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Abstract
We consider (stochastic) softmax policy gradient (PG) methods for finite Markov Decision Processes
(MDP). While the PG objective is not concave, recent research has used smoothness and gradient
dominance to achieve convergence to an optimal policy. However, these results depend on having
extensive knowledge of the environment, such as the optimal action or the true mean reward vector,
to configure the algorithm parameters. This makes the resulting algorithms impractical in real
applications. To alleviate this problem, we propose PG methods that employ an Armijo line-search
in the deterministic setting and an exponentially decreasing step-size in the stochastic setting.
We demonstrate that these proposed algorithms offer similar theoretical guarantees as previous
works but now do not require the knowledge of oracle-like quantities. Furthermore, we apply the
similar techniques to develop practical, theoretically sound entropy-regularized methods for both
deterministic and stochastic settings. Finally, we empirically compare the proposed methods with
previous approaches in single-state MDP environments.
Keywords: Reinforcement Learning, Policy Gradient, Non-convex Optimization

1. Introduction

Stochastic policy gradient (PG) methods have played a vital role in the achievements of deep
reinforcement learning (RL) [6, 19, 20]. Zhang et al. [24] first proved convergence results for
stochastic PG methods to locally-optimal policies. However, it’s only been recently that these
methods have been rigorously proven to demonstrate convergence to a globally optimal policy in the
tabular setting [1]. Despite the non-concave nature of the PG objective, recent research has harnessed
concepts like smoothness and gradient dominance to achieve convergence towards an optimal policy.
Specifically, for softmax policy gradient methods, recent studies have established global convergence
rates in both deterministic [3, 10, 11] and stochastic settings [11, 13, 14, 23]. . Furthermore, the use
of regularization techniques such as entropy [5, 10] or log-barrier [1] has also been studied. These
approaches have been shown to expedite the convergence rate, at the cost of additional bias in the
resulting policies.

While these convergence results are notable, the methods that stem from them are impractical for
real applications. This impracticality arises from the methods’ dependence on oracle-like knowledge
of the environment, which includes factors such as the concentrability coefficient, the optimal action,
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the true mean reward vector, and even access to the full gradient in stochastic settings. The need
for this oracle-like knowledge renders previous PG methods ineffective because there is already
sufficient information to derive an optimal policy. Our objective is to design practical approaches
while retaining similar theoretical guarantees. To this end, we make the following contributions.

Contribution 1: In Section 3, we consider the deterministic setting and present a practical PG
method employing Armijo line-search [2] to determine the step-sizes, thus enabling the utilization
of the objective’s local smoothness. In the worst-case, the method achieves a convergence rate of
O(1/T), and under more practical conditions, it can attain a linear convergence rate.

Contribution 2: In Section 4, we consider the stochastic setting for which previous approaches
relied on various oracle-like quantities to choose the step-size [11, 14, 23]. To design a practical
algorithm that adapts to the amount of stochasticity, we utilize exponentially decreasing step-
sizes [9]. These step-sizes have been demonstrated to achieve desirable convergence rates for
smooth, non-convex functions for which the Polyak-Lojasiewicz (PL) condition [16] is satisfied [8]
but have not been analyzed for PG methods. We extend the use and analysis of these step-sizes
to encompass the more general gradient domination case, which is of particular interest in the
context of RL. Following [14], we make use of the strong growth condition (SGC) [18] which
implies that the variance in the stochastic gradients decreases as we approach a stationary point.
Under this condition, Mei et al. [14] prove faster convergence, but require using typically unknown
problem-dependent quantities. By utilizing exponential step-sizes, we demonstrate that the same PG
algorithm can achieve an Õ(1/T + 1/T 1/3) convergence rate, which smoothly transitions between the
deterministic and stochastic settings, and does not require any unknown quantities.

Contribution 3: In Section 5, we consider maximizing the entropy-regularized objective in the
deterministic setting. Since the entropy regularization introduces a bias, prior work [10] decays
the entropy at an appropriate rate. However, prior strategies again require (typically unavailable)
information about the environment to set the algorithm parameters. We introduce a multi-stage
algorithm to iteratively reduce the entropy regularization. This results in convergence to the globally
optimal policy at an O(1/ϵ) rate, while eliminating the reliance on unknown quantities. In Section 6,
we combine the multi-stage approach with exponential step-sizes and design a practical theoretically
principled algorithm to maximize the entropy-regularized objective in the stochastic setting.

Contribution 4: Finally, in Appendix G, we experimentally benchmark the proposed algorithms
on synthetic single-state MDPs. Our empirical results indicate that the proposed practical algorithms
have comparable performance as baselines that require oracle-like knowledge.

2. Problem Formulation and Background

An infinite-horizon discounted Markov Decision Process (MDP) [17] is defined by tuple
(S,A,P, r, ρ, γ), where S is the set of states, A is the set of actions, P : S × A → ∆S is the
set of transition probability functions, ρ ∈ ∆S is the initial state distribution, r : S × A → [0, 1]
is the reward function, and γ ∈ [0, 1) is the discount factor. In this work, we consider the set-
ting when the policy πθ : S → ∆A is parameterized with the softmax function i.e. πθ(a|s) =
exp(θ(a,s))/

∑
a′∈A exp(θ(a′,s)) given the logits θ ∈ RS×A. For a given policy πθ, action-value function

Qπθ : S × A → R is defined as: Qπθ(s, a) := E
[∑∞

t=0 γ
tr(st, at)

]
, with s0 = s, a0 = a and for

t ≥ 1, st+1 ∼ p(·|st, at) and at+1 ∼ πθ(·|st), the value function V πθ : S → R is defined such that
V πθ(s) = Ea∼πθ(·|s)[Q

πθ(s, a)], and the discounted state visitation distribution dπθ
s0 ∈ ∆S is defined
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such that dπθ
s0 := (1− γ)

∑∞
t=0 γ

t Pr[st = s |s0, πθ] where Pr[st = s |s0, πθ] denotes the probability
of encountering state s at time t under policy πθ.

The objective is find a policy that maximizes J(πθ) := Es∼ρ[V
πθ(s)]. Let us denote the special

case when MDP has |S| = 1 with stochastic rewards as the bandit setting. In the bandit setting, the
objective is f(θ) := E[π⊤

θ r], where r is sampled from some unknown distribution and reduces to
the single-state MDP setting when the rewards are deterministic. To cover all presented settings,
we will abstract the objective as f(θ) and note that it is L-smooth1 and upper-bounded by f∗.
Finally, we note that f(θ) is non-concave [1], but satisfies a non-uniform Łojasiewciz condition
∥∇f(θ)∥2 ≥ C(θ) |f∗−f(θ)|1−ξ for some ξ ∈ [0, 1] [10]. When C(θ) is constant, and ξ = 1/2, this
condition matches the well studied PL condition [16]. Details of C(θ) for each abstract environment
can be found in Appendix A. We define µ := inft≥1C(θt).

3. Policy Gradient

We first consider the deterministic setting and consider Softmax PG with the following update,

Update 1 (Softmax PG, True Gradient) θt+1 = θt + ηt∇f(θt).

In this setting, the non-uniform Łojasiewciz condition is satisfied i.e.∥∇f(θ)∥2 ≥ C(θ) |f∗ − f(θ)|
and is required to prove global convergence guarantees [10]. In order for softmax PG to be able to
adapt to the objective’s local smoothness, we propose to use Armijo line-search to set the step-size.
Armijo line-search [2] searches for a prospective step-size η̃t until it satisfies the following equation:
f(θt + η̃t∇f(θt)) ≥ f(θt) + hη̃t∥∇f(θt)∥22 where h ∈ (0, 1) is a hyper-parameter. The line-search
is guaranteed to return a step-size ηt that satisfies ηt ≥ min{2(1−h)/L, ηmax} , where ηmax is the
maximum allowable step-size and L is the smoothness of f . In Appendix B.1, we prove that the
resulting algorithm can achieve a convergence rate of O(1/T). This rate is consistent with the one
obtained when employing a fixed step-size of ηt = 1/L [10].

Although softmax PG with Armijo line-search results in an O(1/T) convergence in the worst
case, it can result in faster convergence in practice. This is because the objective satisfies a non-
uniform smoothness property, making it possible to iteratively increase the resulting step-size. The
Geometry-Aware Normalized Policy Gradient (GNPG) approach introduced in [11] is able to exploit
this non-uniform smoothness and exhibits a convergence rate ofO(exp(−µT )). However, for MDPs,
GNPG requires the knowledge of intricate constants like C∞ = maxπ

∥∥dπµ/µ∥∥∞ to determine the
step-size. In contrast, softmax PG with Armijo line-search does not require such information but can
exploit the non-uniform smoothness to achieve fast convergence towards the optimal policy. This
result is presented in Theorem 1 with a non-asymptotic rate and is proved in Appendix B.2.

Theorem 1 Using Update 1 and an increasing line-search of ηmaxk = rkηmax0 where k is the
number of times ηmax has been returned by Armijo line search, then we obtain a convergence rate of

f∗ − f(θT ) ≤
1

µ

(
L

2(1− h)

1

T − k
+

1

ηmax0 r
k−1

1 {k > 0}
)

(1)

In the worst-case, Armijo line-search requires back-tracking in each iteration meaning that k = 0
and we recover theO(1/T) convergence rate. However, in our experiments, we observe that k is large
and the resulting convergence is linear.

1. For definitions of smoothness, and the specific non-uniform Łojasiewciz conditions see Appendix A
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4. Stochastic Policy Gradient

In the stochastic setting, we construct a gradient estimator using importance sampling (IS) that
is unbiased and has bounded variance. For illustrative purposes, we consider the bandit setting.
For each iteration t ∈ [1, T ], sample an action at ∼ πθt and construct the IS reward estimate
r̂t(a) =

1{at=a}
πθt

(a) r(a) for each a ∈ A. The stochastic objective is f̃(θt) = π⊤
θt
r̂t and the resulting

gradient estimator satisfies E[∇f̃(θ)] = ∇f(θ) and E
∥∥∥∇f̃(θ)−∇f(θ)∥∥∥2

2
≤ σ2 [11]. We now

consider the following stochastic gradient updates,

Update 2 (Stochastic Softmax PG, Importance Sampling) θt+1 = θt + ηt∇f̃(θt)

Yuan et al. [23] have also considered the stochastic setting under the same assumptions, but their
method required the knowledge of µ = πθ(a

∗) when setting the step-size; hence, knowledge of
the optimal action is required. A faster O(1/√T) rate can be achieved but requires the true gradient
∥∇f(θt)∥ when setting the step-size [11]. By using an exponentially decaying step-size [9] we
can match the Õ(1/T + σ2/T 1/3) rate in [23] without the knowledge of µ. The following theorem is
proved in Appendix C.1.

Theorem 2 Given ϵ > 0, assuming µ := inft≥1C(θt) > 0, T ≥ 3, using Update 2 with η0 = 1
L

and ηt = η0 α
t where α =

(
β
T

) 1
T , β > 0 results in the following convergence: If E[f∗ − f(θt)] ≥ ϵ

for all t ∈ [1, T ] then,

E[f∗ − f(θt)] ≤
5LC(β)

e2δ2µ2

ln2
(
T
β

)
σ2

T
+ C(β) exp

(
−0.69δµ

L

(
T

ln T
β

))
(f∗ − f(θt)) (2)

where C(β) := exp
(
2ϵµ
L ln

(
T
β

))
. Otherwise, mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ

We note that the proof requires the assumption µ := inft≥1C(θt) > 0 which we verify exper-
imentally, and leave a formal proof of this claim to future work. Additionally, although β is a
hyperparameter, it does not depend on any problem-dependent constants. To obtain ϵ-convergence,
let T = max

{
O(ϵ−3),O(ϵ−1 log ϵ−1)

}
. This results in a convergence rate of Õ(1/T + σ2/T 1/3).

