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Abstract
Non-convex optimization problems are ubiquitous in machine learning, especially in Deep Learn-
ing. It has been observed in practice, that injecting artificial noise into stochastic gradient descent
(SGD) can sometimes improve training and generalization performance.
In this work, we formalize noise injection as a smoothing operator and (review and) derive conver-
gence guarantees of SGD under smoothing. We empirically found that Gaussian smoothing works
really well for training two-layer neural networks, but these findings do not translate to deeper
nets. We would like to use this contribution to stimulate a discussion in the community to further
investigate the impact of noise in training machine learning models.

1. Introduction

Non-convex optimization problems are ubiquitous in deep learning and computer vision. Stochastic
gradient descent methods, like SGD are core components for training neural networks. Several
works proposed to artificially inject noise into the SGD process for improved generalization [3,
16, 19, 20] in particular also the context of large batch training [8, 13, 25]. The effect of noise
injection can formalized as a smoothing operator, which has been well-studied in the optimization
literature [17, 18].

In this work, we review some of the classic results on Gaussian smoothing and analyze the
convergence of SGD with injected Gaussian noise under weak assumptions. We show that noise in-
jection helps avoid local minima and saddle points if they are due to high-frequency non-convexity.
Numerically, we show that SGD with Gaussian noise can outperform other standard training tech-
niques (including SGD with momentum) on the phase retrieval problem. We also run experiments
on two-layer neural networks.

Related Work. It has been observed that the gradient noise can help SGD escape saddle points
[5] or achieve better generalization [7]. This is often explained by arguing that SGD finds ‘flat’ min-
ima with favorable generalization properties [9, 10, 12] though ‘sharp’ minima can also generalize
well [4]. Recently, many works proposed to inject artificial noise into SGD training, with the aim to
inherit beneficial properties of the noise [3, 8, 13, 16, 19, 20, 25]. However, a rigorous theoretical
framework is lacking.

In the optimization community, smoothing has been proposed frequently to facilitate conver-
gence or overcome other optimization difficulties [14, 22]. Theoretical results have been established
in [17, 18].

It is well-known that gradient descent is not improvable for general nonconvex optimization [2,
17]. Therefore, additional structural assumptions are needed. In this work, we assume (see below)
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that the objective function can be decomposed into two components, f = f̂ + ω, where ω is a
high-frequency nonconvexity-inducing function. Such decompositions appeared, e.g. [15] studied
such a decomposition from the perspective of computational inaccuracies, and [1, 21, 24] studied
such decompositions with a similar motivation as in this work. The authors of [1] considered the
setting closely related to ours with the key difference that they were interested in minimizing f̂
with zeroth-order oracle rather than gradient-based minimization of f . They also did not study PL
function f̂ and instead showed convergence of ∥∇f̂∥ to zero. Recently, [21] studied the problem
under a structure similar to ours but imposing smoothness and PL for f (our assumption is different
in assuming this for f̂ ). [24] studied the problem under slightly more restrictive assumptions. [23]
showed in numerical experiments that many problems are non-smooth, discontinuous, and have
high-frequency minima. They claim that smoothing helps with their objectives.

2. Problem and assumptions

Consider the problem of minimizing a non-smooth non-convex function:

min
x∈Rd

f(x) = E [f(x; ξ)] .

In general, there is not much we can do as this problem is intractable [17] without further assump-
tion. On the other hand, we face such problems in many applications, most notably when training
neural networks. Our main interest is in the situation where there exists an unknown decomposition

f(x) = f̂(x) + ω(x).

Here, ω(x) plays the role of a high-frequency nonconvexity-inducing function. Formally, this prop-
erty is stated later in Assumption 3. The decomposition might not be unique, so we choose any of
them that minimizes the values of supx |ω(x)| and supx ∥∂ω(x)∥. We also assume that f is lower
bounded by some value finf = infx∈Rd f(x).

Our assumptions might not be appropriate for the large class of deep neural networks, but we
observe good results for shallow networks. This aligns with prior work, for instance, [6] studies
the loss landscape of 7 shallow-neural-network training tasks on MNIST and demonstrated that
empirically, it is almost convex.

3. General theory for smoothing

We are going to study the following smoothing technique,

fζ(x)
def
= Eu∼N (0,I)[f(x+ ζu)], (1)

where ζ > 0 is a parameter, I is the identity matrix, and u is sampled from the standard normal
distribution N (0, I). We define f̂ζ and ωζ the same way as fζ . Notice that it holds by linearity of
expectation that fζ = f̂ζ + ωζ . The choice of using the normal distribution is not necessary and is
only made for simplicity.

