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Abstract
Applying machine learning techniques to accelerate optimization algorithms has recently gained
researchers’ attention. Different from manually-designed update rules, learning-based algorithms
“learn to optimize” from data. When solving different but similar optimization problems repeti-
tively, learning-based algorithms update their iterates using previous problem-solving experiences.
This paper describes our study on a learning-based Quasi-Newton framework. Our study uses two
recurrent neural networks that, at each iteration, select a step size and a Hessian approximator from
a modified Broyden class. We train them offline to accelerate online convergence. The proposed
framework shows outstanding performance on logistic regression. In the future, we will extend our
study to additional classes of optimization problems.

1. Introduction

Quasi-Newton methods such as the Davidon-Fletcher-Powell (DFP) method [11, 14], Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [4, 13, 15, 25], and Symmetric Rank 1 (SR1) method
[11] replace the Hessian in Newton’s method by computationally-cheaper approximations. They
are among the most efficient methods for smooth unconstrained optimization problems. In [5, 21],
it was shown that under certain assumptions, quasi-Newton methods equipped with a practical line
search could achieve a superlinear convergence rate. The efficiency of quasi-newton methods is
often related to its speed of recovering true Hessian. A quasi-newton method is often equipped with
an exact or inexact line search that ensures the curvature condition.

Motivated by the recent work [23], which introduces an optimization scheme that selects dif-
ferent Hessian approximators at each iteration from a large subclass of Quasi-Newton methods, we
propose a data-driven method that adaptively selects an approximator for the inverse Hessian (un-
like [23]), as well as a step size, to achieve a faster practical speed. Specifically, a learning-based
framework will select a Hessian inverse approximator from a sub-class of the Broyden family.

Consider f : Rn → R, which is at least twice continuously differentiable. A quasi-Newton
method generates a new iterate:

xk+1 = xk − αkHk∇f(xk),
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where αk is the step size and Hk is the inverse Hessian approximate at kth iterate xk. BFGS and
DFP inverse Hessian approximates are, respectively,
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kHk +Hkyks
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for
sk := xk+1 − xk, yk := ∇f(xk+1)−∇f(xk).

Under Hk � 0 and curvature condition yTk sk > 0, HBFGS
k+1 and HDFP

k+1 are also positive definite.
The Broyden class is a family of quasi-Newton methods satisfying secant condition Hk+1yk =

sk [6, 12, 20, 22] defined as

HBFGS-DFP
k+1 (τ) = τHBFGS

k+1 + (1− τ)HDFP
k+1, (1)

where τ ∈ R is the Broyden parameter. The restricted Broyden class has τ ∈ [0, 1]. SR1

HSR1
k+1 = Hk −

(Hkyk − sk)(Hkyk − sk)T

(Hkyk − sk)T yk
. (2)

corresponds (1) by setting τ =
yTk sk

(sk−Hkyk)T yk
. While HSR1

k+1 exhibits faster convergence than BFGS

on many problems, HSR1
k+1 is not necessarily positive definite and the denominator of (2) can vanish.

There exist convex quadratic problems [10] on which no SR1 update satisfies the secant condition.
Our method finds a sequence of high-quality parameters (τk, αk) using meta-learning. Rather

than switching between well-known approximators in [1, 2, 13], we introduce an alternative pa-
rameterization of the Broyden class and use training data to obtain a model that selects τk ∈ [0, 1]
adaptively. The model consists of two recurrent neural networks (RNNs) [24] that find the param-
eter pair at each iteration k based on information accumulated from the previous k − 1 steps. The
RNN used in this paper is long short-term memory (LSTM) [17].

Our approach belongs to the class of methods known as learning to optimize (L2O). In L2O,
neural networks are trained to obtain efficient models for a particular distribution of data. This
results in task-specific algorithms [3, 7, 8, 19] that can converge order(s) of magnitude faster than
general-purpose counterparts on problems sufficiently similar to those used in training. Based on our
own experience and private communication, it is generally difficult to obtain excellent performance
on L2O methods using second-order information. However, we present our first successful attempt
of such kind.

