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Abstract
In the past decade, stochastic gradient descent (SGD) has emerged as one of the most dominant
algorithms in neural network training, with enormous success in different application scenarios.
However, the implicit bias of SGD with different training techniques is still under-explored. Some
of the common heuristics in practice include 1) using large initial learning rates and decaying it
as the training progresses, and 2) using mini-batch SGD instead of full-batch gradient descent. In
this work, we show that under certain data distributions, these two techniques are both necessary
to obtain good generalization on neural networks. We consider mini-batch SGD with label noise,
and at the heart of our analysis lies the concept of feature learning order, which has previously been
characterized theoretically by Li et al. [19] and Abbe et al. [1]. Notably, we use this to give the first
concrete separations in generalization guarantees, between training neural networks with both label
noise SGD and learning rate annealing and training with one of these elements removed.

1. Introduction

Despite the extreme over-parameterization used in real-world settings, neural networks trained via
stochastic gradient descent (SGD) still exhibit remarkable generalization capabilities in practice.
However, the exact characterization of the generalization power is still unclear, given that over-
parameterized neural networks have a large amount of parameters that can perfectly interpolate
the training set, even when it consists of random labels in the training data [31]. Recent work has
demonstrated that the implicit bias due to the optimization algorithm is the key to understanding the
regularization of such overparameterized models towards well-generalizing parameters [4, 9, 18]. In
this paper, we focus on mini-batch SGD, one of the most universal optimization algorithms to train
deep neural networks. Specifically, we investigate the impact of batch size and learning rate schedule
on the generalization error.

Regarding the role of batch size, Wu et al. [28] Keskar et al. [14], and Smith et al. [24] demonstrate
the importance of SGD’s mini-batch noise as a source of regularization. Recently, several works have
attempted to understand this implicit regularization from the lens of noise structure, especially label
noise SGD training [6, 7, 20], i.e. when training labels are independently perturbed at each iteration
(e.g. additive or multiplicative noise in regression, random label flipping in classification). Label
noise SGD is an intriguing setting because it injects a parameter-dependent noise at each iteration of
training that is empirically similar to the mini-batch noise [11], and therefore enables label noise
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to be a good approximation of the true mini-batch noise. Specifically, Damian et al. [7] show that
label noise SGD will converge to a stationary point of a regularized loss function that penalizes sharp
minima in the landscape as measured roughly by the trace of the Hessian. Li et al. [20] introduces
a characterization of label noise training by describing the behavior of the algorithm around local
minimizers. HaoChen et al. [11] and Vivien et al. [26] analyze the role of label noise SGD when
training quadratically parameterized linear models, and show an implicit bias towards sparse features.
However, these settings do not immediately have implications regarding neural network training
dynamics and generalization ability. Moreover, in these works, explicit separations in generalization
guarantees are not shown when label noise is removed from the training procedure. We therefore
provide an analysis in the neural network setting that gives such separations for label noise training.

In terms of the regularization effect of learning rate in SGD training, conventional wisdom is to
use large initial learning rates followed by annealing once the training loss stagnates [12, 15, 30].
Although the implicit bias of SGD with small learning rate is well understood [10, 25, 27], the
large learning rate regime is still mostly unclear. In particular, small learning rate SGD leads to
max-margin solutions for classification problems [25], and minimum norm solutions for regression
problems [27]. Nevertheless, recent empirical studies [13, 16, 22] have demonstrated that models
trained directly with small learning rate have poor generalization. Theoretically, several avenues
of exposition have been proposed to interpret this phenomenon [5, 19, 21, 29]. In the convex least-
squares linear regression setting, Nakkiran [22] and Wu et al. [29] show that large learning rate SGD
biases towards certain convergence directions in the loss landscape, which lead to specific separations
in generalization error. For nonconvex problems, Mohtashami et al. [21] analyze the large learning
rate regime in the context of the optimization landscape, but they require certain assumptions on
the frequency of sharp local minima. Li et al. [19] demonstrate that over certain data distributions,
training neural networks with large initial learning provably helps, due to a bias towards a certain
learning order of features, and they also provide a separation result between the two learning rate
regimes. However, these two works only analyze the case of training with full-batch gradient descent
(GD) rather than SGD.