Assumption 1 We assume that function f̂ is L-smooth, i.e., for any x, y ∈ Rd

∥∇f̂(x)−∇f̂(y)∥ ≤ L∥x− y∥. (2)
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Algorithm 1 SGD with noise injections

1: Input: initialization x0 ∈ Rd, stepsize γ > 0, noise coefficients {ζk}∞k=0

2: for k = 0, 1, 2, . . . do
3: Sample ξk and uk ∼ N (0, I)
4: xk+1 = xk − γ∇f(xk + ζkuk; ξk)
5: end for

In particular, this implies that

f̂(y) ≤ f̂(x) + ⟨∇f̂(x), y − x⟩+ L

2
∥y − x∥2. (3)

Assumption 2 We say that the unknown part f̂ of f satisfies Polyak-Łojasiewicz inequality if there
exists µ > 0 such that

1

2
∥∇f̂(x)∥2 ≥ µ(f̂(x)− f̂inf), (4)

where f̂inf = minx f̂(x).

Assumption 3 We say that the unknown function ω induces high-frequency nonconvexity if it sat-
isfies

|ω(x)| ≤ e0, (5)

|∂ω(x)| ≤ e1, (6)

where ∂ω denotes a Clarke subdifferential of ω.

4. Convergence of SGD with noise injection

In order to formulate a convergence result for SGD with noise injection, we make the assumption
that the stochastic noise is bounded. This is a standard assumption in the literature, but it could also
be relaxed [24].

Assumption 4 The stochastic gradients have bounded variance, i.e., at any x ∈ Rd

E
[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2. (7)

Remark 1 Instead of Assumption 4, we could also instead assume that the variance of gradients of
f̂ is bounded by a constant σ̂2. From the observation

E
[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ 3E

[
∥∇f̂(x; ξ)−∇f̂(x)∥2

]
+ 3E

[
∥∇ω(x; ξ)∥2

]
+ 3∥∇ω(x)∥2

≤ 3σ̂2 + 6e21,

we conclude that this would result in equivalent convergence bounds.
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4.1. Additional bias under noise injection

We now state two lemmas that estimate the effect of the noise injection, which is formally given in
Algorithm 1. The additional noise is controlled by the parameter ζ (see Equation (1) and Alg. 1).

Proposition 2 (Lemma 3 in [18]) Let f̂ be L-smooth, then for any ζ > 0 and x ∈ Rd, it holds

∥∇f̂ζ(x)−∇f̂(x)∥ ≤ ζ

2
L(d+ 3)

3
2 . (8)

Lemma 3 The perturbation coming from ω diminishes if we inject more noise,

∥∇ωζ(x)∥2 ≤ E
[
∥∇ωζ(x)∥2

]
≤ d

e20
ζ2

. (9)

Proof This is a straightforward corollary of the following standard identity (see, e.g., Equation (21)
in [18] or Section 9.3 in [17]):

∇ωζ(x) =
1

ζ
E [ω(x+ ζu)u] .

Therefore,

∥∇ωζ(x)∥2 =
1

ζ2
∥E [ω(x+ ζu)u] ∥2 ≤ 1

ζ2
E
[
∥ω(x+ ζu)u∥2

]
≤ e20

ζ2
E
[
∥u∥2

]
= d

e20
ζ2

, (10)

which proves the lemma.

Lemma 4 The noise of the smoothing is bounded as

Eu

[
∥∇f(x+ ζu)−∇fζ(x)∥2

]
≤ 4dL2ζ2 + 8e21. (11)

The proof of this lemma is given in the appendix.

4.2. Convergence of SGD with noise injections

We now prove the convergence of Algorithm 1.

Theorem 5 Let Assumptions 1, 3 and 2 hold. Then, there exists a stepsize γ ≤ 1
L such that

E [f(xk)− finf ] ≤ ε+
1

µ

(
ζk
2
L(d+ 3)

3
2 + d

e20
ζ2k

)
+ 2e0.

after k = O
(
L
µ log 1

ε +
L
µ
σ2+dL2ζ2k+e21

ε

)
iterations.

On the one hand, this result shows that Algorithm 1 can in general not converge. Instead, the final
accuracy is limited by the parameters e0 and the noise ζk. This is consistent with other works [18,
24], [21] give a lower bound on quadratic functions.