The previous result assumes that the variance σ2 is a constant. However, it has been observed that
the noise decreases as we get closer to a stationary point and the policy become more deterministic,
meaning that σ2

t → 0 as t → ∞. Using the same gradient estimator with IS, Mei et al. [13] has

shown that the SGC [18] holds, implying that Et

∥∥∥∇f̃(θt)∥∥∥2
2
≤ ρ∥∇f(θt)∥ for a problem-dependent

ρ > 0. Using Update 4 in the bandit setting and knowledge of ρ, a faster convergence rate ofO(1/T )
rate can be achieved [14]. However, the resulting algorithm requires setting the step-size proportional
to ρ that has a dependence on the reward gap ∆ := mini ̸=j |r(i)− r(j)|. This implies that the true
mean reward vector is required when setting the step-size of the algorithm, rendering it ineffective in
most practical cases. In Appendix C.2, we show that the ∆ dependence on ρ is necessary, meaning
that it is unlikely to achieve fast convergence rates by exploiting SGC, while still being practical.
Hence, we aim to develop a practical algorithm that can automatically adapt to both ρ and σ2

t . We use
the same exponentially decreasing step-sizes for this and analyze its convergence in Appendix C.4.
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Theorem 3 Under the same assumptions as Theorem 2 and SGC, Update 2 with exponential
step-sizes has the following convergence: if E[f∗ − f(θt)] ≥ ϵ for all t ∈ [1, T ] then

E[f∗ − f(θT )] ≤ C1 exp

(
− αT

κ ln(T )

)
E[f∗ − f(θ1)] +

4 ρC2 L

ϵ2

∑T0−1
t=1 E[f∗ − f(θt)]

T 2
(3)

where κ = 2
µ ϵ η0

, C1 := 2β
κ ln(T/β) , C2 := exp

(
2β

κ ln(T/β)

)
4κ2

e2α2 ln
2(T/β), T0 :=

T max
{

ln(4ρη0)
ln(T/β) , 0

}
, η0 = 1

18 and ρ and L are known problem dependent constants. Otherwise,
mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ

In comparison to Theorem 2, the algorithm achieves an Õ
(
1/T + T

1/3
0 /T 2/3

)
convergence rate. If

η0 ≤ 1
4ρ , T0 = 0 and we obtain a “fast” O(1/T) rate. In the worst-case, if we choose η0 to be large,

T0 = O(T ), resulting in the “slow” Õ(1/T 1/3) rate. Hence, the resulting algorithm can is robust to ρ
and can interpolate between the “slow” and “fast” rates. In Appendix C.3, we show that the SGC
property is not limited to bandits and also holds for the general MDP setting.

5. Policy Gradient With Entropy Regularization

For the following sections, we restrict our analysis to the single-state MDP setting, but note that
the results can also be extended to the general MDP setting. The entropy regularized objective for
single-state MDP is defined as: f τ (θ) := π⊤

θ (r − τ log πθ) where τ ≥ 0 denotes the strength of the
entropy regularization. In this case, ∇f τ (θ) := H(πθ)(r − τ log πθ) where H(π) := diag(πθ) −
πθπ

⊤
θ ∈ R|A|×|A|. The entropy regularized objective satisfies following non-uniform Lojasiewciz

condition [10]: ∥∇f τ (θ)∥2 ≥ C(θ) |f∗τ − f τ (θ)|1/2 where C(θ) :=
√
2τ c and c := mina πθ(a).

This property can be interpreted as the non-uniform variant of the classical PL condition [7]. In the
subsequent sections, we assume that µ := inft≥1C(θt) > 0 across the iterations and τ ≤ 1. The
update for the entropy regularized objective is given as,

Update 3 (Softmax PG with Entropy Regularization, True Gradient)
θt+1 = θt +∇f τ (θt) = θt + ηtH(πθ)(r − τ log πθ)

In Appendix D.1, we prove softmax PG with entropy regularization and Armijo line-search will
converge to a biased optimal policy with an O(exp(−µT )) convergence rate which also matches
the rate when employing a fixed step-size ηt = 1/Lτ [10]. The resulting policy is biased due to
the presence of entropy regularization. In order for entropy regularized objectives to converge to
the globally optimal policy, τ → 0. Using Update 3, prior work [10] used a two-stage approach
to decay τ , but the resulting algorithm requires knowledge of ∆, rendering the method ineffective.
Consequently, in Theorem 4 we establish a rate of convergence to an ϵ-neighbourhood of the optimal
policy by choosing a sufficiently small τ that does not depend on ∆ and prove the following result
in Appendix D.2.

Theorem 4 Setting ηt = 1/Lτ , τ = ϵ/ (2W ((|A|−1)/e)) where W (x) is the Lambert function,
Update 3 achieves ϵ-suboptimality after O (1/ϵ log 1/ϵ) iterations.

We note that in the proof we treat c := mina πθ(a) and hence µ as a constant. We conjecture
that there is a hidden strong dependence on ϵ in c, and that this dependence can be weakened by
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proving a tighter bound on µ. Unfortunately, using a fixed τ leads to a O (1/ϵ log 1/ϵ) convergence
rate that is slower than PG methods without the presence of entropy. Thus, we present Algorithm 1
that decays the entropy in stages and achieves aO (1/ϵ) rate, matching the two-stage approach in [10],
but without requiring the prior knowledge of ∆. Additionally, in comparison to Theorem 4, the
algorithm do not require ϵ to be set advance. We analyze Algorithm 1 and prove it’s convergence
rate in Appendix D.3.

6. Stochastic Policy Gradient With Entropy Regularization

Following Section 4, we construct a gradient estimator using IS for the entropy regularized objec-
tive. This estimator ∇f̃ τ (θt) has been shown to be unbiased and has bounded variance [5], i.e.

E
∥∥∥∇f̃ τ (θt)− E[∇f̃ τ (θt)]

∥∥∥2
2
≤ b := 8(1 + (τ log |A|)2). We consider the following update,

Update 4 (Stochastic Softmax PG with Entropy, Importance Sampling)
θt+1 = θt +∇f̃ τ (θt) = θt + ηtH(πθ)(r̂ − τ log πθ)

Under the same setting, prior work [4] proposes a two-stage approach that converges to a globally
optimal policy by modifying the batch size to counteract the variance at a Õ(1/ϵ2) convergence
rate, but requires knowledge of the optimal policy to set the algorithm parameters. Using the same
rationale as in Section 4, using Update 4 with fixed τ and in conjunction with an exponentially
decaying step-size to mitigate the variance, we can converge to an ϵ-neighbourhood of a globally
optimal policy after Õ (1/ϵ + b/ϵ3) iterations. We prove the following theorem in Appendix E.1.

Theorem 5 Assuming c := inft≥0mina πθt(a) > 0. Using Update 4 with τ =
ϵ/ (2 (W (|A|−1/e) + log |A|)) and using exponential decreasing step-size ηt = η0 α

t, where
η0 = 1/Lτ , achieves ϵ-suboptimality after Õ (1/ϵ + b/ϵ3) iterations.

Finally, we extend the multi-stage approach of Algorithm 1 to the stochastic setting, resulting
in Algorithm 3 in Appendix E.2. In Theorem 19 in Appendix E.2, we prove an Õ (1/ϵ + b/ϵ3)
convergence rate for the resulting algorithm. This matches the corresponding rate in Theorem 2.

7. Discussion

We propose and analyze (stochastic) PG methods that can be used in the wild since they do not require
oracle-like knowledge to set algorithmic parameters. In comparison to prior work, we achieve similar
theoretical guarantees, but we are able to use our proposed algorithms in practice. We additionally
propose practical multi-stage methods to decay PG methods with entropy regularization that allows
the algorithms to converge to a globally optimal policy. We experimentally validate our results
and display competitive results compared to prior work. For future work, we aim to remove the
assumption in the stochastic setting that the non-uniform Łojasiewciz condition inft≥1C(θt) > 0
and tighten the non-condition for the entropy regularized setting.
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Appendix A. Definitions

A function f is L-smooth if for all v and w

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ L

2
∥v − w∥22 (4)

The non-uniform Łojasiewciz condtion of degree ξ for ξ ∈ [0, 1] is defined as

∥∇f(θt)∥ ≥ C(θ)|f∗ − f(θ)|1−ξ (5)

Setting f(θ) C(θ) ξ L

Single-State MDP π⊤
θ r πθ(a

∗) 0 5/2

General MDP V πθ(ρ) mins πθ(a
∗(s)|s)√

|S|∥dπ∗
ρ /d

πθ
µ ∥∞

0 8/(1− γ)3

Single-State MDP
with Entropy Regularization

π⊤
θ (r − τ log πθ)

√
2τ mina πθ(a) 1/2 5/2 + 5τ(1 + logK)

Table 1: Summary of abstracted objectives, smoothness, and non-uniform Łojasiewciz condition

Appendix B. Policy Gradient Proofs

B.1. Policy Gradient with Armijo line-search

In the following theoerm, we show that PG with Armijo line-search obtains the same O(1/T ) rate as
using a constant fixed step-size of ηt = 1/L [10].

10
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Theorem 6 . Using Update 1, softmax policy gradient and Armijo line-search converges to a
globally optimal solution with a rate of O( 1

T ) .

f∗ − f(θT ) ≤ max

{
L

2(1− h)
,

1

ηmax

}
1

T µ
(6)

where L is the smoothness of f , µ is the non-uniform PŁ-constant, ηmax is the maximum allowable
step-size, and h ∈ (0, 1) is a hyperparameter from Armijo line-search. In the single-state MDP
setting, L = 5

2 and µ = min1≤t≤T πθt(a
∗). In the general MDP setting, L = 8

(1−γ)3
and µ =

min1≤t≤T mins∈S πθt(a
∗|s)

∥∥∥∥dπ
∗

ρ

d
πθ
µ

∥∥∥∥−1

∞
|S|−2.

Proof For simplicity, we will present the proof for the single-state MDP setting, but note that this
proof can easily extend to the general MDP setting.

For any L-smooth function the step-size ηt returned by the Armijo line-search is guaranteed to satisfy
ηmax ≥ ηt ≥ min

{
2(1−h)

L , ηmax

}
(Lemma 1 in [21]) which implies that

f(θt+1) ≥ f(θt) + min

{
2(1− h)

L
, ηmax

}
∥∇f(θt)∥22 (7)

By Theorem 21, L = 5
2

f(θt+1) ≥ f(θt) + min

{
4(1− h)

5
, ηmax

}
∥∇f(θt)∥22 (8)

Adding f∗ to both sides and multiplying by −1

f∗ − f(θt+1) ≤ f∗ − f(θt)−min

{
4(1− h)

5
, ηmax

}
∥∇f(θt)∥22 (9)

Let δ(θt) := f∗ − f(θt)

δ(θt+1) ≤ δ(θt)−min

{
4(1− h)

5
, ηmax

}
∥∇f(θt)∥22 (10)

By Theorem 29

≤ δ(θt)−min

{
4(1− h)

5
, ηmax

}
(πθt(a

∗) δ(θt))
2 (11)

Let µ := inft≥1 πθt(a
∗)

≤ δ(θt)− µ min

{
4(1− h)

5
, ηmax

}
︸ ︷︷ ︸

1
C

δ(θt)
2 (12)

11
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Therefore, we have

1

δ(θT )
=

1

δ(θ0)
+

T−1∑
t=0

[
1

δ(θt+1)
− 1

δ(θt)

]
(13)

=
1

δ(θ0)
+

T−1∑
t=0

[
1

δ(θt+1) δ(θt)
(δ(θt)− δ(θt+1))

]
(14)

By Eq. (12)

≥ 1

δ(θ0)
+

T−1∑
t=0

[
1

δ(θt+1) δ(θt)

1

C
δ(θt)

2

]
(15)

Since δ(θt) ≥ δ(θt+1)

≥ 1

δ(θ0)
+

T−1∑
t=0

1

C
(16)

=
1

δ(θ0)
+

T

C
(17)

≥ T

C
(18)

Now let us show that using Update 1 with Armijo line-search guarantees that µ := inft≥1 πθt(a
∗) > 0.

We will now present an extended proof of Lemma 5 of [10] where the authors originally show that
using a fixed step size of η = 2

5 guarantees that inft≥1 πθt(a
∗) > 0. We modify the proof to work for

any step size returned by Armijo line-search. Let

c =
K

2∆

(
1− ∆

K

)
(19)

and
∆ = r(a∗)−max

a̸=a∗
r(a) > 0 (20)

denote the reward gap of r. We will prove that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗), where t0 =
min{t : πθt(a∗ ≥ d

d+1}. Note that t0 depends only θ1 and d. Define the following regions

R1 =

{
θ :

πT
θ r

dθ(a∗)
≥

πT
θ r

dθ(a)
,∀a ̸= a∗

}
(21)

R2 = {θ : πθ(a
∗) ≥ πθ(a),∀a ̸= a∗} (22)

Nc =

{
θ : πθ(a

∗) ≥ c

c+ 1

}
(23)

We will make the following three-part claim. Claim 1:
a R1 is a "nice" region, that if θt ∈ R1 then, with any η > 0, following a gradient update (i)
θt+1 ∈ R1 and (ii) πθi+1

(a∗) ≥ πθt(a
∗).

b We haveR2 ⊂ R1 and Nc ⊂ R1.

12



PRACTICAL PRINCIPLED POLICY OPTIMIZATION FOR FINITE MDPS

c For ηt = min
{

2(1−h)
L , ηmax

}
, there exists a finite time t0 ≥ 1 such that θt0 ∈ Nc and thus

θt0 ∈ R1, which implies that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗)
We note that Claim 1: a) holds for any η > 0 and Claim 1: b) is independent of η. Thus we will
only prove Claim 1: c). To show that πθt(a

∗) → 1 as t → ∞, we will use the same convergence
result as in [1], but extend it to work for any arbitrary η > 0 as long as it satisfies Theorem 20 (see
Lemma C.2 in [1]). Let ηt be returned by Armijo line-search and thus satisfies

f(θt+1) ≥ f(θt)−min

{
2(1− h)

L
, ηmax

}
∥∇f(θt)∥22 (24)

and therefore
f(θt+1) ≥ f(θt) (25)

Since we have monotonic improvement and f(θ) is bounded above, by monotone convergence
theorem, it must converge to some limit point. The rest of the proof follows summarily as in the
proof of Theorem 5.1 in [1]. Continuing from Lemma 5 in [10], there exists t0 ≥ 1, such that
πθt0 (a

∗) ≥ d
d+1 , which implies θt0 ∈ Nc ⊂ R1. Therefore πθt(a

∗) in increasing inR1 and we have
inft πθt(a

∗) = min1≤t≤t0 πθt(a
∗), where t0 depends on initialization and c depends on the problem

only.

