluate
Algorithm 1 based on the root mean squared errors (RMSE) obtained when applying it to training
and test sets. The latter is handled via five-fold cross-validation for 100 uniformly-spaced values of
ε between the minimum and maximum inter-point distance.

We compare the performance with four natural baselines, viz: for each epsilon we select pro-
totypes using Algorithm 1 with the corresponding greedy criterions, Greedy_1 from Section 2.1
and Greedy_2 from Appendix B. Each of these is compared with (a) prototypes selected using
DISKR algorithm [33], which greedily eliminates samples from the dataset based on whether the
presence or absence of the sample enhances the prediction performance of k-NN regression; (b)
prototypes selected using a greedy algorithm for a simple set cover formulation, i.e. running
Algorithm 1 with all labels being set as identical, which is equivalent to unsupervised clustering;
(c) prototypes selected using the q-medoids algorithm which selects prototypes that belong to the
training data, 1; (d) k-NN algorithm, in which the entire training data is retained as the model for
prediction using k-NN.

F.1.3. IMPLEMENTATION

Note that in our implementation of the prediction routine for these schemes, where the k near-
est neighbors from the training data, or the k nearest prototypes selected are used, we perform a

1. We refrain from using k here in order to avoid confusion with k-NN. Here q is being used for the number of predefined
cluster centers of k-medoids [13] algorithm.

11

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

weighted average of the labels, the weights being the inverse of the distance between the test point
and the corresponding neighbor as prescribed in [15, 26, 32]. Furthermore, as is standard for nearest-
neighbors-based algorithms, we standardize each feature to zero mean and unit variance. Similarly
for experiments pertaining to vector-valued outputs, we standardize the regression outputs along
each dimension.

(a) Minimum test RMSE plotted against k, where k corresponds to the number of nearest prototypes
being used for making predictions. For each k, we can generate a plot such as Figure 6 and find
the best operating point i.e. point with the lowest test error.

(b) The amount of compression achieved by each algorithm for each value of k in Figure 5a in order
to achieve the corresponding test RMSE.

Figure 5 Prediction performance on diabetes dataset. Figure 5a and Figure 5b must be studied simultaneously. We
see that for lower values of k i.e. for example k ≤ 10, Algorithm 1 (Greedy_1 and Greedy_2) demonstrates signifi-
cantly lower test errors as compared to other baselines, while maintaining consistently high dataset compression. This is
indicative of a set of good prototypes, for which one would expect to have to use lesser nearest neighbors for achieving
good generalization. Our algorithm takes advantage of the label information for choosing smaller set of salient prototypes
which is sufficient for regression. We also note that DISKR achieves it’s lowest test error at k = 21, often outperforming
other baselines which do not use the label information, for k ≥ 21.. Set cover and q-medoid exhibit low test errors
for k in the range of 14 to 23, but with consistently low compression.

F.2. Prediction Performance

Figure 6 is a sample cross-validation plot for the diabetes dataset in which the selected prototypes
are used for generating predictions based on the 2-nearest neighbor rule. For each algorithm in this
figure, we can find the sweet spot in the number of prototypes, that exhibits the lowest test error.
Clearly, both Greedy_1 and Greedy_2 achieve lower test errors than all of the other baselines

12

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Figure 6 Sample cross-validation plot of test error vs the number of selected prototypes (P) by different algorithms from
the Diabetes dataset. The prototypes selected by each algorithm are used for making predictions using the k-nearest
neighbors rule. Clearly Algorithm 1 (Greedy_1 and Greedy_2) stands out as the superior one for most P . DISKR is
a close second at P = 4, however its performance is worse than k-NN much alike the other baselines for other values of
P . These numerics are generated for all datasets and for a wide range of k-values.

with a highly compressed dataset. Furthermore, as expected, we observe DISKR exhibiting com-
petitive test error as compared to k-NN for very small number of prototypes. This is because both,
our algorithm, and DISKR take advantage of the label information in the process of selecting pro-
totypes (or reducing the dataset). Note that all algorithms except DISKR have a setting in which
the prototype set equals the entire dataset i.e. no compression and therefore in the worst case the
minimum test error for each of them will be at most as much as that of k-NN. As for DISKR, it
naturally almost always ends up selecting only a fraction of the complete dataset as prototypes and
might therefore exhibit worse test errors than k-NN at times.

We repeat this process of finding the best operating point for a wide range of values of k for
each dataset, which results in Figure 5 for the diabetes dataset. We observe that our algorithm
combines the benefits of utilizing proximity measures in the label space, together with requiring
selected prototypes to conform to a set of desirable properties, clearly outperforming cases where
the label information is not used. DISKR on the other hand exhibits competitive performance for
higher values of k, with consistently modest compression.