A primary concern on L2O models is that the neural network and training theories cannot guar-
antee convergence. Therefore, we follow the idea in [16] to wrap our method with a safeguard to
ensure sufficient descent in objective value at each iteration.

2. Proposed method

Using a technique from [23], we derive an new parameterization, τ ∈ [0, 1], from BFGS and SR1
for the inverse Hessian:

HBFGS-SR1
k+1 (τ) = τHBFGS

k+1 + (1− τ)HSR1
k+1. (3)
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By multiplying both sides of (3) by yk, we can easily see that any τ ∈ (−∞,+∞) satisfies quasi-

Newton condition since BFGS and SR1 satisfy the condition. When τ =
yTk sk

yTk Hkyk
, (3) becomes a

DFP update. Let us show that (3) is monotonic in parameter τ .

Lemma 1 If Hk < A−1k � 0, then, for any τ1, τ2 ∈ R such that τ1 ≥ τ2, we have

HBFGS-SR1
k+1 (τ1) < HBFGS-SR1

k+1 (τ2).

Proof Without the loss of generality, suppose Hkyk 6= sk, then
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Denote vk
def
= Hkyk−sk

(Hkyk−sk)T yk
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, then

HBFGS-SR1
k+1 (τk) = Hk −

(Hkyk − sk)(Hkyk − sk)T

(Hkyk − sk)T yk
+ τ(Hkyk − sk)T ykvkvTk . (4)

As sk = A−1k yk, if Hk < A−1k , then (Hkyk − sk)T yk > 0. The claim now follows from the fact
that (Hkyk − sk)T ykvkvTk < 0 when Hk < A−1k .

We introduce our learning-based Broyden method with safegaurd (LBBS) in Algorithm 1. In
lines 3 and 8, α′k and τ ′k are the step size and Broyden parameter decided by two LSTMs, which
share the same structure with independent trainable parameter sets, θα and θτ , respectively. The

input parameter zk =

[
xk

∇f(xk)

]
consists of the current iterate and gradient. The algorithm then

determines the corresponding inverse Hessian approximation H ′k, direction p′k, iterate x′k+1, gradi-
ent ∇f(x′k+1), and objective value f(x′k+1). To improve stability, we propose a safeguard method
inspired by [16]. In line 11, a safeguard checks if moving from xk to x′k+1 satisfies the Wolfe
conditions. If so, the current iteration is updated based on the learning model. Otherwise, in lines
14-17, the current iteration falls back to the BFGS approximator with a step size determined by
the Wolfe line search. The safeguard in lines 11-17 can be removed to define an learning-based
Broyden method (LBB) algorithm without safeguard.

The LSTM in line 3 is defined by

LSTM(zk; θτ ) = σ(ck)ok,

where
ck = gkck−1 + ik c̃k,

ok = σ(Uozk+1 + wo τk−1),

gk = σ(Ugzk+1 + wg τk−1),

ik = σ(Uizk+1 + wi τk−1),

c̃k = tanh (Uc̃zk+1 + wc̃ τk−1).
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Algorithm 1: Learning-based Broyden Method with Safeguard
Given x0 and f , initialize k ← 0, determine∇f(x0), θτ and θα are obtained by ADAM[18]
applied to solve the training model (5) approximately.
1. while xk not converged do
2. if k > 0 then
3. τ ′k ← LSTM(zk; θτ )
4. H ′k ← τ ′kH

BFGS
k + (1− τ ′k)HSR1

k

5. else
6. H ′k ← I
7. p′k ← −H ′k∇f(xk)
8. α′k ← LSTM(zk; θα)
9. propose x′k+1 ← xk + α′kp

′
k

10. determine∇f(x′k+1) and f(x′k+1)