B.2. Proof Of Theorem 1

Theorem 1 Using Update 1 and an increasing line-search of ηmaxk = rkηmax0 where k is the
number of times ηmax has been returned by Armijo line search, then we obtain a convergence rate of

f∗ − f(θT ) ≤
1

µ

(
L

2(1− h)

1

T − k
+

1

ηmax0 r
k−1

1 {k > 0}
)

(1)

Proof The analysis is similar to the proof in Theorem 6. Suppose that we satisfy Armijo’s condition
for k iterations, then we will have the following update for i ∈ [k] where the Armijo’s condition is
satisfied:

δ(θt+1) ≤ δ(θt)− µηmaxi︸ ︷︷ ︸
1
Ci

δ(θt)
2 (26)

and otherwise

δ(θt+1) ≤ δ(θt)− µ
2(1− h)

L
, ηmax︸ ︷︷ ︸

1
C

δ(θt)
2 (27)

for remaining T − k updates. Following similar steps in Theorem 6 we have

1

δ(θT )
≥ 1

δ(θ0)
+

T−k−1∑
i=0

1

C
+

k∑
i=1

1

Ci
(28)

≥ T − k

C
+ µ ηmax0

k−1∑
i=1

ri (29)

13
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Since r > 0, we can throw away smaller terms

≥ T − k

C
+ µ ηmax0r

k−1 (30)

Appendix C. Stochastic Policy Gradient Proofs

C.1. Proof Of Theorem 2

Theorem 2 Given ϵ > 0, assuming µ := inft≥1C(θt) > 0, T ≥ 3, using Update 2 with η0 = 1
L

and ηt = η0 α
t where α =

(
β
T

) 1
T , β > 0 results in the following convergence: If E[f∗ − f(θt)] ≥ ϵ

for all t ∈ [1, T ] then,

E[f∗ − f(θt)] ≤
5LC(β)

e2δ2µ2

ln2
(
T
β

)
σ2

T
+ C(β) exp

(
−0.69δµ

L

(
T

ln T
β

))
(f∗ − f(θt)) (2)

where C(β) := exp
(
2ϵµ
L ln

(
T
β

))
. Otherwise, mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ

Proof

Starting with the smoothness of f

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
L

2
∥θt − θt∥22 (31)

f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩ ≥ −
L

2
∥θt − θt∥22 (32)

Using update θt+1 = θt + ηt∇f̃(θt)

f(θt+1)− f(θt)− ηt

〈
∇f(θt),∇f̃(θt)

〉
≥ −L

2
η2
∥∥∥∇f̃(θt)∥∥∥2

2
(33)

f(θt+1) ≥ f(θt) + ηt

〈
∇f(θt),∇f̃(θt)

〉
− L

2
ηt

2
∥∥∥∇f̃(θt)∥∥∥2

2

(34)

Multiplying both sides by −1 and adding f∗

f∗ − f(θt+1) ≤ f∗ − f(θt)− ηt

〈
∇f(θt),∇f̃(θt)

〉
+

L

2
ηt

2
∥∥∥∇f̃(θt)∥∥∥2

2

(35)

(36)

14
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Taking expectation with respect to the gradients on both sides

E[f∗ − f(θt+1)]︸ ︷︷ ︸
δ(θt+1)

≤ E[f∗ − f(θt)]︸ ︷︷ ︸
δ(θt)

−ηt
〈
∇f(θt),E

[
∇f̃(θt)

]〉
+

Lη2

2
E
[∥∥∥∇f̃(θt)∥∥∥2

2

]
(37)

By Theorem 25, the gradient is unbiased

= δ(θt)− ηt∥∇f(θt)∥22 +
Lη2

2
E
[∥∥∥∇f̃(θt)∥∥∥2

2

]
(38)

= δ(θt)− η∥∇f(θt)∥22 +
Lη2

2
E
[∥∥∥∇f̃(θt)−∇f(θt) +∇f(θt)∥∥∥2

2

]
(39)

Expanding the square and since E
[〈
∇f(θt),∇f̃(θt)−∇f(θt)

〉]
= 0

≤ δ(θt)− η∥∇f(θt)∥22 +
Lη2

2
E
[∥∥∥∇f̃(θt)−∇f(θt)∥∥∥2

2

]
+

Lη2

2
E
[
∥∇f(θt)∥22

]
(40)

By Theorem 25, the variance is bounded

≤ δ(θt)− η∥∇f(θt)∥22 +
Lη2

2

(
σ(θt)

2 + E
[
∥∇f(θt)∥22

])
(41)

Since ηt ≤ 1
L

≤ δ(θt)−
η

2
∥∇f(θt)∥22 +

Lη2

2
σ(θt)

2 (42)

By Theorem 29 and the assumption that µ := inft≥1C(θt) > 0

≤ δ(θt)−
ηt
2
δ(θt)

2 µ+
Lη2

2
σ(θt)

2 (43)

For clarity, let µ = µ/2 and σ = maxt σ(θt)

≤ δ(θt)
(
1− η

2
δ(θt)µ

′
)
+

Lη2

2
σ2 (44)

Hence, we have the following recursion,

δ(θt+1) ≤ (1− ηtµδ(θt))δ(θt) +
L

2
η2σ2,

To turn this inequality into the structure as the PL-condition, let’s consider when the sub-optimality
gap is small for some constant δ > 0 to be chosen later. If for some t ∈ [0, T − 1] we have δ(θt) < δ
then we are done and have converged to a δ-neighbourhood within T iterations and have achieved

min
t∈[1,T ]

E[f∗ − f(θt)] ≤ δ (45)
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Otherwise, we have δ(θt) ≥ δ and thus

δ(θt+1) ≤ (1− δµηt)δ(θt) +
Lσ2

2
η2t (46)

By recursion on (46), and using 1− x ≤ exp(−x) and Lemma 2 in [9] we have

δ(θT+1) ≤ exp

(
−δµ

T∑
t=1

ηt

)
δ(θ1) +

Lσ2

2

T∑
t=1

exp

(
−δµ

T∑
i=t+1

ηi

)
η2t (47)

Let’s start by lower bounding
∑T

t=1 ηt

T∑
t=1

ηt = η0
α− αT+1

1− α
(48)

By Lemma 4 in [9]

≥ η0α

1− α
− 2η0β

ln T
β

(49)

By Lemma 5 in [9]

= T
0.69η0

ln T
β

− 2η0β

ln T
β

(50)

Now let’s upper bound
∑T

t=1 exp
(
−δµ

∑T
i=t+1 ηi

)
η2t

T∑
t=1

exp

(
−δµ

T∑
i=t+1

ηi

)
η2t = η20

T∑
t=1

exp

(
−µη0

αt+1 − αT+1

1− α

)
α2t (51)

Using (50)

≤ η20C(β)
T∑
t=1

exp

(
−µη0α

t+1

1− α

)
α2t (52)

≤ η20C(β)
T∑
t=1

(
e

2

δµη0α
t+1

1− α

)−2

α2t (53)

Using the fact that exp(−x) ≤
( γ
ex

)γ , ∀x > 0, γ > 0, with γ = 2 and x = αt+1

≤ η20C(β)
T∑
t=1

(
e

2

δµαt+1

L(1 + a)(1− α)

)−2

α2t (54)

≤ 4L2

e2(δµ)2

T∑
t=1

1

α2
ln2
(
1

α

)
(55)

≤
10L2 ln2 T

β

e2(δµ)2T
(56)
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Combining the bounds we have (47):

E[f∗ − f(θt)] ≤
5LC(β)

e2δ2µ2

ln2 T
β σ

2

T
+ C(β) exp

(
−0.69δµ

L

(
T

ln T
β

))
(f∗ − f(θt)) (57)

Now to pick δ. The dominating term in the above equation is 1
δ2c2T

. In order to converge ϵ > 0
close to the optimal solution. Let δ = ϵ and T = O(δ−2ϵ−1). Picking δ = ϵ, we have T = O(ϵ−3)

C.2. Strong Growth Condition - Dependence of Reward Gap

We first show that the dependence of the reward gap ∆ in the SGC constant ρ cannot be removed.

Theorem 7 The dependence of ∆ in [14, Lemma 4.3] is necessary.

Proof Consider a 2-arm bandit problem with deterministic rewards: r1 := r(1) and r2 := r(2).
Assume that ∆ := r1 − r2 > 0, and hence arm 1 is the optimal arm. We will show that in SGC [14,
Lemma 4.3], the dependence of ∆ in the SGC constant ρ is necessary. Let r̂(a) := 1{at=a}

πθt
(a) r(a) for

all a ∈ A

E

[∥∥∥∥d[⟨πθ, r̂t⟩]dθ

∥∥∥∥2
2

]
≤ ρ ∥d[⟨πθ, r⟩]

dθ
∥ (58)

Calculating the LHS,

d[⟨πθ, r̂t⟩]
dθ(a)

= [I {at = a} − πθ(a)] r(at) =⇒
∥∥∥∥d[⟨πθ, r̂t⟩]dθ

∥∥∥∥2
2

=
∑
a

[[I {at = a} − πθ(a)] r(at)]
2

(59)

Let p := πθ(a1) as the probability of pulling the optimal arm.

= [[I {at = a1} − p] r(at)]
2 + [[I {at = a2} − (1− p)] r(at)]

2 (60)

E

[∥∥∥∥d[⟨πθ, r̂t⟩]dθ

∥∥∥∥2
2

]
= E

[∥∥∥∥d[⟨πθ, r̂t⟩]dθ

∥∥∥∥2
2

| at = a1

]
Pr[at = a1] + E

[∥∥∥∥d[⟨πθ, r̂t⟩]dθ

∥∥∥∥2
2

| at ̸= a1

]
Pr[at ̸= a1]

(61)

=
(
(1− p)2 r21 + (1− p)2 r21

)
p+

(
p2 r22 + p2 r22

)
(1− p) (62)

=⇒ LHS = 2p (1− p)2 r21 + 2(1− p) p2 r22 = 2p (1− p)
[
(1− p) r21 + p r22

]
(63)

Calculating the RHS,

d[⟨πθ, r⟩]
dθ(a)

= πθ(a) [ra − ⟨πθ, r⟩] (64)

=⇒
∥∥∥∥d[⟨πθ, r⟩]dθ

∥∥∥∥2
2

=
∑
a

πθ(a)
2 [ra − ⟨πθ, r⟩]2 = p2 [r1 − ⟨πθ, r⟩]2 + (1− p)2 [r2 − ⟨πθ, r⟩]2

(65)
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Since ⟨πθ, r⟩ = p r1 + (1− p) r2

= p2 [r1 − [p r1 + (1− p) r2]]
2 + (1− p)2 [r2 − [p r1 + (1− p) r2]]

2 (66)

= p2 (1− p)2∆2 + (1− p)2 p2∆2 = 2 p2 (1− p)2∆2 (67)

=⇒ RHS =

∥∥∥∥d[⟨πθ, r⟩]dθ

∥∥∥∥ =
√
2 p (1− p)∆ (68)

Hence,

LHS =

√
2
[
(1− p) r21 + p r22

]
∆

RHS =⇒ ρ =

√
2
[
(1− p) r21 + p r22

]
∆

For rewards r1 > r2 > 0, the numerator is a constant independent of ∆ irrespective of p, while the
denominator is ∆. Since we have derived an equality, the dependence on 1

∆ in ρ is necessary.

C.3. Strong Growth Condition - General MDP Setting

Theorem 8 Using Update 2, we have for all t ≥ 1

Et

[∥∥∥∇f̃(θt)∥∥∥2
2

]
≤ ρ∥∇f(θt)∥2 (69)

where ρ := 8R3
max K2/3

∆2 in the bandit setting with ∆ := mina̸=a′ |r(a) − r(a′)| and ρ =

4

(∑
s∈S′

d
πθt
µ (s)2

(1−γ)4
|A|
∆2

s

√
|A|
δ

)
with ∆s := mina̸=a′ |Qπθ(s, a)−Qπθ(s, a′)|, S ′ := {s : dπθ(s) > 0}

and δ = mins∈S′ dπθ(s) in the general MDP setting.