Our findings about the prediction performance for each dataset, are summarized in Table 2,
where columns correspond to datasets, and the rows correspond to different prototype selection
schemes. Each cell block, corresponds to the best operating point by test RMSE, for each pair of
dataset and algorithm, which is obtained from plots analogous to Figure 5. The two best algorithms
by test RMSE are highlighted in each column, in which our algorithm appears with majority, while
exhibiting consistently high compression. DISKR leverages the label information to appear among
the top 3 algorithms, for 4 out of the 6 datasets. Figure 8 provides a concise visualization of the
same, where we see that our algorithm resides in the bottom right of the figure exhibiting lower
test errors and higher compression across different datasets. On average we incur a factor of 18%
reduction in the test RMSE across all datasets by using Algorithm 1 instead of k-NN.

Finally in Figure 7, we observe the superiority of our algorithm in terms of the minimum achiev-
able test error over different values of k, for a minimum required percentage compression of the
training data. DISKR exhibits competitive performance for compression less than 50%. k-NN
exists as a single point with no compression. We also observe these trends for other datasets.

13

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Figure 7 The minimum test RMSE is plotted against the minimum required compression and therefore every plot is
non-decreasing. Clearly Algorithm 1 (Greedy_1 and Greedy_2) outperforms all other baselines achieving lower test
errors for both low as well as high compression requirements. k-NN is a single point at (0, 0.175).

FR1 FR2 DB IN WN WA

Greedy_1
(1) 0.150 0.187 0.1725 0.113 0.1340 0.0901
(2) 55 61.25 68.25 80 77.5 78.57

Greedy_2
(1) 0.161 0.188 0.1724 0.115 0.1361 0.0895
(2) 75 65 77.46 75 78.75 69.39

DISKR
(1) 0.145 0.189 0.1731 0.121 0.1335 0.0923
(2) 36 45 45 58 66 31

k-NN
(1) 0.174 0.190 0.1750 0.122 0.1380 0.0930
(2) 0 0 0 0 0 0

Set
cover

(1) 0.162 0.189 0.1742 0.121 0.1358 0.0905
(2) 66.25 8.5 11.26 83.33 2 59.18

q-medoids
(1) 0.170 0.189 0.1750 0.122 0.1365 0.0908
(2) 15 3 0 75 67.5 85.71

Table 2 Summary of Prediction Performance Results (test RMSE) where each column corresponds to a dataset, (FR1)
Friedman 1, (FR2) Friedman 2, (DB) Diabetes, (IN) Insurance, (WI) Wine Quality, (WA) Water Quality, and (1) Best
test error, (2) % Compression. For each dataset, we report the best operating point chosen by cross-validating over a
range of values for k and number of prototypes (P) selected by each algorithm. Here, the two best algorithms for each
column, by test RMSE, are in bold. Observe that both Greedy_1 and Greedy_2 exhibit low test errors at consistently
high data compression as is expected of a set of good prototypes. This can also be visualized via Figure 8.

F.3. Robustness

As discussed in [21, 29], k-NN methods can suffer from lack of tolerance to outliers because they
consider the entire dataset relevant, even when it contains spurious data points. Prototype selection
is one way to possibly ameliorate the problem, and in this section we experimentally evaluate Algo-
rithm 1’s tolerance to noise vis a vis the other baselines in the following way. We corrupt a dataset
by adding gaussian noise to the labels of q% of the training points. We do this for several different
values of q between 0% and 50%. The noise is drawnN (0, σ2Im), where m is the number of target
variables and σ2 is the variance in the labels of the entire dataset, with σ = 1 for m > 1 due to
standardization of the labels.

Cross-validation is performed with noisy training data and pure test data as follows. For a given
(4/5, 1/5) split of the data into training set and test set respectively, we introduce gaussian noise

14

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

Figure 8 This plot is a visualization for Table 2, where each point corresponds to a cell of Table 2, i.e. a unique pair of
dataset and prototype selection algorithm. The test errors in each column of Table 2 are normalized between 0 and 1 and
plotted against the percentage compression. Being in the bottom right is most desirable with lower test errors and higher
compression. We see that Algorithm 1 (Greedy_1 and Greedy_2) is consistently in the bottom right. The next best
algorithm here is DISKR which exhibits low test errors half the time, with modest to high compression. k-NN which
always resides in the top left has the worst operating points for all the datasets.

