
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

A FISTA-type average curvature accelerated composite gradient
method for nonconvex optimization problems

Jiaming Liang JIAMING.LIANG@GATECH.EDU

Renato D.C. Monteiro RENATO.MONTEIRO@ISYE.GATECH.EDU

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205

Abstract
This paper presents an accelerated composite gradient (ACG) variant of the FISTA type, referred
to as AC-FISTA, for solving nonconvex smooth composite minimization problems. As opposed
to well-known ACG variants that are either based on a known Lipschitz gradient constant or a
line search procedure, AC-FISTA uses the average of all observed functional curvatures and never
backtracks. This paper also provides the convergence rate result of AC-FISTA in terms of the
aforementioned average curvatures. Finally, computational results are presented to illustrate the
efficiency of AC-FISTA on real-world problem instances.
Keywords: smooth nonconvex optimization, average curvature, line search free method.

1. Introduction

In this paper, we study an ACG-type algorithm for solving a nonconvex smooth composite opti-
mization (N-SCO) problem

φ∗ := min {φ(z) := f(z) + h(z) : z ∈ Rn} (1)

where h : Rn → (−∞,∞] is a proper lower semicontinuous convex function and f is a real-valued
differentiable (possibly nonconvex) function with anM -Lipschitz continuous gradient on a compact
convex set containing domh.

A large class of methods for solving (1) computes the next iterate yk+1 by solving a linearized
prox subproblem of the form

yk+1 = y(x̃k;Mk) := argmin

{
lf (x; x̃k) + h(x) +

Mk

2
‖x− x̃k‖2 : x ∈ Rn

}
(2)

where x̃k is chosen as either the current iterate yk (as in unaccelerated algorithms) or a convex
combination of yk and another auxiliary iterate xk (as in accelerated algorithms), and Mk is an
upper estimation of the “local function curvature” of f at x̃k. More specifically, letting

C(y; x̃) :=
2 [f(y)− `f (y; x̃)]

‖y − x̃‖2
, (3)

Mk is chosen so as to satisfy
Ck := C(yk+1; x̃k) ≤Mk. (4)

It is well-known that the smaller the sequence {Mk} is, the faster the convergence rate of the
method becomes. Hence, it is desirable to choose Mk to be the smallest value satisfying (4). Dif-
ferent schemes for choosing Mk have been employed in pure ACG variants for solving (1). The

c© J. Liang & R.D. Monteiro.

AC-FISTA

AG method proposed in [2] is a direct extension of the ACG variant based on the constant choice
of Mk (i.e., Mk = M where M is the Lipschitz constant of ∇f) to the N-SCO context. AG
performs two resolvent evaluations of ∂h per iteration. NC-FISTA of [6] is an extension of the
well-known ACG variant FISTA [1] to the N-SCO context. It requires as input a pair (M,m) and
sets Mk = M + κ0m/(Mak) > M where κ0 is a positive universal constant and {ak} is a se-
quence constructed in the method. In contrast to an iteration of the AG method, every iteration of
NC-FISTA performs exactly one resolvent evaluation. One drawback of NC-FISTA is that it re-
quires as input (M,m), which is usually hard to obtain or is often poorly estimated. On the other
hand, ADAP-NC-FISTA of [6] remedies this drawback in that it only requires as input an arbitrary
initial pair (M0,m0), and dynamically updates (Mk,mk) by means of backtracking procedures.

Paper [5] proposes a new ACG variant, namely the AC-ACG method, for solving the N-SCO
problem where Mk is computed as a positive multiple of the average of all observed curvatures
up to the previous iteration, and presents numerical results of AC-ACG demonstrating its outper-
forming practical performance. As opposed to ACG variants based on the schemes outlined in the
previous paragraph as well as other ACG variants, AC-ACG always computes a new step regardless
of whether Mk overestimates or underestimates Ck. The main result of [5] shows that AC-ACG
obtains a pair (y, v) satisfying v ∈ ∇f(y) + ∂h(y) and ‖v‖ = O(

√
Mk/
√
k). Since Mk is usually

much smaller than M̄ , which is the smallest Lipschitz constant of ∇f on domh, this convergence
rate bound explains the good empirical performance of AC-ACG.