Proof The proof in the bandits setting can be found in Lemma 4.3 in [13]. For the general MDP
setting first recall that

V πθt (µ)

∂θ(s, a)
=

1

1− γ
d
πθt
µ (s)πθt(a|s)Aπθt (s, a) (70)

∇V πθ(µ) =
1

1− γ
Es∼dπθEa∼πθ( |s)[A

πθ(s, a)∇ log πθ(a|s)] (71)

and let
∇f̃(θt)s :=

1

1− γ
d
πθt
µ (s)πθt(a|s)

(
Q̂πθt (s, a)− πθt( |s)⊤Q̂πθt (s, )

)
(72)

and given t ≥ 1, denote kt(s) := argmaxa∈A πθt(a|s) as the action with the largest probability at
state s. From the second part of the proof of Lemma 11 in [11], for all s ∈ S,
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∑
a∈A

πθt(a|s)
∑
a∈A

πθt(a|s)2
(
Q̂πθt (s, a)− πθt( |s)⊤Q̂πθt (s, )

)2
=
∑
a∈A

πθt(a|s)2
[
1 {a(s) = a}
πθt(a|s)2

Qπθt (s, a)2

−2 1 {a(s) = a}
πθt(a|s)

Qπθt (s, a)πθt( |s)⊤Q̂πθt (s, ) +
(
πθt( |s)⊤Q̂πθt (s, )

)2]
(73)

= Qπθt (s, a(s))2 − 2πθt(a(s)|s)Qπθt (s, a(s))2 +
∑

a̸=a(s)

πθt(a|s)2Qπθt (s, a(s))2 (74)

= (1− πθt(a(s)|s))2Qπθt (s, a(s))2 +
∑

a̸=a(s)

πθt(a|s)2Qπθt (s, a(s))2 (75)

Taking expectation over a(s) ∼ πθt( |s)

Ea(s)∼πθt
( |s)

[∑
a∈A

πθt(a|s)2
(
Q̂πθt (s, a)− πθt( |s)⊤Q̂πθt (s, )

)2]
=

∑
a(s)∈πθt

( |s)

πθt(a(s)|s) (1− πθt(a(s)|s))2Qπθt (s, a(s))2

+
∑

a(s)∈πθt
( |s)

πθt(a(s)|s)
∑

a̸=a(s)

πθt(a|s)2Qπθt (s, a(s))2 (76)

Since ∥x∥2 ≤ ∥x∥1

≤ 2
∑

a(s)∈πθt
( |s)

πθt(a(s)|s) (1− πθt(a(s)|s))2Qπθt (s, a(s))2 (77)

Since Qπθt (s, a) ≤ 1
1−γ

≤ 2

(1− γ)2

πθt(kt(s)|s) (1− πθt(kt(s)|s))2 +
∑

a(s)̸=kt(s)

πθt(a(s)|s) (1− πθt(a(s)|s))2


(78)

Since πθt(a|s) ∈ (0, 1)

≤ 2

(1− γ)2

(1− πθt(kt(s)|s)) +
∑

a(s)̸=kt(s)

πθt(a(s)|s)

 (79)

=
4

(1− γ)2
(1− πθt(kt(s)|s)) (80)
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Now to lower bound

∥∇f(θ)∥22 =
∑
s∈S

d
πθt
µ (s)2

(1− γ)2

∑
a∈A

πθt(a|s)2(Aπθt (s, a))2 (81)

=
∑
s∈S

d
πθt
µ (s)2

(1− γ)2

(∑
a′∈A

Aπθt (s, a′)2
∑
a∈A

πθt(a|s)2
Aπθt (s, a)2∑

a′∈AAπθt (s, a′)2

)
(82)

Using Jensen’s inequatliy

≥
∑
s∈S

d
πθt
µ (s)2

(1− γ)2

∑
a′∈A

Aπθt (s, a′)2

[∑
a∈A

πθt(a|s)
Aπθt (s, a)2∑

a′∈AAπθt (s, a′)2

]2 (83)

≥
∑
s∈S

d
πθt
µ (s)2

(1− γ)2

 1∑
a′∈AAπθt (s, a′)2

[∑
a∈A

πθt(a|s)Aπθt (s, a)2

]2 (84)

Since Aπθt (s, a) ≤ (1− γ)−1

≥ 1

|A|
∑
s∈S

d
πθt
µ (s)2

[∑
a∈A

πθt(a|s)Aπθt (s, a)2

]2
(85)

Let δ = mins∈S′ d
πθt
µ (s) and since all terms are non-negative

≥ δ

|A|

[∑
a∈A

πθt(a|s)Aπθt (s, a)2

]2
(86)

Taking the square roots of both sides gives,

∑
a∈A

πθt(a|s)Aπθt (s, a)2 ≤
√
|A|
δ
∥∇f(θt)∥ (87)
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To connect (76) and (87) let’s label actions a ∈ A as a ∈ [K].∑
a∈A

πθt(a|s) (Qπθt (s, a)− V πθt (s))2

=
K∑
i=1

πθt(i)Q
πθt (s, i)2 −

[
K∑
i=1

πθt(i)Q
πθt (s, i)

]2
(88)

=

K∑
i=1

πθt(i)Q
πθt (s, i)2 −

K∑
i=1

πθt(i)
2Qπθt (s, i)2 − 2

K−1∑
i=1

πθt(i)Q
πθt (s, i)

K∑
j=i+1

πθt(j)Q
πθt (s, j)

(89)

=

K∑
i=1

πθt(i)Q
πθt (s, i)2(1− πθt(i))− 2

K−1∑
i=1

πθt(i)Q
πθt (s, i)

K∑
j=i+1

πθt(j)Q
πθt (s, j) (90)

=
K∑
i=1

πθt(i)Q
πθt (s, i)2

∑
j ̸=i

πθt(j)− 2
K−1∑
i=1

πθt(i)Q
πθt (s, i)

K∑
j=i+1

πθt(j)Q
πθt (s, j) (91)

=
K−1∑
i=1

πθt(i|s)
K∑

j=i+1

πθt(j|s) (Qπθt (s, i)2 +Qπθt (s, j)2)

− 2

K−1∑
i=1

πθt(i)Q
πθt (s, i)

K∑
j=i+1

πθt(j|s)Qπθt (s, j) (92)

=
K−1∑
i=1

πθt(i|s)
K∑

j=i+1

πθt(j|s) (Qπθt (s, i)−Qπθt (s, j))2 (93)

This implies∑
a∈A

πθt(a|s) (Qπθt (s, a)− V πθt (s))2

≥
kt(s)∑
i=1

πθt(i|s)
K∑

j=i+1

πθt(j|s) (Qπθt (s, i)−Qπθt (s, j))2 (94)

≥
kt(s)−1∑
i=1

πθt(i|s)πθt(kt(s)|s) (Qπθt (s, i)−Qπθt (s, kt(s))
2

+ πθt(kt(s)|s)
K∑

j=kt(s)+1

πθt(i|s)πθt(kt(s)|s) (Qπθt (s, kt(s))−Qπθt (s, j)2 (95)

= πθt(kt(s)|s)
∑

a̸=kt(s)

πθt(a|s) (Qπθt (s, a)−Qπθt (s, kt(s))
2 (96)

Let ∆s = mina̸=a′ |Qπθt (s, a)−Qπθt (s, a′|

≥ (1− πθt(kt(s)|s))
∆2

s

|A|
(97)

(98)
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This implies that,

(1− πθt(kt(s)|s)) ≤
|A|
∆2

s

∑
a∈A

πθt(a|s) (Qπθt (s, a)− V πθt (s))2 (99)

Therefore the upper bound is,

Et

[∥∥∥∇f̃(θt)∥∥∥2
2

]
= Ea(s)∼πθt

( |s)

∑
(s,a)

1

(1− γ)2
d
πθt
µ (s)2 πθt(a|s)2

(
Q̂πθt (s, a)− πθt( |s)⊤Q̂πθt (s, )

)2
(100)

By (73)

≤ 4
∑
s∈S

d
πθt
µ (s)2

(1− γ)4
(1− πθt(kt(s)|s)) (101)

By (94)

≤ 4
∑
s∈S

d
πθt
µ (s)2

(1− γ)4
|A|
∆2

s

∑
a∈A

πθt(a|s) (Aπθt (s, a))2 (102)

Let S ′ := {s ∈ S | dπθt
µ (s) > 0}

= 4
∑
s∈S′

d
πθt
µ (s)2

(1− γ)4
|A|
∆2

s

∑
a∈A

πθt(a|s) (Aπθt (s, a))2 (103)

By (87)

= 4
∑
s∈S′

d
πθt
µ (s)2

(1− γ)4
|A|
∆2

s

√
|A|
δ
∥∇f(θt)∥ (104)

= 4

(∑
s∈S′

d
πθt
µ (s)2

(1− γ)4
|A|
∆2

s

√
|A|
δ

)
∥∇f(θt)∥ (105)

C.4. Proof of Theorem 3

Theorem 3 Under the same assumptions as Theorem 2 and SGC, Update 2 with exponential
step-sizes has the following convergence: if E[f∗ − f(θt)] ≥ ϵ for all t ∈ [1, T ] then

E[f∗ − f(θT )] ≤ C1 exp

(
− αT

κ ln(T )

)
E[f∗ − f(θ1)] +

4 ρC2 L

ϵ2

∑T0−1
t=1 E[f∗ − f(θt)]

T 2
(3)

where κ = 2
µ ϵ η0

, C1 := 2β
κ ln(T/β) , C2 := exp

(
2β

κ ln(T/β)

)
4κ2

e2α2 ln
2(T/β), T0 :=

T max
{

ln(4ρη0)
ln(T/β) , 0

}
, η0 = 1

18 and ρ and L are known problem dependent constants. Otherwise,
mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ
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Proof Starting from Eq. (44), using Theorem 8, E
∥∥∥∇f̃(θt)∥∥∥2

2
≤ ρ∥∇f(θt)∥,

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥22 +
Lτ ρ ηt

2

2
∥∇f(θt)∥ (106)

Using non-uniform smoothness [14, Lemma 4.1], Lτ = 3 ∥∇f(θt′)∥

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥22 +
3ρ ηt

2

2
∥∇f(θt)∥ ∥∇f(θt′)∥ (107)

Bounding ∥∇f(θt′)∥ according to [14, Eq 96], ∥∇f(θt′)∥ ≤ 1
1−9ηt/2

∥∇f(θt)∥. If ηt ≤ 1
18 ,

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥22 + 2ρ ηt
2∥∇f(θt)∥22 (108)

Phase 2: Let us first consider the case when ηt ≤ 1
4ρ . In this case, starting from PL-condition

δ(θt+1) ≤ δ(θt)−
ηt
2
∥∇f(θt)∥22 ≤ δ(θt)−

ηt µ

2
δ(θt)

2 (109)

If δ(θt) ≤ δ for some t ∈ {1, . . . , T}, then we are done. Else for all t ∈ {1, . . . , T}, δ(θt) > δ.
Hence,

δ(θt+1) ≤ δ(θt)−
ηt µ δ

2
δ(θt) (110)

Phase 1: When ηt >
1
4ρ , define σ2

t := 2ρ ∥∇f(θt)∥22. Hence, using the P Ł-condition

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥22 + ηt
2 σ2

t ≤ δ(θt)− ηt µ δ(θt)
2 + ηt

2 σ2
t (111)

If δ(θt) ≤ δ for some t ∈ {1, . . . , T}, then we are done. Else for all t ∈ {1, . . . , T}, δ(θt) > δ.
Hence,

δ(θt+1) ≤ δ(θt)− ηt µ δ δ(θt) + ηt
2 σ2

t (112)

We will use the exponential step-sizes [22] s.t. ηt = η0 αt where αt := αt where α =
(

β
T

)1/T
. Since

αt < 1, if η0 ≤ 1
18 then the condition on the step-size is satisfied. For ηt ≤ 1

4ρ , we require that

η0

(
β

T

)t/T

≤ 1

4ρ
=⇒ t ≥ T0 := T

ln(4ρη)

ln
(
T
β

) (113)

Hence, when t ≥ T0, the step-size is small enough so that we are in Phase 2. Using Eq. (110) and
recursing from t = T0 to T ,

δ(θt+1) ≤ δ(θt)−
ηt µ δ

2
δ(θt) (114)

1− x ≤ exp(−x)

=⇒ δ(θT+1) ≤ exp

−µη0 δ

2

T∑
t=T0

ηt

 δ(θT0) (115)
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Sum of geometric series

=⇒ δ(θT+1) ≤ exp

(
−µδ η0

2

αT0 − αT+1

1− α

)
δ(θT0) (116)

Now let us consider Phase 1 where t < T0. Using Eq. (112) and recursing from t = 1 to T0 − 1,

δ(θt+1) ≤ δ(θt)−
ηt µ δ

2
δ(θt) + ηt

2 σ2
t (117)

=⇒ δ(θT0) ≤
T0−1∏
t=1

(
1− µ δ η0

2
αt

)
+

T0−1∑
t=1

α2
t σ

2
t

T0−1∏
i=t+1

(
1− µ δ η0

2
αi

)
(118)

Using 1− x ≤ exp(−x), defining 1
κ := µ δ η0

2 and by summing up the geometric series,

=⇒ δ(θT0) ≤ δ(θ1) exp

(
−1

κ

α− αT0

1− α

)
+

T0−1∑
t=1

α2
t σ

2
t

T0−1∏
i=t+1

(
1− µ δ η0

2
αi

)
(119)

Let us now bound the second term on the RHS.