Figure 9 In this plot we demonstrate the effect of corrupting 0 to 50% of the Diabetes dataset, on the performance of
our Algorithm and other baselines (in terms of the minimum test RMSE), for a fixed value of k = 2. From this plot
we observe that the effect of data corruption is more pronounced on our baselines which disregard label information, as
compared to on our Algorithm. This experiment is repeated for a wide range of values of k and for every dataset, the
result of which are aggregated and summarized in Table 3.

to labels of the training set, but not the test set, and then compute the test error on the test set us-
ing the prototypes that were selected from the noisy training set.

In Figure 9, we observe an increasing trend in the minimum test error on increasing the amount
of corrupted data for the diabetes dataset, where the predictions for every scheme are generated
using 2-nearest prototypes. The increase in test error is most pronounced for k-NN which utilizes
the entire dataset. Our algorithm (Greedy_1 and Greedy_2) exhibits a smaller increase in the
test error as compared to both q-medoid and Set cover, both of which do not take advantage
of the label information and are therefore affected by data corruption. By the same reasoning, the

15

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

FR1 FR2 DB IN WN WA

Greedy_1 4.3 1.1 6.4 8.9 2.6 1.2

Greedy_2 3.6 1.3 7.8 9.0 2.6 1.6

DISKR 4.0 1.5 9.2 8.4 4.5 1.5

k-NN 4.1 2.8 13.1 14.9 9.0 1.9

Set cover 5.3 1.7 11.6 12.7 4.9 1.3

q-medoids 4.6 1.8 12.3 9.4 4.9 2.1

Table 3 Mean percentage increase in minimum test RMSE (%): Summary of Results depicting robustness where
(FR1) Friedman 1, (FR2) Friedman 2, (DB) Diabetes, (IN) Insurance, (WI) Wine Quality, (WA) Water Quality. The
percentage robustness of the best two algorithms in each column are in bold. Here the average is taken across different
values of k and for percentage of noisy training data between 0% to 50%, for each dataset. Our algorithm, Algorithm 1,
is among the top three for 4 out of 6 datasets.

test error with DISKR is the least affected as it not only utilizes the label information, but also
removes outliers in the its first phase.

Table 3 reports the average percentage increase in the minimum test error due to data corruption,
for different datasets. Observe that k-NN is the least robust algorithm for 4 out of the 6 datasets,
which is attributed to its lack of tolerance to outliers. On the other hand, both Greedy_1 and
Greedy_2, which are variations of Algorithm 1, consistently appear among the top two robust
algorithms for 5 and 4 datasets respectively.

F.4. Supervised Clustering

The coefficient of determination (R2 value as defined in [11]), which represents the percentage
of variance in the dependent variables that is explained by the independent variables, is used to
evaluate Algorithm 1 as a supervised clustering algorithm in Figure 10. Given a prototype set, each
prototype serves as a cluster representative and all samples in the dataset are associated with the
cluster corresponding to the nearest prototype. This clustering is evaluated by computing the R2

value using the label of each prototype as a prediction for each sample in its cluster, which is then
compared with the actual label of each sample.

Figure 10 demonstrates the variation of R2 with the number of clusters for three different
datasets. We clearly observe the superiority of our algorithm (Greedy_1 and Greedy_2) for
all number of clusters. This is because, the predictions made by looking at the nearest prototype are
expected to be more accurate with a good prototype set. For those algorithms which emit an inferior
prototype set, extensive cross validation is critical for selecting an appropriate number of nearest
neighbors, and such schemes cannot be used for supervised clustering.

16

HEURISTIC PROTOTYPE SELECTION FOR REGRESSION

(a) (b)

(c)

Figure 10 Quantitative measure of supervised clustering performance. Each prototype is the representative of a
cluster or group and each group predicts the label of the representative point. If every point is selected as a prototype,
then the R2 value will be 1. As the number of prototypes or groups increases, the fraction of output variance explained
also increases. Both Greedy_1 and Greedy_2 result in groups which explain a higher fraction of the output variance.
The superiority in R2 values of our Algorithm over our baselines is more pronounced for smaller number of prototypes.
DISKR naturally selects only a fraction of the total number of samples at most, which is why it does not achieve R2 = 1.

17

	Introduction.
	Optimization Problem
	Greedy Approach

	Handling Multi-Valued Outputs
	Experiments
	Omitted figure from [subsec:algorithm]Section 2.1
	Modified Greedy Criterion
	Dataset Condensation
	Vector Valued Regression
	Omitted proof from [sec:applications]Section 3
	Omitted Experiments from [sec:expmtcondensed]Section 4
	Experiment Setup
	Datasets
	Methodology and Baselines
	Implementation

	Prediction Performance
	Robustness
	Supervised Clustering