In this work, we investigate the implicit bias of optimization using label noise SGD with learning
rate annealing. Under a certain data distribution assumption introduced by [19], we demonstrate that
the algorithm regularizes towards a certain feature learning order, and this bias provably leads to good
generalization. On the contrary, removing either learning rate annealing or label noise will provably
hurt generalization. To the best of our knowledge, this is the first result theoretically characterizing
the specific benefits of employing both label noise structure and an annealed learning rate schedule
for generalization in neural network training (a non-convex setting), as previous works have only
considered the impact of label noise [6, 7, 11, 20] and learning rate annealing [5, 19, 22, 29] in
isolation. Notably, our results allows us to obtain concrete separations in generalization error over
our data distribution.
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2. Preliminaries

Data Distribution Following the idea of Li et al. [19], we work with the data distribution defined
as follows:

y ∼ U({±1})
with probability p0 x1 ∼ Py and x2 = 0

with probability q0 x1 = 0 and x2 ∼ Qy

with probability 1− p0 − q0 x1 ∼ Py and x2 ∼ Qy

Each observation consists of two d-dimensional features, one that has a low-complexity separating
hyperplane (e.g. linear) yet requires high sample complexity to learn, and one that has a high-
complexity separating hyperplane (e.g. nonlinear) yet requires low sample complexity to learn.

Here, the P component is the noisy yet linearly separable component. Essentially, it is composed
of two half-Gaussians with a margin of γ0 = 1√

d
, and w⋆ ∈ Rd with ∥w⋆∥2 = 1:

x1 ∼ P1 ⇐⇒ x1 = γ0w
⋆ + β|⟨w⋆, β⟩ ≥ 0

x1 ∼ P−1 ⇐⇒ x1 = −γ0w
⋆ + β|⟨w⋆, β⟩ ≤ 0

where β ∼ N (0, Id/d)

On the other hand, the Q component is the noiseless, non-linearly separable component. Specifically,
we define the Q component as:

x2 ∼ Q1 ⇐⇒ x2 = αz

x2 ∼ Q−1 ⇐⇒ x2 = α(z + bζ)

where α ∼ U([0, 1]), b ∼ U({±1})

Here, z, ζ ∈ Rd, ∥z∥2 = 1, with ∥ζ∥2 = r ≪ 1, zT ζ = 0. We refer the reader to Appendix A for an
illustration of the data distribution.

Our setting consists of a dataset of size N , denoted {(x(i), y(i))}Ni=1, where all the data points
(x(i), y(i)) ∼ D are i.i.d. samples. Throughout the paper, we will be interested in several subsets of
the N data points. We define the following sets:

M1 = {i ∈ [N ] : x
(i)
1 ̸= 0}, M2 = {i ∈ [N ] : x

(i)
2 ̸= 0}

The natural complements M̄1 and M̄2 will be defined with respect to [N ]. We also define the
empirical proportions of the data points using p, q so that p = |M̄2|

N and q = |M̄1|
N .

Parameterization We use two layer neural networks to predict the label y with the observation x;
formally, the neural network is defined as f(u, U ;x) = uTσ(Ux). Here u ∈ Rm, U ∈ Rm×2d. σ is
the ReLU activation (i.e. σ(x) = max{x, 0}).

Loss Function The empirical risk of the binary classification problem is defined as L̂(u, U) =
1
N

∑
i∈[N ] ℓ(f(u, U ; ·); (x(i), y(i))), where ℓ(f ; (x, y)) ≜ ℓ(yf(x)) = log(1 + e−yf(x)) denotes the

logistic loss. For ease of presentation, we also denote L̂S(u, U) = 1
|S|
∑

i∈S ℓ(f(u, U ; ·); (x(i), y(i))),
where S is a subset of our dataset. Finally, we define the expected risk (test loss) to be L(u, U) =
E(x,y)∼D[ℓ(f(w,U ; ·); (x, y))].
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Additional Notations We use Õ(·) and Ω̃(·) to denote the asymptotic order up to logarithmic
terms. We also define for a matrix for a d-column matrix P the value [P ]i ∈ R1×d to be the ith row
of P .

3. Main Results

In this section, we state our main results on training a two layer neural network using label noise
SGD with annealing learning rate and illustrate the necessity of both of these techniques.