On the other hand, the result shows that Algorithm 1 will converge to a neighborhood of the
minimizer of f̂ , and thus cannot get stuck at saddle points or local minima of f that are far away.

Notice that if we ignore the complexity and just try to find the value of ζk that minimizes the
upper bound of Theorem 5, i.e., minζ

ζ
2L(d + 3)

3
2 + d

e20
ζ2

, we obtain ζ3k = 2e20
d

L(d+3)
3
2

, which

means ζk = O( 1
6√
d
). Overall, this means convergence to a O(ε + d

4
3 ) neighborhood after k =

Õ(
σ2+e21+d

2
3

ε ) iterations.
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Figure 1: An example of minimizing the phase retrieval loss. As can be seen, only with noise injections as
given in Algorithm 2 we can achieve zero loss.

5. Numerical Experiments

To exemplify how one can use noise injections in real-world problems, we consider the phase re-
trieval problem:

min
x

1

4
∥(Ax)2 − b2∥2,

where A ∈ Rn×d is the data matrix, b ∈ Rn is the amplitudes vector, and (Ax)2 is the vector
obtained by squaring the elements of Ax coordinate-wise. We randomly generate A and solution
x∗ by independently sampling from a standard normal distribution and then set b = Ax∗. We
tuned the stepsize for each method and used adaptive noise for Nomad. The results are depicted in
Figure 1.

6. Discussion and Conclusion

We have proven, that for certain objective functions, Gaussian noise injection is an effective method
to overcome optimization difficulties caused by high-frequency noise. Theorem 5 shows that the
SGD with noise injection can converge to a neighborhood of the solution, a property that does not
hold for vanilla SGD. For our analysis, we assumed the PL property for the underlying regular part
f̂ of the objective function, but generalization to other settings is possible [see e.g. 24].

One important research direction for making noise injection practical is to make them black-
box. Indeed, if we were to choose a single noise coefficient for the whole optimization process, we
may end up either with a strong noise that would shift the solution away or with a weak one that is
not sufficient to make any difference. Both situations are bad as we want to find a good solution and
yet have noise large enough to change the objective.

One of the goals, when we started this project, was to fill the gap in theory and find better
explanations for the successes of noise injection that have been reported in other work [11, 19].
However, in numerical tests, we did not find many cases where smoothing outperformed other
(standard) DL training methods, especially not for deeper networks.
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Appendix A. Adaptive method

Algorithm 2 Nomad (noisy method with adaptive stepsizes)

1: Input: initialization x0 ∈ Rd, stepsize γ > 0 (default 10−3), β1 ∈ [0, 1) (default 0.9), β2 ∈
[0, 1) (default 0.999), ϵ ≥ 0 (default 10−8), noise hyper-parameters α1, α2 (default 0.5)

2: for k = 0, 1, 2, . . . do
3: Sample ξk and uk ∼ N (0, I)

4: ζk = γα2
(f(xk)−f∗)α1
(vk+ϵ)α2/2

5: gk = ∇f(xk + ζkuk; ξk)
6: mk = β1mk−1 + (1− β1)gk
7: vk = β2vk−1 + (1− β2)g

2
k

8: xk+1 = xk − γ mk√
vk+ϵ

9: end for

Appendix B. Proof of Lemma 4

Proof [Proof of Lemma 4] By Jensen’s inequality, we have

Eu

[
∥∇f(x+ ζu)−∇fζ(x)∥2

]
= Eu

[
∥∇f(x+ ζu)− Ev [∇f(x+ ζv)] ∥2

]
≤ E

[
∥∇f(x+ ζu)−∇f(x+ ζv)∥2

]
≤ 2E

[
∥∇f̂(x+ ζu)−∇f̂(x+ ζv)∥2

]
+ 2E

[
∥∇ω(x+ ζu)−∇ω(x+ ζv)∥2

]
(6)
≤ 2E

[
∥∇f̂(x+ ζu)−∇f̂(x+ ζv)∥2

]
+ 8e21

(2)
≤ 2L2E

[
∥ζu− ζv∥2

]
+ 8e21.

Finally, notice that u, v are independent normal variables, so

E
[
∥ζu− ζv∥2

]
= ζ2E

[
∥u∥2 − 2⟨u, v⟩+ ∥v∥2

]
= 2dζ2.