This paper proposes a variant of AC-ACG, namely AC-FISTA, for solving (1). Like AC-ACG,
AC-FISTA is an ACG variant based on the average of all observed curvatures. More specifically,
while AC-ACG computes the average Cavgk of the observed curvatures C̃k defined as

C̃k = max

{
C(y(x̃k;Mk); x̃k),

‖∇f(y(x̃k;Mk))−∇f(x̃k)‖
‖y(x̃k;Mk)− x̃k‖

}
(5)

where y(x̃k;Mk) is as in (2), AC-FISTA computes the average Cavgk of the observed curvature
Ck = C(y(x̃k;Mk); x̃k). Since Ck is smaller than C̃k, the resulting Mk in AC-FISTA is smaller
than that of AC-ACG, and hence AC-FISTA has a faster convergence in practice. In contrast to
AC-ACG, which performs two resolvent evaluations of ∂h per iteration, AC-FISTA performs only
one resolvent evaluation in those iterations for which (4) holds, and two resolvent evaluations in
the other ones. Moreover, following the approach of [5] which analyzes the convergence rate of
AC-ACG, this paper also establishes the convergence rate of AC-FISTA. Although the use of Cavgk

has already been observed in [5] to yield a quite efficient variant of AC-ACG, the convergence rate
analysis of the latter was left as an open problem there. In this regards, this paper presents a FISTA-
type ACG variant, related to but different from the one considered in [5], based on Cavgk with a
provable convergence rate bound.

Organization of the paper. Section 2 describes the N-SCO problem and the assumptions made
on it. It also presents AC-FISTA for solving the N-SCO problem and describes the main result
of the paper, which establishes a convergence rate bound for AC-FISTA in terms of two averages
of observed curvatures. Section 3 presents computational results illustrating the efficiency of AC-
FISTA. Section 4 presents some concluding remarks. Finally, Appendix A provides the detailed
experimental setup.

Basic definitions and notation. The set of real numbers is denoted by R. Let Rn denote the
standard n-dimensional Euclidean space with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖,
respectively. The Frobenius norm in Rm×n is denoted by ‖ · ‖F . The indicator function IS of a

2

AC-FISTA

set S ⊂ Rn is defined as IS(z) = 0 for every z ∈ S, and IS(z) = ∞, otherwise. Let ψ : Rn →
(−∞,+∞] be given. The effective domain of ψ is denoted by domψ := {x ∈ Rn : ψ(x) < ∞}
and ψ is proper if domψ 6= ∅. If ψ is differentiable at z̄ ∈ Rn, then its affine approximation `ψ(·; z̄)
at z̄ is defined as `ψ(z; z̄) := ψ(z̄) + 〈∇ψ(z̄), z − z̄〉 for every z ∈ Rn. The subdifferential of
ψ at z ∈ Rn is denoted by ∂ψ(z). The set of all proper lower semi-continuous convex functions
ψ : Rn → (−∞,+∞] is denoted by Conv (Rn).

2. AC-FISTA and the main result

This section presents the main algorithm studied in this paper, namely, AC-FISTA, describes the
N-SCO problem and the assumptions made on it, and states the main result of the paper, i.e. the
convergence rate of AC-FISTA.

The problem of interest in this paper is the N-SCO problem (1), where the following conditions
are assumed to hold:

(A1) h ∈ Conv (Rn);

(A2) f is a nonconvex differentiable function on ∆ (⊃ domh) and there exist scalars m ≥ 0,
M ≥ 0 such that for every u, u′ ∈ ∆,

− m

2
‖u− u′‖2 ≤ f(u)− `f (u;u′), ‖∇f(u)−∇f(u′)‖ ≤M‖u− u′‖; (6)

(A3) the diameters Dh := sup{‖u− u′‖ : u, u′ ∈ domh} and D∆ := sup{‖u− u′‖ : u, u′ ∈ ∆}
are finite.

Throughout the paper, we let m̄ (resp., M̄) denote the smallest scalar m ≥ 0 (resp., M ≥ 0)
satisfying the first (resp., second) inequality in (6).

A necessary condition for ŷ to be a local minimum of (1) is that 0 ∈ ∇f(ŷ) + ∂h(ŷ), i.e, ŷ be a
stationary point of (1). Hence, we have the following definition of a ρ̂-approximate stationary point.

Definition 1 Given a tolerance ρ̂ > 0, a pair (ŷ, v̂) ∈ Rn×Rn is called a ρ̂-approximate stationary
point of (1), if v̂ ∈ ∇f(ŷ) + ∂h(ŷ) and ‖v̂‖ ≤ ρ̂.

We are now ready to state AC-FISTA.

AC-FISTA

0. Let a parameter γ ∈ (0, 1), a scalar M ≥ M̄ , a tolerance ρ̂ > 0 and an initial point y0 ∈
domh be given and set A0 = 0, x0 = y0, M0 = γM , k = 0 and α = 0.9

8

(
1 + 1

0.9γ

)−1
;

1. compute ak = (1+
√

1 + 4MkAk)/2Mk, Ak+1 = Ak+ak, x̃k = (Akyk+akxk)/Ak+1;

2. set ygk+1 = y(x̃k;Mk) where y(·; ·) is as in (2) and compute

xk+1 = P∆

(
akMky

g
k+1 −

Ak
ak
yk

)
, (7)

vk+1 = Mk(x̃k − ygk+1) +∇f(ygk+1)−∇f(x̃k);