3.1. Training Algorithms

To show the necessity of both training techniques, we consider the analysis of the following three
algorithms. For each of our algorithms, we initialize the weight matrix U at U0 so that every entry
is i.i.d. with the variance τ20 . We also initialize the last layer u to have entries that are i.i.d. from
U({± 1√

m
}). We fix u and only update U throughout the training. The algorithms are as follows; αt

denotes the learning rate at iteration t of the training process.
Label noise SGD + learning rate annealing (LNSGD-LS): We train using label noise SGD

with flipping probability δ, using large initial learning rate of η1, until the training loss L̂(U) reaches
q log 2 + ϵ1. Then, we anneal to small learning rate η2, and continue to train with label noise SGD
until the training loss L̂(U) reaches ϵ2 =

√
ϵ1
q . Formally, we have an update rule of:

Ut+1 = Ut − αt∇Uℓ(σty
(it)ft(x

(it)))

where σt =

{
1 with probability 1− δ
−1 with probability δ

it ∼ U([N ])

Label noise SGD + no annealing (LNSGD-S): We train using label noise SGD with flipping
probability δ, using small learning rate η2 throughout the training process, until the training loss
L̂(U) reaches ϵ′2 = O(ϵ2). Formally, we have an update rule of:

Ut+1 = Ut − αt∇Uℓ(σty
(it)ft(x

(it)))

where σt =

{
1 with probability 1− δ
−1 with probability δ

it ∼ U([N ])

Full batch GD + annealing (FBGD-LS): We train using full batch gradient descent (without
label noise) using an initial learning rate of η1, until the training loss L̂(U) reaches q log 2 + ϵ1.
Then, we anneal the learning rate to η2, and continue to train until the training loss L̂(U) reaches
ϵ2 =

√
ϵ1
q . Formally, we have an update rule of:

Ut+1 = Ut − αt∇U L̂(u, U)

Algorithm LNSGD-LS applies both the label noise SGD and learning rate annealing, while
Algorithm LNSGD-S and Algorithm FBGD-LS apply only one of label noise SGD and learning
rate annealing, respectively. In particular, the latter two algorithms allow us to analyze in isolation
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the respective individual influences of label noise SGD and learning rate annealing, while the
former precisely enables us to analyze the synergy between the two elements in the context of both
optimization and generalization.

3.2. Assumptions

We now formally introduce the assumptions used in our analysis.

Assumption 1 (Overparameterization) We assume the scale of initialization τ0 = 1
poly(d) , label

flipping probability δ = 1
poly(d) , and hidden-layer width m ≥ poly(d).

As with real-world models, we assume sufficient overparameterization exists in our model; this is
also the standard assumption in the literature [2, 8].

Assumption 2 (Data Generation) We define κ2 = d
N , and assume that κ ≪ 1. In particular, we

will take d,N to tend towards infinity. In addition, we set the length of Q’s orthogonal component
r = d−3/4, and the data distribution’s component-wise probabilities p0 = κ2

2 , and q0 = Θ(1).

We remark that by taking N sufficiently large, we will have that p ≈ p0 and q ≈ q0; as such, we
will proceed in our analysis using p and q.

Assumption 3 (Hyperparameters) We assume ϵ1 ∈ (d−1/8, κ2p2q3). In addition, we assume η1 =
O(ϵ1). Moreover, to isolate the influence of annealing, we will consider η2 = o(η1).

The upper bound assumption on the large initial learning rate η1 is not unique to our setting; if
the learning rate is too large, the value of the loss function will diverge, consistent with classical
optimization literature.

3.3. Main Theorems

We now give our main results, corresponding to the three algorithms we use. Proof outlines and
intuitions for the theorems are provided in Appendix D, and full proofs are given in the subsequent
sections.

Theorem 4 (LNSGD-LS) With high probability over the randomness of initialization and the
minibatch sampling in SGD, the classification and test errors at the end of training are both Õ(p3/2);
in other words, L(u, U) = Õ(p3/2).

Theorem 5 (LNSGD-S) With high probability over the randomness of initialization and the
minibatch sampling in SGD, the classification and test errors are both Ω(p); in other words,
L(u, U) = Ω̃(p).

Theorem 6 (FBGD-LS) With high probability over the randomness of initialization, the classifica-
tion and test errors are both Ω(p); in other words, L(u, U) = Ω̃(p).