T0−1∑
t=1

α2
tσ

2
t

T0−1∏
i=t+1

(
1− 1

κ
αi

)
≤

T0−1∑
t=1

α2
tσ

2
t exp

(
−1

κ

T0−1∑
i=t+1

αi

)
(120)

=

T0−1∑
t=1

α2
tσ

2
t exp

(
−1

κ

αt+1 − αT0

1− α

)
(121)

= exp

(
αT0

κ(1− α)

) T0−1∑
t=1

α2
tσ

2
t exp

(
− αt+1

κ(1− α)

)
(122)

Using that exp(−x) ≤
(

2
ex

)2
≤ exp

(
αT0

κ(1− α)

) T0−1∑
t=1

α2
tσ

2
t

(
2(1− α)κ

eαt+1

)2

(123)

= exp

(
αT0

κ(1− α)

)
4(1− α)2κ2

e2α2

T0−1∑
t=1

σ2
t (124)

Since 1− x ≤ ln(1/x)

≤ exp

(
αT0

κ(1− α)

)
4κ2

e2α2

ln2
(
T
β

) ∑T0−1
t=1 σ2

t

T 2
(125)

Putting everything together,

δ(θT0) ≤ δ(θ1) exp

(
−1

κ

α− αT0

1− α

)
+ exp

(
αT0

κ(1− α)

)
4κ2

e2α2

ln2
(
T
β

) ∑T0−1
t=1 σ2

t

T 2
(126)

24



PRACTICAL PRINCIPLED POLICY OPTIMIZATION FOR FINITE MDPS

Combining the results of Phase 1 and Phase 2,

δ(θT+1) ≤ exp

(
−1

κ

αT0 − αT+1

1− α

) δ(θ1) exp(−1

κ

α− αT0

1− α

)
+ exp

(
αT0

κ(1− α)

)
4κ2

e2α2

ln2
(
T
β

) ∑T0−1
t=1 σ2

t

T 2


(127)

= δ(θ1) exp

(
−1

κ

α− αT+1

1− α

)
+ exp

(
αT+1

κ(1− α)

)
4κ2

e2α2

ln2
(
T
β

) ∑T0−1
t=1 σ2

t

T 2
(128)

Using that αT+1

κ(1−α) ≤
2β

κ ln(T/β) from [22, Lemma 5],

≤ δ(θ1) exp

(
2β

κ ln(T/β)

)
exp

(
−1

κ

α

1− α

)
+ exp

(
2β

κ ln(T/β)

)
4κ2

e2α2

ln2
(
T
β

) ∑T0−1
t=1 σ2

t

T 2

(129)

Using that α
κ(1−α) ≥

αT
κ ln(T/β) from [22, Lemma 5],

≤ δ(θ1) exp

(
2β

κ ln(T/β)

)
︸ ︷︷ ︸

:=C1

exp

(
− αT

κ ln(T/β)

)
+ exp

(
2β

κ ln(T/β)

)
4κ2

e2α2
ln2
(
T

β

)
︸ ︷︷ ︸

:=C2

∑T0−1
t=1 σ2

t

T 2

(130)

δ(θT+1) ≤ C1 exp

(
− αT

κ ln(T/β)

)
δ1 + C2

∑T0−1
t=1 σ2

t

T 2
(131)

(132)

Let us now simplify σ2
t = 2ρ ∥∇f(θt)∥22. Since f is L uniform smooth, for any u, v

f(v) ≤ f(u) + ⟨∇f(u), v − u⟩+ L

2
∥u− v∥22 (133)

Setting v = u− 1
L∇f(u),

f(v) ≤ f(u)− 1

2L
∥∇f(u)∥22 =⇒ ∥∇f(u)∥22 ≤ 2L [f(u)− f(v)] ≤ 2L [f(u)− f∗] (134)

=⇒ σ2
t ≤ 4ρL [f(θt)− f∗] = 4ρL δ(θt) (135)

δ(θT+1) ≤ C1 exp

(
− αT

κ ln(T/β)

)
δ(θ1) + 4 ρC2 L

∑T0−1
t=1 δ(θt)

T 2
(136)

Making the dependence on the constants explicit,

=⇒ δ(θT+1) ≤ exp

(
µδ η0 β

ln(T/β)

)
exp

(
−µδη0α
ln(T/β)

T

)
+ 4 ρL exp

(
µδ η0 β

ln(T/β)

)
16 ln2(T/β)

e2α2 µ2 η20 δ
2

∑T0−1
t=1 δ(θt)

T 2

(137)
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Appendix D. Policy Gradient with Entropy Regularization Proofs

D.1. Proof of Theorem 9

Theorem 9 (Softmax Policy Gradient with Entropy Regularization) Using Update 3, softmax
policy gradient with Armijo line-search converges to the soft globally optimal solution with a rate of
O(exp(−T ))

f∗τ − f τ (θT ) ≤ f∗τ − f τ (θ0) exp

(
−min

{
2(1− h)

Lτ
, ηmax

}
µT

)
(138)

where µ := min1≤t≤T mina πθt(a|s), Lτ = 5
2 + 5 τ(1 + log|A|) and h ∈ (0, 1).

Proof

For any L-smooth function the step-size ηt returned by the Armijo line-search is guaranteed to satisfy
ηmax ≥ ηt ≥ min

{
2(1−c)

L , ηmax

}
(Lemma 1 in [21]) which implies that

f τ (θt+1) ≥ f τ (θt) + min

{
2(1− h)

Lτ
, ηmax

}
∥∇f τ (θt)∥22 (139)

Subtracting f∗τ from both sides and multiplying by −1

f∗τ − f τ (θt+1) ≤ f∗τ − f τ (θt)−min

{
2(1− h)

Lτ
, ηmax

}
∥∇f τ (θt)∥22 (140)

Let δτ (θt) := f∗τ − f τ (θt)

δτ (θt+1) ≤ δτ (θt)−min

{
2(1− h)

Lτ
, ηmax

}
∥∇f τ (θt)∥22 (141)

By Theorem 31, with C(θ) := 2τ mina πθ(a)

≤ δτ (θt)

(
1−min

{
2(1− h)

Lτ
, ηmax

}
C(θt)

)
(142)

Recursing from t = 0 to T − 1 and for let µ := min1≤t≤T C(θt)

δτ (θT ) ≤ δτ (θ0) exp

(
−min

{
2(1− h)

Lτ
, ηmax

}
µT

)
(143)

D.2. Proof of Theorem 4

Lemma 10 if ∇r

[
(π∗ − π∗

τ )
⊤r
]
= 0, then all suboptimal rewards must be equal.
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Proof Setting gradient of the bias of softmax optimal policy (π∗ − π∗
τ )

⊤r with respect to the reward
vector r equal to a zero vector, the derivative of the bias with respect to an arbitrary suboptimal
reward r(â), where â is a suboptimal action, should be 0:

d

dr(â)
(π∗ − π∗

τ )
⊤r = 0 =⇒ d

dr(â)

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

= 0 (144)

=⇒

(
e
r(â)
τ

τ [r(a∗)− r(â)]− e
r(â)
τ

)(∑
a e

r(a)
τ

)
− e

r(â)
τ

τ

(∑
a e

r(a)
τ [r(a∗)− r(a)]

)
(∑

a′ e
r(a′)

τ

)2 = 0 (145)

=⇒
e
r(â)
τ

τ

(∑
a e

r(a)
τ [r(a)− r(â)− τ ]

)
(∑

a′ e
r(a′)

τ

)2 = 0 =⇒
∑
a

e
r(a)
τ [r(a)− r(â)− τ ] = 0 (146)

Now, for any two suboptimal actions âi and âj , we have

=⇒
∑
a

e
r(a)
τ [r(a)− r(âi)− τ ]−

∑
a

e
r(a)
τ [r(a)− r(âj)− τ ] = 0− 0 (147)

=⇒
∑
a

e
r(a)
τ [r(âj))− r(âi)] = 0 =⇒ r(âj) = r(âi). (148)

Therefore, all suboptimal rewards must be equal.

Lemma 11 We have (π∗ − π∗
τ )

⊤r ≤ τW
(
|A|−1

e

)
, where W : R+ 7→ R+ is the principal branch

of the Lambert W function, which is defined by W (x)eW (x) = x ∀x ≥ 0.

Proof We want to find an upper bound on the difference between the expected reward achieved
by the optimal policy π∗ and the softmax optimal policy π∗

τ = softmax(r/τ). Denoting ∆(a) =
r(a∗)− r(a), ∆ = mina̸=a∗ ∆(a), and a∗ is the optimal action, we have

(π∗−π∗
τ )

⊤r =
∑
a

π∗
τ (a) r(a

∗)−
∑
a

π∗
τ (a) r(a) =

∑
a̸=a∗

π∗
τ (a)∆(a) =

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

. (149)

To find the upper bound, it is enough to find a reward vector r ∈ R|A| that maximizes the bias. To do
so, we find a unique stationary point and then prove that it is the reward vector with the maximum
bias. First, we show that decreasing all rewards by a constant value c does not change the bias:

(π∗ − π∗
τ )

⊤(r − c1) =

∑
a̸=a∗ e

r(a)−c
τ ∆(a)∑

a′ e
r(a′)−c

τ

=
e−

c
τ
∑

a̸=a∗ e
r(a)
τ ∆(a)

e−
c
τ
∑

a′ e
r(a′)

τ

(150)

=

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

= (π∗ − π∗
τ )

⊤r (151)
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Therefore, without loss of generality, we assume that the smallest reward value equals 0. Furthermore,
according to Theorem 10, stationary reward vectors must have equal values for all non-optimal
actions. Therefore, we assume that the reward vector has a value of ra∗ = ∆ for the optimal action
and 0 values for all other actions. In this case,

(π∗ − π∗
τ )

⊤r =

∑
a̸=a∗ e

r(a)
τ ∆(a)∑

a′ e
r(a′)

τ

=
(|A| − 1)∆

e
∆
τ + |A| − 1

. (152)

Now, we find the reward gap ∆ that makes the first derivative of the bias with respect to ∆ equal to 0:

d

d∆

(|A| − 1)∆

e
∆
τ + |A| − 1

= 0 =⇒
(|A| − 1)

(
e

∆
τ + |A| − 1

)
− (|A|−1)∆e

∆
τ

τ(
e

∆
τ + |A| − 1

)2 = 0 (153)

=⇒ (|A| − 1)
(
e

∆
τ + |A| − 1

)
− (|A| − 1)∆e

∆
τ

τ
= 0 =⇒ τ

(
e

∆
τ + |A| − 1

)
= ∆e

∆
τ (154)

=⇒ τ(|A| − 1) = (∆− τ)e
∆
τ =⇒ ∆− τ

τ
e

∆
τ = |A| − 1 =⇒ ∆− τ

τ
e

∆−τ
τ =

|A| − 1

e
(155)

=⇒W

(
|A| − 1

e

)
=

∆− τ

τ
=⇒ ∆ = τ

(
W

(
|A| − 1

e

)
+ 1

)
, (156)

where W : R 7→ R is the principal branch of the Lambert W function. Since this value is the only
stationary point of the bias with respect to the rewards vector, ∆ = τ

(
W
(
|A|−1

e

)
+ 1
)

is either the

global maximum or the global minimum point. Since π∗ is the optimal policy, the bias (π∗ − π∗
τ )

⊤r
is always non-negative. For ∆ = 0, the bias is equal to 0, so the unique stationary point must yield
the global maximum. Substituting it in Eq. (152), we get

(π∗ − π∗
τ )

⊤r ≤
(|A| − 1)τ

(
W
(
|A|−1

e

)
+ 1
)

e
W

(
|A|−1

e

)
+1

+ |A| − 1

. (157)

Now, since eW (x) = x
W (x) ,

=
(|A| − 1)τ

(
W
(
|A|−1

e

)
+ 1
)

|A|−1

W
(

|A|−1
e

) + |A| − 1
(158)

=τW

(
|A| − 1

e

)
. (159)

Lemma 12 For a fixed τ , assuming c = inft1≤t<t2 mina πθt(a) > 0, and using the update rule
θt+1 = θt + η∇f τ (θt), where η = 1/Lτ , we have

f∗τ − f τ (θt2) ≤ exp{−η τ c2 (t2 − t1)}[f∗τ − f τ (θt1)], (160)

where t1 < t2.
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Proof Using the Lτ -smoothness of the entropy regularized objective function, we have

f τ (θt+1) ≥f τ (θt) + ⟨∇f τ (θt), θt+1 − θt⟩ −
Lτ

2
||θt+1 − θt||22 (161)

Using the update rule θt+1 = θt + η∇f τ (θt),

=f τ (θt) + η||∇f τ (θt)||22 −
Lτ η2

2
||∇f τ (θt)||22 (162)

Using η = 1/Lτ ,

=f τ (θt) +
η

2
||∇f τ (θt)||22 (163)

Using Theorem 31, we have

≥f τ (θt) + η τ min
a

πθt(a)
2 [f∗τ − f τ (θt)]. (164)

=⇒ f∗τ − f τ (θt+1) ≤
(
1− η τ min

a
πθt(a)

2
)
[f∗τ − f τ (θt)] (165)

Now, using 1− x ≤ exp(−x),

≤ exp
(
−η τ min

a
πθt(a)

2
)
[f∗τ − f τ (θt)] (166)

Assuming c = inft1≤t<t2 mina πθt(a) > 0, we have

≤ exp(−η τ c2 (t2 − t1))[f
∗τ − f τ (θt1)]. (167)

Lemma 13 For a fixed θ and τ , we have

(π∗
τ − πθ)

⊤r ≤ f∗τ − f τ (θ) + τ log |A|. (168)

Proof

(π∗
τ − πθ)

⊤r =π∗
τ
⊤(r − τ log π∗

τ )− πθ
⊤(r − τ log πθ) + τ(π∗

τ log π
∗
τ − πθ log πθ) (169)

Since log 1
|A| ≤ πθ

⊤ log πθ ≤ 0 ∀θ,

≤f∗τ − f τ (θ) + τ

(
0− log

1

|A|

)
(170)

=f∗τ − f τ (θ) + τ log |A|. (171)

29



PRACTICAL PRINCIPLED POLICY OPTIMIZATION FOR FINITE MDPS

Theorem 4 Setting ηt = 1/Lτ , τ = ϵ/ (2W ((|A|−1)/e)) where W (x) is the Lambert function,
Update 3 achieves ϵ-suboptimality after O (1/ϵ log 1/ϵ) iterations.