3

AC-FISTA

3. if ‖vk+1‖ ≤ ρ̂ then output (ŷ, v̂) = (ygk+1, vk+1) and stop; else, compute

Ck = C(ygk+1; x̃k), Cavgk =
1

k + 1

k∑
j=0

Cj , Mk+1 = max

{
1

α
Cavgk , γM

}
(8)

where C(·; ·) is as in (3);

4. set

yk+1 =

 ybk+1 :=
Akyk+akx

b
k+1

Ak+1
, if Ck > 0.9Mk;

ygk+1, otherwise
(9)

where

xbk+1 = argmin
u∈Rn

{
ak[`f (u; x̃k) + h(u)] +

1

2
‖u− xk‖2

}
, (10)

and k ← k + 1, and go to step 1.

We add a few observations about AC-FISTA. First, steps 0-2 are in the format of FISTA, which
performs only one resolvent evaluation of ∂h for solving yk+1. Second, in the iterations for which
Ck > 0.9Mk (called the bad iterations, see (9)), an extra resolvent evaluation of ∂h is required
to compute xbk+1 in (10). Third, if ∆ is properly chosen, then the projection onto ∆ in (7) is
usually considerably cheaper than a resolvent evaluation of ∂h. Fourth, in view of step 3, AC-
FISTA terminates when a ρ̂-approximate stationary point of (1) as in Definition 1 is obtained.

We briefly compare AC-FISTA with AC-ACG presented in [5]. First, while AC-ACG computes
Cavgk as the average of {C̃i : i = 0, . . . , k} where C̃i is as in (5), AC-FISTA computes this quantity
as being the average of {Ci : i = 0, . . . , k} where Ci is as in (8). Since Ck is substantially smaller
than C̃k, the resulting Cavgk , and hence Mk+1, computed by AC-FISTA is also substantially smaller
than those computed by AC-ACG. Second, while AC-ACG performs two resolvent evaluations per
iteration, AC-FISTA performs one resolvent evaluation in a good iteration (i.e., an iterations for
which Ck ≤ 0.9Mk) and two resolvent evaluations in a bad iteration. Since one of the key results
behind the analysis of AC-FISTA is that the number of bad iterations up to iteration k is bounded by
k/3, it can be shown that the average iteration cost (in terms of the number of resolvent evaluations
of ∂h) of AC-FISTA is no more than 2/3 times the average iteration cost of AC-ACG (although in
practice it is frequently observed to be close to 1/2).

We now state the main result of the paper which describes how fast one of the iterates yg1 , . . . , y
g
k

approaches the stationary condition 0 ∈ ∇f(y) + ∂h(y).

Theorem 2 The following statements hold:

(a) for every k ≥ 1, we have vk ∈ ∇f(ygk) + ∂h(ygk);

(b) for every k ≥ 12, we have

min
1≤i≤k

‖vi‖ = O
((
Mk + C̄avgk

)(d0

k3/2
+

(√
1− γ
√
γ

+

√
m̄θk√
Mk

)
D∆

k
+

√
m̄θkDh√
Mkk

))
where θk := max {Mk/Mi : 0 ≤ i ≤ k} and

C̄avgk :=
1

k

k−1∑
i=0

C̄i, C̄k :=
‖∇f(ygk+1)−∇f(x̃k)‖

‖ygk+1 − x̃k‖
.

4

AC-FISTA

3. Numerical experiments

This section presents computational results to illustrate the performance of AC-FISTA on a con-
strained version of the nonconvex low-rank matrix completion (NLRMC) problem.

We compare AC-FISTA with six other nonconvex optimization methods, namely: (i) AG pro-
posed in [2]; (ii) NM-APG of [4]; (iii) UPFAG proposed in [3]; (iv) NC-FISTA of [6]; (v) ADAP-
NC-FISTA also described in [6]; and (vi) AC-ACG introduced in [5].

The constrained version of the NLRMC problem considered in this section is

min
Z∈Rl×n

{
1

2
‖ΠΩ(Z −O)‖2F + µ

r∑
i=1

p(σi(Z)) : Z ∈ BR

}
. (11)

The detailed description of the problem and the setup of numerical experiments can be found in
Appendix A.