Note that these theorems imply a separation, because of the fact that p < 1. As we will see in our
training dynamics, each of these algorithms regularize towards a specific learning order of features.
Our analysis will reveal that this has a direct influence on each of the above generalization errors.
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4. Discussion and Future Work

In this paper, we give the first concrete separation results for neural network generalization in the
presence of an annealed learning rate schedule and/or the presence of label noise in the training
process. For an overparameterized one-hidden-layer neural network model, we reveal an interesting
picture on the synergy between these two elements, through their respective implicit biases towards a
certain learning order. Some exciting directions for future work include giving general distributions
and algorithms to analyze the regularization of feature learning order, and recovering broader classes
of generalization guarantees related to large initial learning rate and/or label noise SGD.
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Appendix A. Data Distribution

w.p. p0

0...
0



w.p. q0

0...
0



w.p. 1− p0 − q0

Figure 1: Here, the green points represent positive labels, and the blue points represent negative
labels.

In the above Figure 1, we include an illustration of the data distribution from Section 2. To
reiterate, we follow the idea of Li et al. [19], using the following definition of the data distribution:

y ∼ U({±1})
with probability p0 x1 ∼ Py and x2 = 0

with probability q0 x1 = 0 and x2 ∼ Qy

with probability 1− p0 − q0 x1 ∼ Py and x2 ∼ Qy

In the figure, the left column represents is P component, and the right column represents the Q
component. The P component is defined as:

x1 ∼ P1 ⇐⇒ x1 = γ0w
⋆ + β|⟨w⋆, β⟩ ≥ 0

x1 ∼ P−1 ⇐⇒ x1 = −γ0w
⋆ + β|⟨w⋆, β⟩ ≤ 0

where β ∼ N (0, Id/d)

where γ0 =
1√
d

, and w⋆ ∈ Rd with ∥w⋆∥2 = 1. The Q component is defined as:

x2 ∼ Q1 ⇐⇒ x2 = αz

x2 ∼ Q−1 ⇐⇒ x2 = α(z + bζ)

where α ∼ U([0, 1]), b ∼ U({±1})

where, z, ζ ∈ Rd, ∥z∥2 = 1, with ∥ζ∥2 = r ≪ 1, zT ζ = 0.
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Figure 2: We empirically demonstrate the effect both label noise and learning rate annealing on
neural networks training on CIFAR100. The horizontal axis represents the iteration number, and the
vertical axis represents the classification accuracy in percentage out of 100. a) Label noise SGD with
learning rate annealing (LNSGD-LS) achieves a final validation accuracy of 61.96%. b) Label noise
SGD without learning rate annealing (LNSGD-S) achieves a final validation accuracy of 59.40%.
c) Large batch GD with learning rate annealing (FBGD-LS) achieves a final validation accuracy of
57.33%.

Appendix B. Experiments

We empirically verify the separations derived from our theoretical analysis of the three algorithms.
In particular, we train a VGG19 network architecture [23] on the CIFAR100 dataset using our three
algorithms, LNSGD-LS, LNSGD-S, and FBGD-LS. We adapt the experimental setup of HaoChen
et al. [11], where label noise means changing the label of an individual image to another random
label that is not the true label.

Our label noise SGD algorithms use a fixed flipping probability of 0.1 (even after annealing, if
applicable), and a small batch size of 32. Our large batch GD algorithm uses a large batch size of
256. In addition, if the algorithm uses annealing, then our learning rate schedule is 0.01 followed by
a single decay to 0.001 at anneal time; otherwise, the learning rate is a constant 0.001 throughout
training. Furthermore, we set the annealing time (if applicable) to be at iteration 40000 of training;
for all three algorithms, we train for 400000 iterations. Here, we define an iteration as a minibatch;
see Figure 2. In the end, label noise SGD achieves the highest validation accuracy, therefore backing
up our theoretical analysis. Furthermore, we can see that LNSGD-S and FBGD-LS seem to have
quicker convergence in training error, as predicted by our theoretical analysis as well.

Appendix C. Additional Notations

We follow the notation from Li et al. [19], and denote 1(w) for some vector w to be the element-wise

indicator function vector defined as (1(w))i = 1(wi ≥ 0). Then, we can define NA(u, U ;x)
∆
=

uT (1(Ax)⊙Ux), where ⊙ represents the element-wise product between two vectors (or matrices).1

We decompose the weight of the first layer as U =

(
W
V

)
. Here, W only operates on the first d

coordinates of an observation x (i.e. the x1 component of the data point), and V only operates on
the last d coordinates of an observation x (i.e. the x2 component of the data point). For simplicity,