11. if f(x′k+1) ≤ f(xk) + c1α
′
k∇fT (xk)p′k and∇fT (x′k+1)p

′
k ≥ c2∇fT (xk)p′k then

12. xk+1 ← x′k+1, ∇f(xk+1)← ∇f(x′k+1), and Hk ← H ′k
13. else
14. set Hk ← HBFGS

k and pk ← −Hk∇f(xk)
15. determine αk with Wolfe line search
16. xk+1 ← xk + αkpk
17. determine∇f(xk+1)
18. k ← k + 1
19. end While

Here, Ug, Ui, Uc̃, Uo ∈ R2n and wg, wi, wc̃, wo ∈ R are trainable weights in θτ . The sigmoid and
tanh activation functions are σ(a) = 1

1+e−a and tanh(a) = ea−e−a
ea+e−a , respectively. An LSTM with

the same structure but its own weights θα is applied to determine α′k. During training, the safeguard
is deactivated and the weights in the LSTMs are trained via

minimize
θτ ,θα

L(θτ , θα) =

Ktrain∑
k=1

f(xk)

f(x0)
, (5)

where f(x0) is the initial objective value and Ktrain is the number of training steps. We want the
objective function value at the 1, 2, · · · ,Ktrain steps as small as possible.

3. Numerical Results

The proposed learning-based Broyden (LBB) model is trained on logistic regression with an l2
regularizer, defined as:

minimize
x

f(x) = − 1

m

m∑
i=1

(bi log σ(Aix) + (1− bi) log (1− σ(Aix))) +
λ

n
‖x‖22.

Here A ∈ Rm×n and b ∈ Rm are sample features and labels from EMNIST dataset [9], which
contains 240,000 training images and 40,000 testing images with handwriting numbers from 0 to
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9. We randomly extract 40,000 validation images from the training set with balanced classes. Each
sample consists of 2 classes with m

2 images each, where each image is downsized to n features.
For our experiments, we choose m = 500, n = 100, and λ = 0.1. LBB was trained to minimize
(5) with Ktrain = 10 using ADAM[18] optimizer with a learning rate chosen by random search. we
trained the model for 50 epochs where each epoch consists of 100 batches of training samples with a
batch size of 64. LBB was compared with LBBS, DFP, BFGS, and SR1 on 100 testing samples with
a maximum of 200 iterations and 1e-8 stopping tolerance. The Wolfe line search was implemented
to determine appropriate step size for exact methods. We initialized H0 = I for all methods.

Figure 1 shows the result on a testing sample, where the optimal objective value f(x∗) was
determined by Newton’s method with Wolfe line search. LBB requires a smaller number of n2

computations to converge. The fluctuation of LBB is smoothed by the safeguard, so LBBS (S for
safeguard) is the fastest to converge. SR1 fails to converge as it cannot maintain a positive definite
Hk. Table 1 compares the average number of iterations and n2 computations to converge across 100
testing samples. The statistics for SR1 and LBB are not shown there as they fail to converge within
the maximum iterations on 11 and 3 samples, respectively. LBBS outperforms DFP and BFGS in
both measures.
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Figure 1: Objective error f(xk)−f(x∗k) in the log scale (left), step size αk for all methods (middle),
and τk selected by LBB and LBBS (right). “τk = 1” indicates when LBBS selects BFGS
and activates the safeguard (lines 15-18).

Table 1: Average number of iterations and n2 computations to converge across 100 testing samples.

Method Iteration n2 Computations
DFP 106.0 ± 8.9 1271.5 ± 107.7
BFGS 80.6 ± 7.8 967.6 ± 93.1
LBBS 66.1 ± 31.7 845.3 ± 276.5

4. Conclusion

In this study, we present an L2O framework to select step size and Hessian approximator from a
Broyden family. A safeguard stabilizes the selection and improves the performance. Our method
exhibits consistently faster convergence in our preliminary experiment. Future work includes a
rigorous convergence theory and various extensions toward larger problems and those other than
logistic regression.
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