M
Function Value /
Iteration Count

Running Time (s)

AG NM UP NC/AD AC/ACF AG NM UP NC/AD AC/ACF
4.4 2257

3856
1809
1036

2605
521

2628/2625
4780/1674

2288/1816
765/381

4568 1033 1545 3925/1946 923/440

8.9 3886
9158

3359
1617

4261
576

4246/4203
9751/1794

3884/3346
968/462

10251 1605 1621 7901/1930 1173/539

20 4282
22902

3635
2875

4637
676

4641/4582
22259/2209

4267/3513
1079/835

29274 2836 1914 15912/2364 1236/1091

30 5967
37032

5237
3717

6753
606

6380/6293
32223/1963

5975/5140
1085/798

41673 4182 1628 22265/2104 1263/1068

Table 1: Numerical results for AG, NM, UP, NC, AD, AC and ACF

Numerical results of the seven methods in four test cases with different M values are given
in Table 1, where NM, UP. NC, AD, AC and ACF are short names for NM-APG, UPFAG, NC-
FIST, ADAP-NC-FISTA, AC-ACG and AC-FISTA, respectively. In summary, computational results
demonstrate that: i) AC-FISTA has the best performance in terms of running time in all four test
cases; and ii) AC-FISTA finds the smallest objective function values in the last three test cases, and
also finds the second smallest objective function value in the first test case, which is close enough
to the best one obtained by NM.

4. Concluding remarks

This paper proposes a FISTA-type ACG variant, namely AC-FISTA, for solving the N-SCO problem
(1) which uses the averageCavgk−1 of all observed curvaturesC0, . . . , Ck−1 to compute the next iterate
yk+1. Its convergence rate is established in terms of two average curvatures. Numerical results are
also presented to illustrate the efficiency of AC-FISTA.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

5

AC-FISTA

[2] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Math. Programming, 156:59–99, 2016. ISSN 1436-4646.

[3] S. Ghadimi, G. Lan, and H. Zhang. Generalized uniformly optimal methods for nonlinear
programming. Journal of Scientific Computing, 79(3):1854–1881, 2019.

[4] H. Li and Z. Lin. Accelerated proximal gradient methods for nonconvex programming. Adv.
Neural Inf. Process. Syst., 28:379–387, 2015.

[5] J. Liang and R. D. C. Monteiro. An average curvature accelerated composite gradient method
for nonconvex smooth composite optimization problems. Available on arXiv:1909.04248, 2019.

[6] J. Liang, R. D. C. Monteiro, and C.-K. Sim. A FISTA-type accelerated gradient algorithm for
solving smooth nonconvex composite optimization problems. Available on arXiv:1905.07010,
2019.

Appendix A. Details of numerical experiments

In this section, we provide the details of numerical experiments presented in Section 3.
Before stating the constrained version of the NLRMC problem, we first give a few definitions.

Let Ω be a subset of {1, . . . , l}×{1, . . . , n} and let ΠΩ denote the linear operator that maps a matrix
A to the matrix whose entries in Ω have the same values of the corresponding ones in A and whose
entries outside of Ω are all zero. Also, for given parameters β > 0 and θ > 0, let p : R → R+

denote the log-sum penalty defined as

p(t) = pβ,θ(t) := β log

(
1 +
|t|
θ

)
.

The constrained version of the NLRMC problem considered in numerical experiments is as in
(11), where R is a positive scalar, BR := {Z ∈ Rl×n : ‖Z‖F ≤ R}, O ∈ RΩ is an incomplete
observed matrix, µ > 0 is a parameter, r := min{l, n} and σi(Z) is the i-th singular value of Z.

The NLRMC problem in (11) is equivalent to

min
Z∈Rl×n

f(Z) + h(Z)

where

f(Z) =
1

2
‖ΠΩ(Z −O)‖2F + µ

r∑
i=1

[p(σi(Z))− p0σi(Z)],

h(Z) = µp0‖Z‖∗ + IBR(Z), p0 = p′(0) =
β

θ
,

and ‖ · ‖∗ denotes the nuclear norm defined as ‖ · ‖∗ :=
∑r

i=1 σi(·). Recall that assumption (A2)
requires ∆ ⊃ domh, and hence we choose ∆ = BR.

We use the MovieLens dataset1 to obtain the observed index set Ω and the incomplete observed
matrix O. The dataset includes a sparse matrix with 100,000 ratings of {1,2,3,4,5} from 943 users

1. http://grouplens.org/datasets/movielens/

6

AC-FISTA

on 1682 movies, namely l = 943 and n = 1682. The radius R is chosen as the Frobenius norm of
the matrix of size 943× 1682 containing the same entries as O in Ω and 5 in the entries outside of
Ω.

We start all seven methods from the same initial point Z0 that is sampled from the standard
Gaussian distribution and is within BR. The parameter pair (α, γ) is set to (0.5, 0.01) in both AC
and ACF. All seven methods terminate with a pair (Z, V) satisfying

V ∈ ∇f(Z) + ∂h(Z),
‖V ‖

‖∇f(Z0)‖+ 1
≤ ρ̂

where ρ̂ = 5 × 10−4. All the computational results were obtained using MATLAB R2017b on a
MacBook Pro with a quad-core Intel Core i7 processor and 16 GB of memory.

7

	Introduction
	AC-FISTA and the main result
	Numerical experiments
	Concluding remarks
	Details of numerical experiments