Appendix C. Proof of Theorem 5

Proof [Proof of Theorem 5] First, notice that the update rule satisfies, conditioned on xk, the fol-
lowing:

E [xk+1] = xk − γE [∇f(xk + ζkuk; ξk)] = xk − γE [∇f(xk + ζkuk)] = xk − γ∇fζk(xk). (12)
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It holds by Assumption 1,

E
[
f̂(xk+1)

] (3)
≤ f̂(xk) + E

[
⟨∇f̂(xk), xk+1 − xk⟩

]
+

L

2
E
[
∥xk+1 − xk∥2

]
(12)
= f̂(xk)− γ⟨∇f̂(xk),∇fζk(xk)⟩+

Lγ2

2
E
[
∥∇f(xk + ζkuk; ξk)∥2

]
(7)
≤ f̂(xk)− γ⟨∇f̂(xk),∇fζk(xk)⟩+

Lγ2

2
E
[
∥∇f(xk + ζkuk)∥2

]
+

Lγ2

2
σ2.

Recall that ∇f(xk + ζkuk) is an unbiased estimate of ∇fζk(xk), so

E
[
∥∇f(xk + ζkuk)∥2

]
= ∥∇fζk(xk)∥

2 + E
[
∥∇f(xk + ζkuk)−∇fζk(xk)∥

2
]

(11)
≤ ∥∇fζk(xk)∥

2 + 4dL2ζ2k + 8e21.

Using identity −⟨a, b⟩ = −1
2∥a∥

2 − 1
2∥b∥

2 + 1
2∥a− b∥2 and Lemma 3, we get

−⟨∇f̂(xk),∇fζk(xk)⟩ = −1

2
∥∇f̂(xk)∥2 −

1

2
∥∇fζk(xk)∥

2 +
1

2
∥∇f̂(xk)−∇fζk(xk)∥

2

= −1

2
∥∇f̂(xk)∥2 −

1

2
∥∇fζk(xk)∥

2 +
1

2
∥∇f̂(xk)−∇f̂ζk(xk)−∇ωζk(xk)∥

2

≤ −1

2
∥∇f̂(xk)∥2 −

1

2
∥∇fζk(xk)∥

2 + ∥∇f̂(xk)−∇f̂ζk(xk)∥
2 + ∥∇ωζk(xk)∥

2.

Proposition 2 in combination with Lemma 3 imply

∥∇f̂(xk)−∇f̂ζk(xk)∥
2 + ∥∇ωζk(xk)∥

2 ≤ ζk
2
L(d+ 3)

3
2 + d

e20
ζ2k

.

Putting the pieces together yields

E
[
f̂(xk+1)

]
≤ f̂(xk)−

γ

2
∥∇f̂(xk)∥2 −

γ

2
∥∇fζk(xk)∥

2 +
Lγ2

2
∥∇fζk(xk)∥

2

+
Lγ2

2
(σ2 + 4dL2ζ2k + 8e21) + γ

(
ζk
2
L(d+ 3)

3
2 + d

e20
ζ2k

)
.

Since we assume that γ ≤ 1
L , the overall coefficient in front of ∥∇fζk(xk)∥2 is negative and we

can drop this term. Next, by the Polyak-Łojasiewicz assumption on f̂ , we have for the remaining
gradient term

−1

2
∥∇f̂(xk)∥2 ≤ −µ(f̂(x)− f̂inf).

Thus,

E
[
f̂(xk+1)− f̂inf

]
≤ (1−γµ)(f̂(xk)−f̂inf)+

Lγ2

2
(σ2+4dL2ζ2k+8e21)+γ

(
ζk
2
L(d+ 3)

3
2 + d

e20
ζ2k

)
.

Denote c1 = L
2 (σ

2 + 4dL2ζ2k + 8e21), c2 = ζk
2 L(d + 3)

3
2 + d

e20
ζ2k

and rk = E
[
f̂(xk)− f̂inf

]
. We

have obtained for arbitrary k that

rk+1 ≤ (1− γµ)rk + γ2c1 + γc2.
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Recursions of this type are standard and they imply

rk ≤ (1− γµ)kr0 + γ
c1
µ

+
c2
µ
.

Given some ε > 0, to find a sweet spot between the first two terms in the upper bound, we can
choose γ = min

(
1
L ,

ε
µ

)
. This choice guarantees after k = O

(
L
µ log 1

ε +
c1
µε

)
iterations that

E
[
f̂(xk)− f̂inf

]
= O

(
ε+

c2
µ

)
.

Finally, by Assumption 3, we have f̂inf = infx f̂(x) ≤ infx f(x) + e0 = finf + e0, and

E [f(xk)− finf ]
(5)
≤ E

[
f̂(xk)− f̂inf

]
+ 2e0.
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