Proof We have

δτ (θt) =(π∗ − πθt)
⊤r (172)

=(π∗ − π∗
τ )

⊤r + (π∗
τ − πθt)

⊤r (173)

Now, using Theorem 11,

≤τW
(
|A| − 1

e

)
+ (π∗

τ − πθt)
⊤r (174)

Furthermore, using Theorem 13, we have

≤τ
(
W

(
|A| − 1

e

)
+ log |A|

)
+ f∗τ − f τ (θt) (175)

Using τ = ϵ/
(
2
(
W
(
|A|−1

e

)
+ log |A|

))
,

≤ ϵ

2
+ f∗τ − f τ (θt). (176)

Therefore, to show that δτ (θt) ≤ ϵ, it suffices that

f∗τ − f τ (θt) ≤
ϵ

2
. (177)

According to Lemma 13 from [10], we have mina πθt(a) > c ∀t ≥ 0, where c =
1/(|A| exp( 1τ ) exp(4(||θ0||∞ + 1

τ )
√
|A|)) > 0, which we consider as a constant. Therefore, we

can use Theorem 12:
f∗τ − f τ (θt) ≤ exp(−η τ c2 t)[f∗τ − f τ (θ0)] (178)

Now, to show that (π∗
τ − πθt)

⊤r ≤ ϵ
2 , it suffices that

exp(−η τ c2 t)[f∗τ − f τ (θ0)] ≤
ϵ

2
(179)

⇐⇒ exp(τ η c2 t) ≥ 2[f∗τ − f τ (θ0)]

ϵ
(180)

⇐⇒ τ η c2 t ≥ log

(
2[f∗τ − f τ (θ0)]

ϵ

)
(181)

Since η = 1/Lτ = 1/
(
5
2 + τ 5 (1 + log|A|)

)
,

⇐⇒ t ≥
5
2 + τ 5 (1 + log|A|)

τ c2
log

(
2[f∗τ − f τ (θ0)]

ϵ

)
(182)

Again, using τ = ϵ/
(
2
(
W
(
|A|−1

e

)
+ log |A|

))
,

⇐⇒ t ≥ 5

W
(
|A|−1

e

)
+ log |A|

ϵ c2
+

1 + log|A|
c2

 log

(
2[f∗τ − f τ (θ0)]

ϵ

)
. (183)

Therefore, only T ∈ O
(
1
ϵ log

1
ϵ

)
iterations are required for achieving ϵ-suboptimality.
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D.3. Proof of Theorem 15

Lemma 14 For a fixed θ, if τ2 < τ1, then

f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W

(
|A| − 1

e

)
+ τ1 log |A|. (184)

Proof Assuming τ2 < τ1, we have

[f∗τ2 − f τ2(θ)]− [f∗τ1 − f τ1(θ)] = [f∗τ2 − f∗τ1 ]− [f τ2(θ)− f τ1(θ)] (185)

=
[
π∗
τ2

⊤(r − τ2 log π
∗
τ2)− π∗

τ1
⊤(r − τ1 log π

∗
τ1)
]
− [πθ

⊤(r − τ2 log πθ)− πθ
⊤(r − τ1 log πθ)]

(186)

=(π∗
τ2 − π∗

τ1)
⊤r −

[
τ2 π

∗
τ2

⊤ log π∗
τ2 − τ1 π

∗
τ1

⊤ log π∗
τ1

]
+ (τ2 − τ1)πθ

⊤ log πθ (187)

Since log 1
|A| ≤ πθ

⊤ log πθ ≤ 0 ∀θ,

≤(π∗
τ2 − π∗

τ1)
⊤r −

[
τ2 log

1

|A|
− τ1 0

]
+ (τ2 − τ1) log

1

|A|
≤ (π∗ − π∗

τ1)
⊤r + τ1 log|A|. (188)

Now, using Theorem 11,

=⇒ f∗τ2 − f τ2(θ) ≤ f∗τ1 − f τ1(θ) + τ1W

(
|A| − 1

e

)
+ τ1 log |A|. (189)

Theorem 15 Using step size ηi = 1/Lτi , and considering ĉ = infi(ĉi) as a constant, where
ĉi = 1/(|A| exp

(
1
τi

)
exp
(
4(||θlasti−1 ||∞ + 1

τi
)
√
|A|
)

, Algorithm 1 achieves ϵ-suboptimality after

O
(
1
ϵ

)
iterations.

Proof Observe that in Algorithm 1, we use τi and ηi at stage i ≥ 1, which starts at iteration lasti−1+1,
runs for Ti =

1
ηi τi c2i

log
(
τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

))
iterations, and ends at iteration lasti.

Now, we prove by induction that f∗τi − f τi(θlasti) ≤ τimax
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − f τ0(θ0) ≤ max(τ0, f
∗τ0 − f τ0(θ0)) = τ0max

(
1,

f∗τ0 − f τ0(θ0)

τ0

)
. (190)

Induction Step: Suppose f∗τi−1 − f τi−1(θlasti−1) ≤ τi−1max
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
holds. Since

ci = minlasti−1≤t<lasti mina πθt(a), we use Theorem 12 for stage i:

f∗τi − f τi(θlasti) ≤ exp(−τi ηi c2i Ti)[f
∗τi − f τi(θlasti−1)] (191)

Using Ti =
1

ηi τi c2i
log
(
τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

))
, we have

≤
f∗τi − f τi(θlasti−1)

exp
{
log
(
τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

))} (192)
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Now, using Theorem 14,

≤
f∗τi−1 − f τi−1(θlasti−1) + τi−1W

(
|A|−1

e

)
+ τi−1 log |A|

τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

) (193)

Using the inductive hypothesis,

≤
τi τi−1

(
max

(
1, f

∗τ0−fτ0 (θ0)
τ0

)
+W

(
|A|−1

e

)
+ log |A|

)
τi−1

(
1 +W

(
|A|−1

e

)
+ log |A|

) (194)

≤
τimax

(
1, f

∗τ0−fτ0 (θ0)
τ0

)(
1 +W

(
|A|−1

e

)
+ log |A|

)
1 +W

(
|A|−1

e

)
+ log |A|

(195)

=τimax

(
1,

f∗τ0 − f τ0(θ0)

τ0

)
. (196)

Therefore, f∗τi − f τi(θlasti) ≤ τimax
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
holds for all i ≥ 0. As a result, we can use

Theorem 13 to find an upper bound for (π∗
τi − πθlasti

)⊤r that is proportional to τi:

(π∗
τi − πθlasti

)⊤r ≤f∗τi − f τi(θlasti) + τi log |A| (197)

≤τi
(
max

(
1,

f∗τ0 − f τ0(θ0)

τ0

)
+ log |A|

)
(198)

Therefore, using Theorem 11, the total suboptimality at the end of each stage ϵi := (π∗ − πθlasti
)⊤r

has an upper bound that is proportional to the corresponding τi:

ϵi =(π∗ − πθlasti
)⊤r (199)

=(π∗ − π∗
τi)

⊤r + (π∗
τi − πθlasti

)⊤r (200)

≤τiC1 (201)

where C1 = W
(
|A|−1

e

)
+max

(
1, f

∗τ0−fτ0 (θ0)
τ0

)
+ log |A|. Now, since τi = 2−i τ0, the subopti-

mality ϵi has an exponential rate in terms of the number of executed stages:

≤2−i τ0C1 (202)

Therefore, the required number of stages Nstages in terms of the final suboptimality ϵ := ϵNstages is

2Nstages ≤ τ0C1

ϵ
=⇒ Nstages ≤ log2

(
τ0C1

ϵ

)
. (203)

On the other hand, we have the required number of iterations at stage i:

Ti =
log
(
τi−1

τi
C2

)
ηi τi c2i

, (204)
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where C2 = 1 + W
(
|A|−1

e

)
+ log |A|. According to Lemma 13 from [10], we have ci =

minlasti−1≤t<lasti mina πθt(a) ≥ ĉi, where ĉi = 1/(|A| exp( 1
τi
) exp(4(||θlasti−1 ||∞ + 1

τi
)
√
|A|)).

We also assumed that ĉ = infi>0 ĉi is a constant. Since ci ≥ ĉi ≥ ĉ, we have

≤
log
(
τi−1

τi
C2

)
ηi τi ĉ2

(205)

Since ηi = 1/Lτi = 1/
(
5
2 + τi 5 (1 + log|A|)

)
,

=

[
5
2 + τi 5 (1 + log|A|)

]
log
(
τi−1

τi
C2

)
τi ĉ2

(206)

=

5
2 log

(
τi−1

τi
C2

)
τi ĉ2

+ C3 (207)

where C3 = 5 (1 + log|A|) log(2C2)/ĉ
2. Since τi = 2−i τ0, we have

=
5
2 log(2C2) 2

i

τ0 ĉ2
+ C3, (208)

Consequently, we can calculate the total number of required iterations TTotal in terms of ϵ:

TTotal =

Nstages∑
i=1

Ti ≤
Nstages∑
i=1

[
5
2 log(2C2) 2

i

τ0 ĉ2
+ C3

]
(209)

=
5
2 log(2C2)

∑Nstages
i=1 2i

τ0 ĉ2
+ C3Nstages (210)

=
5
2 log(2C2) [2

Nstages+1 − 2]

τ0 ĉ2
+ C3Nstages (211)

≤5 log(2C2) 2
Nstages

τ0 ĉ2
+ C3Nstages (212)

Using Eq. (203), we have

≤5C1 log(2C2)

ϵ ĉ2
+ C3 log2

(
τ0C1

ϵ

)
(213)

=⇒ TTotal ∈ O
(
1

ϵ

)
. (214)

Appendix E. Stochastic Policy Gradient with Entropy Regularization Proofs

E.1. Proof of Theorem 5

Lemma 16 For all C > 0, if T ≥ max(2, 2C logC), then T
log T ≥ C.
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Proof If C < 2, knowing that T ≥ 2, we have

T

log T
> 2 > C. (215)

Otherwise, if C ≥ 2,

2C logC =C(logC + logC) (216)

Since C ≥ 2 logC ∀C > 0,

≥C(logC + log(2 logC)) = C log(2C logC) (217)

=⇒ 2C logC

log(2C logC)
≥ C. (218)

Therefore, knowing that T ≥ 2C logC, since 2C logC ≥ 4 log 2 > 2.72, we have

T

log T
≥ 2C logC

log(2C logC)
≥ C. (219)

Lemma 17 For all C > 0, if T ≥ max(5583, 4C log2C), then T
log2 T

≥ C.

Proof If C < 75, knowing that T ≥ 5583, we have

T

log2 T
> 75 > C. (220)

Otherwise, if C ≥ 75,

4C log2C =C(logC + logC)2 (221)

Since C ≥ 4 log2C ∀C ≥ 75,

≥C(logC + log(4 log2C))2 = C log2(4C log2C) (222)

=⇒ 4C log2C

log2(4C log2C)
≥ C. (223)

Therefore, knowing that T ≥ 4C log2C, since 4C log2C ≥ 300 log2 75 > 8, we have

T

log2 T
≥ 4C log2C

log2(4C log2C)
≥ C. (224)
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Lemma 18 Assuming c = mint1≤t<t2 mina πθt(a) > 0. Using Update 4 with exponential step-size
ηt = ηt1 α

t−t1 , where ηt1 = 1/Lτ and α = (1/T )1/T , where T = t2 − t1 > 0, ϵ̂-suboptimality is
achieved if T = max(5583, 2Y1 log Y1, 4Y2 log2 Y2), where

Y1 =
log
(
2B1 E[f∗τ−fτ (θt1 )]

ϵ̂

)
2B2 τ c2

, Y2 =
B3 b

2 τ2 c4 ϵ̂
, (225)

where B1 = exp
(
8
5

)
, B2 =

1.38
5+10(1+logK) , and B3 =

5
e2

(52 + 5(1 + logK)) exp(85).

Proof According to Theorem 1 from [9], using exponential step-size ηt = ηt1 α
t−t1 , where ηt1 =

1/Lτ and α = (1/T )1/T , where T = t2 − t1, we have

E[f∗τ − f τ (θt2)] ≤ X1 exp

(
−X2 µ

T

log T

)
E[f∗τ − f τ (θt1)] +

X3 b

µ2 T
log2 T

, (226)

where

X1 = exp

(
2µ

Lτ log T

)
, X2 =

0.69

Lτ
, X3 =

5Lτ X1

e2
. (227)

According to Theorem 31 and since 0 ≤ τ ≤ 1, we have µ = 2 τ mina π(θ) ≤ 2. Furthermore,
5
2 ≤ Lτ = 5

2 + 5 τ(1 + logK) ≤ 5
2 + 5(1 + logK) and log T ≥ 1. Therefore,

X1 ≤B1 = exp

(
8

5

)
, (228)

X2 ≥B2 =
0.69

5
2 + 5(1 + logK)

, (229)

X3 ≤B3 =
5 (52 + 5(1 + logK)) exp(85)

e2
. (230)

Hence, we can safely substitute variables X1, X2, X3 with their corresponding constants B1, B2, B3.
Now, assuming that c = inft≥0mina πθt(a) > 0, according to Theorem 31, we have µ ≥ 2 τ c2.
Therefore,

E[f∗τ − f τ (θt2)] ≤ B1 exp

(
−2B2 τ c

2 T

log T

)
E[f∗τ − f τ (θt1)] +

B3 b

4 τ2 c4 T
log2 T

. (231)

We show that if the inequalities T
log T ≥ Y1 and T

log2 T
≥ Y2 are satisfied, where

Y1 =
log
(
2B1 E[f∗τ−fτ (θt1 )]

ϵ̂

)
2B2 τ c2

, Y2 =
B3 b

2 τ2 c4 ϵ̂
, (232)

then E[f∗τ − f τ (θt2)] ≤ ϵ̂ holds. we have

E[f∗τ − f τ (θt2)] ≤B1 exp

(
−2B2 τ c

2 1

2B2 τ c2
log

(
2B1 [f

∗τ − f τ (θt1)]

ϵ̂

))
E[f∗τ − f τ (θt1)]

(233)

+
B3 b

4 τ2 c4 B3 b
2 τ2 c4 ϵ̂

=
ϵ̂

2
+

ϵ̂

2
= ϵ̂. (234)
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Now, according to Theorem 16, for T
log T ≥ Y1 to hold, it suffices that T ≥ max(2, 2Y1 log Y1).

Furthermore, according to Theorem 17, for T
log2 T

≥ Y2 to hold, it suffices that T ≥
max(5583, 4Y2 log2 Y2). Therefore, the required number of iterations to achieve ϵ̂-suboptimality is
T = max(5583, 2Y1 log Y1, 4Y2 log2 Y2).

Theorem 5 Assuming c := inft≥0mina πθt(a) > 0. Using Update 4 with τ =
ϵ/ (2 (W (|A|−1/e) + log |A|)) and using exponential decreasing step-size ηt = η0 α

t, where
η0 = 1/Lτ , achieves ϵ-suboptimality after Õ (1/ϵ + b/ϵ3) iterations.

Proof We have

E[δt] =E[(π∗ − πθt)
⊤r] (235)

=(π∗ − π∗
τ )

⊤r + E[(π∗
τ − πθt)

⊤r] (236)

Now, using Theorem 11,

≤τW
(
|A| − 1

e

)
+ E[(π∗

τ − πθt)
⊤r] (237)

Furthermore, using Theorem 13, we have

≤τ
(
W

(
|A| − 1

e

)
+ log |A|

)
+ E[f∗τ − f τ (θt)] (238)

Using τ = ϵ/
(
2
(
W
(
|A|−1

e

)
+ log |A|

))
,

≤ ϵ

2
+ E[f∗τ − f τ (θt)]. (239)

Therefore, to show that E[δt] ≤ ϵ, it suffices to show that

E[f∗τ − f τ (θt)] ≤
ϵ

2
. (240)

Since c = inft≥0mina πθt(a) > 0, according to Theorem 18, using exponential step-size ηt =
η0 α

t, where η0 = 1/Lτ and α = (1/T )1/T , for E[f∗τ − f τ (θT )] ≤ ϵ
2 to hold, it suffices that

T = max(5583, 2Y1 log Y1, 4Y2 log2 Y2), where

Y1 =
log
(
4B1 E[f∗τ−fτ (θt1 )]

ϵ̂

)
2B2 τ c2

, Y2 =
B3 b

τ2 c4 ϵ
, (241)

where B1 = exp
(
8
5

)
, B2 =

1.38
5+10(1+log |A|) , and B3 =

5
e2

(52 +5(1+log |A|)) exp(85). Again, using

τ = ϵ/
(
2
(
W
(
|A|−1

e

)
+ log |A|

))
, we have

Y1 ≥

(
W
(
|A|−1

e

)
+ log |A|

)
log
(
4B1 [f∗τ−fτ (θ0)]

ϵ

)
B2 c2 ϵ

, (242)

Y2 ≥
4B3

(
W
(
|A|−1

e

)
+ log |A|

)2
b

c4 ϵ3
. (243)

Therefore, only T ∈ Õ
(
1
ϵ +

b
ϵ3

)
iterations are required for achieving ϵ-suboptimality.
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E.2. Proof of Theorem 19

Theorem 19 Assuming that c = infiminlasti−1≤t<lasti mina πθt(a) > 0 for each stage i. Using Al-
gorithm 3 with exponential step-size ηi,t = ηi,lasti−1 α

t−lasti−1

i , where ηi,lasti−1 = 1/Lτi achieves
ϵ-suboptimality after Õ

(
1
ϵ +

b
ϵ3

)
iterations.

Proof Observe that in Algorithm 3, we use τi at stage i ≥ 1, which starts at iteration lasti−1 + 1,
ends at iteration lasti, and runs for Ti = max(5583, 2T

′
i log T

′
i , 4T

′′
i log2 T

′′
i ) iterations, where

T
′
i =

log

(
2B1 τi−1(1+W(K−1

e )+logK)
τi

)
2B2 τi c2i

, T
′′
i =

B3 b

2 τ3i c
4
i

, (244)

where B1 = exp
(
8
5

)
, B2 = 1.38

5+10(1+logK) , and B3 = 5
e2

(52 + 5(1 + logK)) exp(85). Now, we

prove by induction that f∗τi − f τi(θlasti) ≤ τimax
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − f τ0(θ0) ≤ max(τ0, f
∗τ0 − f τ0(θ0)) = τ0max

(
1,

f∗τ0 − f τ0(θ0)

τ0

)
. (245)

Induction Step: Suppose E[f∗τi−1 − f τi−1(θlasti−1)] ≤ τi−1max
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
holds. Since

ci = minlasti−1≤t<lasti mina πθt(a) > 0, according to Theorem 18, using exponential step-size ηi,t =
ηi,lasti−1 ·α

t−lasti−1

i , where ηi,lasti−1 = 1/Lτi and αi = (1/Ti)
1/Ti at stage i, for E[f∗τi−f τi(θlasti)] ≤

τimax
(
1, f

∗τ0−fτ0 (θ0)
τ0

)
to hold, it suffices that Ti = max(5583, 2Xi logXi, 4X

′
i log

2X
′
i), where

Xi =

log

2B1 E[f∗τi−fτi (θlasti−1
)]

τi max

(
1,

f
∗τ0−fτ0 (θ0)

τ0

)


2B2 τi c2i
, X

′
i =

B3 b

2 τ3i c
4
i max

(
1, f

∗τ0−fτ0 (θ0)
τ0

) . (246)

Now, using Theorem 14,

Xi ≤

log

2B1

(
E[f∗τi−1−fτi−1 (θlasti−1

)]+τi−1W
(

|A|−1
e

)
+τi−1 log |A|

)
τi max

(
1,

f
∗τ0 −fτ0 (θ0)

τ0

)


2B2 τi c2i
(247)
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Using the inductive hypothesis,

≤

log

2B1

(
τi−1 max

(
1,

f
∗τ0−fτ0 (θ0)

τ0

)
+τi−1W

(
|A|−1

e

)
+τi−1 log |A|

)
τi max

(
1,

f
∗τ0−fτ0 (θ0)

τ0

)


2B2 τi c2i
(248)

≤

log

2B1 τi−1 max

(
1,

f
∗τ0−fτ0 (θ0)

τ0

)(
1+W

(
|A|−1

e

)
+log |A|

)
τi max

(
1,

f
∗τ0−fτ0 (θ0)

τ0

)


2B2 τi c2i
(249)

=

log

(
2B1 τi−1

(
1+W

(
|A|−1

e

)
+log |A|

)
τi

)
2B2 τi c2i

= T
′′
i . (250)

On the other hand, we have

X
′
i ≤

B3 b

2 τ3i c
4
i

= T
′
i , (251)

which is exactly the number of iterations at stage i. Therefore, E[f∗τi − f τi(θlasti)] ≤
τimax

(
1, f

∗τ0−fτ0 (θ0)
τ0

)
holds for all i ≥ 0. As a result, we can use Theorem 13 to find an

upper bound for E[(π∗
τi − πθlasti

)⊤r] that is proportional to τi:

E[(π∗
τi − πθlasti

)⊤r] ≤E[f∗τi − f τi(θlasti)] + τi log |A| (252)

≤τi(max

(
1,

f∗τ0 − f τ0(θ0)

τ0

)
+ log |A|) (253)

Therefore, using Theorem 11, the total suboptimality at the end of each stage ϵi := E[(π∗−πθlasti
)⊤r]

has an upper bound that is proportional to the corresponding τi:

ϵi =E[(π∗ − πθlasti
)⊤r] (254)

=(π∗ − π∗
τi)

⊤r + E[(π∗
τi − πθlasti

)⊤r] (255)

≤τiC1 (256)

where C1 = W
(
|A|−1

e

)
+max

(
1, f

∗τ0−fτ0 (θ0)
τ0

)
+ log |A|. Now, since τi = 2−i τ0, the subopti-

mality ϵi has an exponential rate in terms of the number of executed stages:

≤2−i τ0C1 (257)

Therefore, the required number of stages Nstages in terms of the final suboptimality ϵ := ϵNstages is

2Nstages ≤ τ0C1

ϵ
=⇒ Nstages ≤ log2

(
τ0C1

ϵ

)
. (258)
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On the other hand, we have the required number of iterations at stage i:

Ti =max

5583,
log
(
2B1 τi−1 C2

τi

)
B2 τi c2i

log

 log
(
2B1 τi−1 C2

τi

)
2B2 τi c2i

 ,
2B3 b

τ3i c
4
i

log2
(

B3 b

2 τ3i c
4
i

) (259)

where C2 = 1 +W
(
|A|−1

e

)
+ log |A|. Since c = infi>0 ci, we have

≤max

5583,
log
(
2B1 τi−1 C2

τi

)
B2 τi c2

log

 log
(
2B1 τi−1 C2

τi

)
2B2 τi c2

 ,
2B3 b

τ3i c
4

log2
(

B3 b

2 τ3i c
4

) (260)

Now, since τi = 2−i τ0,

=max

(
5583,

log(4B1C2) 2
i

B2 τ0 c2
log

(
log(4B1C2) 2

i

2B2 τ0 c2

)
,
2B3 b 8

i

τ30 c
4

log2
(
B3 b 8

i

2 τ30 c
4

))
(261)

≤max

(
5583,

log(4B1C2) 2
i

B2 τ0 c2
log

(
log(4B1C2) 2

Nstages

2B2 τ0 c2

)
,
2B3 b 8

i

τ30 c
4

log2
(
B3 b 8

Nstages

2 τ30 c
4

))
(262)

=max

(
5583,

log(4B1C2) 2
i

B2 τ0 c2
Y1,

2B3 b 8
i

τ30 c
4

Y2

)
(263)

where Y1 = log
(
log(4B1 C2) 2

Nstages

2B2 τ0 c2

)
and Y2 = log2

(
B3 b 8

Nstages

2 τ30 c4

)
Consequently, we can calculate

the total number of required iterations TTotal in terms of ϵ:

TTotal =

Nstages∑
i=1

Ti (264)

≤
Nstages∑
i=1

max

(
5583,

log(4B1C2) 2
i

B2 τ0 c2
Y1,

2B3 b 8
i

τ30 c
4

Y2

)
(265)

≤max

(
5583Nstages,

log(4B1C2)
∑Nstages

i=1 2i

B2 τ0 c2
Y1,

2B3 b
∑Nstages

i=1 8i

τ30 c
4

Y2

)
(266)

Since
∑n

i=0 x
i = xn+1−1

x−1 ∀x > 1, n ≥ 0, we have

≤max

5583Nstages,
log(4B1C2)

[
2Nstages+1 − 2

]
B2 τ0 c2

Y1,
2B3 b

[
8Nstages+1−1

7 − 1
]

τ30 c
4

Y2


(267)

≤max

(
5583Nstages,

log(4B1C2) 2
Nstages+1

B2 τ0 c2
Y1,

2B3 b
1
7 8

Nstages+1

τ30 c
4

Y2

)
(268)

≤max

(
5583Nstages,

2 log(4B1C2) 2
Nstages

B2 τ0 c2
Y1,

16B3 b 8
Nstages

7 τ30 c
4

Y2

)
(269)
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Using Eq. (258), we have

≤max

5583 log2

(
τ0C1

ϵ

)
,
2 log(4B1C2)C1 log

(
log(4B1 C2)C1

2B2 c2 ϵ

)
B2 c2 ϵ

,

16B3C
3
1 log2

(
B3 C3

1 b
2 c4 ϵ3

)
b

7 c4 ϵ3

 (270)

=⇒ TTotal ∈ Õ
(
1

ϵ
+

b

ϵ3

)
. (271)

In Theorem 15, we assumed that the ci = minlasti−1≤t<lasti mina πθt(a) constants, which come
from the non-uniform Łojasiewicz constant C(θ) =

√
2τ mina πθ(a) in Theorem 31, have a lower

bound. In practice, we observe that ci quickly decreases as the algorithm progresses, thus Algorithm 1
does not seem to achieve the proposed O

(
1
ϵ

)
rate of convergence. Our experiments suggest that

we can tighten the non-uniform Łojasiewicz condition by substituting the mina πθ(a) term with√
f∗τ − f τ (θ). We also know that Algorithm 1 maintains f∗τi −f τi(θt) ≥ τi ∀lasti−1 ≤ t < lasti

at every stage i. Therefore, we can estimate the number of iterations Ti at stage i by substituting ci
with
√
τi, which results in Algorithm 2. According to the experiments, Algorithm 2 seems to achieve

an O
(
1
ϵ

)
rate of convergence to the global optimal policy. Similarly in Algorithm 3, we substitute ci

by
√
τi to calculate the number of iterations Ti at stage i.

Appendix F. Algorithms

F.1. Multi-Stage Entropy Regularized Policy Gradient

Algorithm 1: Multi-Stage Entropy Regularized Policy Gradient
Output: Policy πθt = softmax(θt)
Initialize parameters θ0 ∈ RA, τ0 ∈ R;
t← 0;
last0 ← t;
while i ≥ 1 do

τi ← τi−1/2;
ηi ← 1/Lτi ;
ci ← 1;
do

ci ← min (ci,mina πθt(a)) ; /* ci = minlasti−1≤t<lasti mina πθt(a) */
θt+1 ← θt + ηi∇f τi(θt);
t← t+ 1;
lasti ← t;

while lasti − lasti−1 <
1

ηi τi c2i
log
(
τi−1

τi

(
1 +W

(
K−1
e

)
+ logK

))
;

end
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Algorithm 2: Practical Multi-Stage Entropy Regularized Policy Gradient
Output: Policy πθt = softmax(θt)
Initialize parameters θ0 ∈ R|A|, τ0 ∈ R;
t← 0;
last0 ← t;
while i ≥ 1 do

τi ← τi−1/2;
ηi ← 1/Lτi ;
ci ←

√
τi ; /* ci is substituted by

√
τi */

Ti ← 1
ηi τ2i

log
(
τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

))
;

while t− lasti−1 < Ti do
θt+1 ← θt + ηi∇f τi(θt);
t← t+ 1;

end
lasti ← t;

end
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F.2. Stochastic Multi-Stage Entropy Regularized Policy Gradient

Algorithm 3: Stochastic Multi-Stage Entropy Regularized Policy Gradient
Output: Policy πθt = softmax(θt)
Initialize parameters θ0 ∈ R|A|, τ0 ∈ R;
t← 0;
last0 ← t;
while i ≥ 1 do

τi ← τi−1/2;
ci ←

√
τi ; /* ci is substituted by

√
τi */

B1 ← exp
(
8
5

)
;

B2 ← 1.38
5+10(1+log |A|) ;

B3 ← 5
e2

(52 + 5(1 + log |A|)) exp(85);
b← 8(1 + (τi log |A|)2);
T

′
i ← 1

2B2 τi c2i
log
(
2B1 τi−1

τi

(
1 +W

(
|A|−1

e

)
+ log |A|

))
;

T
′′
i ←

B3 b
2 τ3i c4i

;

Ti ← max(5583, 2T
′
i log T

′
i , 4T

′′
i log2 T

′′
i );

αi ← (1/Ti)
1/Ti ;

ηi,t ← 1/Lτi ;
while t− lasti−1 < Ti do

θt+1 ← θt + ηi,t∇f̃ τ (θt);
ηi,t+1 ← ηi,t αi;
t← t+ 1;

end
lasti ← t;

end

Appendix G. Experiments

We evaluate the presented step-size schedules in single-state MDP environments in both the deter-
ministic and stochastic setting. In the deterministic setting, we compare PG with line-search (PGLS)
to PG with a fixed step-size (PG), GNPG [11], and PG with entropy regularization (PG-E) [10]. In
the stochastic setting, we compare SPG with exponential step-size (SPG-ESS) to prior work that
uses the full gradient (J-SPG) [11] and the reward gap (B-SPG) [14] when setting the step-size.
Additionally, we compare the presented multi-stage PG with entropy regularization Algorithm 2 in
deterministic setting (PG-E-MS) and Algorithm 3 in stochastic setting (SPG-E-MS). We find that
SPG-ESS and SPG-E-MS are competitive with J-SPG even though they do not access to the full
gradient. B-SPG preforms poorly since a small reward gap leads to a small step-size.

For each experiment, we plot the average (across 50 independent runs) suboptimality gap against
the number of iterations. In each run, a deterministic reward vectors is randomly generated in the
range of [0, 1]|A| with |A| = 10 and, with a maximum reward gap ∆̄ := maxa∗ ̸=a r(a

∗)−r(a) = 0.5
and vary the minimum reward gap ∆

¯
:= mina∗ ̸=a r(a

∗)− r(a) with ∆
¯
∈ {0.2, 0.1, 0.05}. We use

uniform initialization such that πθ0(a) =
1
|A| for all a ∈ |A|. For each entropy regularized method,

42



PRACTICAL PRINCIPLED POLICY OPTIMIZATION FOR FINITE MDPS

we initially set τ = 1. Note that due to entropy-regularization, PG-E cannot converge to the globally
optimal policy since τ is fixed. For SPG-ESS, we used β = 7.5× 106 when the minimum reward
gap is 0.05 or 0.1 and β = 1 otherwise. β was determined via grid-search.

Figure 1: Minimum reward gap: 0.05

Figure 2: Minimum reward gap: 0.1

Figure 3: Minimum reward gap: 0.2
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Appendix H. Extra Lemmas

For completeness, we append external lemmas here.

Lemma 20 (Ascent lemma for smooth function (Lemma 18 in [10])) Let f : Rd → R be a
L-smooth function, θ ∈ Rd and θ′ = θ + 1

L ∇f(θ). We have,

f(θ)− f(θ′) ≤ − 1

2L
∥∇f(θ)∥22 (272)

H.1. Policy Gradients

Lemma 21 (Uniform Smoothness (Lemma 2 in [10])) ∀r ∈ [0, 1]K θ 7→ π⊤
θ r is 5/2-smooth.

Lemma 22 (Non-uniform Smoothness (Lemma 2 in [12])) Denote θζ := θ + ζ (θ′ − θ) with
some ζ ∈ [0, 1]. For any r ∈ [0, 1]K , θ 7→ π⊤

θ r satisfies β(θζ) non-uniform smoothness with

β(θζ) = 3

∥∥∥∥dπ⊤
θζ

r

dθζ

∥∥∥∥
2

Lemma 23 (Lemma 3 in [12]) Let θ′ = θ + η
dπ⊤

θ r

dθ∥∥∥∥ dπ⊤
θ

r

dθ

∥∥∥∥
2

Denote θζ := θ + ζ (θ′ − θ) with some

ζ ∈ [0, 1]. We have for all η ∈ (0, 13),∥∥∥∥∥dπ
⊤
θζ
r

dθζ

∥∥∥∥∥
2

≤ 1

1− 3η

∥∥∥∥dπ⊤
θ r

dθ

∥∥∥∥
2

(273)

H.2. Stochastic Policy Gradients

[On-policy IS (Definition 1 from [11])] At iteration t, sample one action a ∼ πθt( ). The IS reward
estimator r̂t is constructed as r̂t(a) =

1{at=a}
πθt

(a) r(a) for all a ∈ [K].

Lemma 24 (Equation (115 - 117) from [11] / Proof of Theorem 2 in [12]) Denote θζ := θ +
ζ (θ′ − θ) with some ζ ∈ [0, 1]. By Theorem 22 we have∣∣∣∣∣(πθt+1 − πθt)

⊤r −

〈
dπ⊤

θt

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ 3

2

∥∥∥∥∥dπ
⊤
θζt

r

dθζt

∥∥∥∥∥
2

∥θt+1 − θt∥22 (274)

By Lemma (23) with η ∈ (0, 13)

≤ 3

2

1

1− 3η

∥∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥∥
2

∥θt+1 − θt∥22 (275)
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Lemma 25 (Lemma 5 from [11]) Let r̂ be the IS estimator using on-policy sampling a ∼ πθt( ).
Then stochastic softmax PG estimator is:
Unbiased: Ea∼πθ

[
∇f̃(θ)

]
= ∇f(θ)

Bounded Variance: Ea∼πθ

∥∥∥∇f̃(θ)∥∥∥2
2
≤ 2 ⇒ σ2 := Ea∼πθ

[
∇f̃(θ)−∇f(f)

]
=

Ea∼πθ

∥∥∥∇f̃(θ)∥∥∥2
2
− Ea∼πθ

∥∇f(θ)∥22 ≤ 2

Note: Following Lemma 4.3 in [15], we can also show that the variance converges to 0 as the
policy becomes deterministic
Proof

Et

[
∇f̃(θt)

]
=
∑
a∈[K]

∥∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥∥
2

2

∥at = a

 (276)

≤ 2R2
max

∑
a∈[K]

πθt(a)(1− πθt(a))
2 (277)

Let kt := argmaxa∈[K] πθt(a)

(278)

= 2R2
max

πθt(kt)(1− πθt(kt))
2 +

∑
a̸=kt

πθt(a)(1− πθt(a))
2

 (279)

Since πθt(a) ∈ (0, 1)

≤ 4R2
max(1− πθt(kt))

2 (280)

Lemma 26 θ → π⊤
θ (r − τ log πθ) is 5

2 + τ 5 (1 + logK)-smooth.

Proof Starting with the definition of L-smooth∣∣∣∣π⊤
θ′(r − τ log πθ′)− π⊤

θ (r − τ log πθ)−
〈
dπ⊤

θ (r − τ log πθ)

dθ
, θ′ − θ

〉∣∣∣∣
=

∣∣∣∣(πθ′ − πθ)
⊤r + τ(−π⊤

θ′ log πθ′ − (−π⊤
θ log πθ)−

〈
dπ⊤

θ r

dθ
, θ′ − θ

〉
− τ

〈
d− π⊤

θ log πθ
dθ

, θ′ − θ

〉∣∣∣∣
(281)

let h(θ) = −π⊤
θ log πθ

≤
∣∣∣∣(πθ′ − πθ)

⊤r −
〈
dπ⊤

θ r

dθ
, θ′ − θ

〉∣∣∣∣+ τ

∣∣∣∣h(θ′)− h(θ)−
〈
∂h(θt)

∂θ
, θ′ − θ

〉∣∣∣∣ (282)

By Theorem 21 and Theorem 28

≤
5/2 + τ 5 (1 + logK)

2
∥θ′ − θ∥2 (283)
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Lemma 27 (Lemma 4.3 in [14]) Using Update 2, we have for all t ≥ 1,

Et

∥∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥∥
2

2

 ≤ 8R3
maxK

3/2

∆2

∥∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥∥
2

(284)

where ∆ := mini ̸=j |r(i)− r(j)|.

Lemma 28 (Lemma 14 from [10]) θ → −π⊤
θ log πθ is 5 (1 + logK)-smooth

Lemma 29 (Non-uniform Łojasiewicz (Lemma 3 in [10])) Assume r has one unique optimal
action. Let π∗ = maxπ∈Π π⊤r Then∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

≥ C(θ) (π∗ − πθ)
⊤r (285)

with
C(θ) := πθ(a

∗) (286)

Lemma 30 (Non-uniform Łojasiewicz (Lemma 8 in [10])) We have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ C(θ) (V ∗(ρ)− V πθ)(ρ)) (287)

with

C(θ) :=
mins πθ(a

∗(s)|s)√
|S|
∥∥dπ∗

ρ /dπθ
µ

∥∥
∞

(288)

Lemma 31 (Proposition 5 in [10]) In the single-state MDP setting the non-uniform Łojasiewicz
condition is∥∥∥∥d{π⊤

θ (r − τ log πθ)}
dθ

∥∥∥∥
2

≥ C(θ)
(
Ea∼π∗

τ
[r(a)− τ log π∗

τ ]− Ea∼πθ
[r(a)− τ log πθ]

) 1
2 (289)

with
C(θ) :=

√
2τ min

a
πθ(a) (290)
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