1. In particular, we have NU (u, U ;x) = f(u, U ;x).
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we denote W to be both a matrix in Rm×2d with the last d columns 0, or a matrix in Rm×d. The
notations for V are treated similarly. As such, we can note that:

f(u, U ;x) = NU (u, U ;x) = NW (w,W ;x) +NV (v, V ;x) = NW (w,W ;x1) +NV (v, V ;x2)

Furthermore, in any training algorithm, we will denote Ut =

(
Wt

Vt

)
to be the weight matrix

during training at time t, with similar abuse of notation as above for Wt and Vt. For convenience, we
will now define the decomposition of the network prediction into two parts, each corresponding to a
component of the data it operates on:

rt(x) = rt(x1) ≜ NWt(w,Wt;x) = NWt(w,Wt;x1)

gt(x) = gt(x2) ≜ NVt(v, Vt;x) = NVt(v, Vt;x2)

We will also denote f(u, Ut; (x
(i))) as ft(x(i)).

Appendix D. Outline of Algorithm Analyses

In this section, we provide the high-level details of the algorithms’ analyses. We first start out with a
core tool that we use throughout the proofs. Subsequently, we will outline the characterizations for
each of the three algorithms. Proof sketches and full proofs are available in the appendix.

D.1. Tools for Label Noise Analysis

Note that the gradient update rule in FBGD-LS is the standard definition of full-batch gradient
descent, and hence there are no stochasticity in the training process, except due to initialization. On
the other hand, towards reasoning about the label noise update rule in LNSGD-LS and LNSGD-S,
we detail an iterate decoupling procedure.

First, we define the expected smoothed loss to be ℓ̄(z) ≜ δℓ(−z) + (1 − δ)ℓ(z). As such, the
update rule of label noise SGD will be:

Ut+1 = Ut − αt∇Uℓ(σty
(it)ft(x

(it)))

= Ut − αt∇U ℓ̄(y
(it)ft(x

(it)))− αtϵty
(it)∇Uft(x

(it))︸ ︷︷ ︸
label noise

Here, it ∼ U([N ]), and ϵt is the random variable defined as:

ϵt =

{
δΓ w.p. 1− δ
−(1− δ)Γ w.p. δ

where Γ ≜ ℓ′(y(it)ft(x
(it))) + ℓ′(−y(it)ft(x

(it)))

Now, consider the following decoupling of the Ut = Ūt + Ũt at time t of training.

Ūt = −
t∑

s=1

αs−1∇U

(
ℓ̄(y(is−1)fs−1(x

(is−1)))
)

Ũt = U0 −
t∑

s=1

αs−1ϵs−1y
(is−1) · ∇Ufs−1(x

(is−1))

11
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In essence, Ūt and Ũt represent the accumulated signal and accumulated noise at time t. Such
signal-noise decoupling is useful, because the weights of the hidden layer at each iteration is a random
variable that depends on the historical trajectory. In particular, this means that the accumulated label
noise Ũt is a martingale, and we can tools from martingale concentration to understand the dynamics
of this term at each phase of the training. Likewise, the accumulated signal Ūt allows us to analyze
how much the algorithm actually "learns" on each component (in terms of signal); the scale of this
quantity will influence the margins of the separating hyperplanes in our analysis, which we use to
show the generalization guarantees all of our algorithms.

D.2. Analysis of Theorem 4 (LNSGD-LS)

We break the analysis of LNSGD-LS into two phases: before annealing and after annealing. For
the first phase, pre-annealing, we show that the large learning rate induces a large accumulated
noise term in V , and therefore, the activation patterns are too noisy to learn the Q component. At
such, when the loss reaches q log 2 + ϵ1, essentially all (1− q)N data points from M1 have been
learned well. Following the learning rate annealing, the remaining qN data points in M̄1 will be
memorized, and once a loss of ϵ2 is reached, the model will have low training error on both the
P and Q components. Low training error on the Q component will then immediately imply good
generalization, and low training error on the P component means that Rademacher complexity

bounds can control the generalization error to Õ

(
p
√

d
N

)
= Õ(pκ) = Õ(p3/2), since a p fraction

of data points contain only noisy d-dimensional features from P.

D.2.1. PHASE 1: LEARNING RATE η1

We first give the following lemma, which bounds with high probability the time it takes to reach the
target loss and start annealing.

Lemma 7 With high probability, we will anneal at some time t̂1 ≤ Õ
(

d
η1ϵ1

)
. Furthermore, the

training loss at the time will satisfy L̂(Ut̂1
) ≤ q log 2 + ϵ1.

Afterwards, we show that at anneal time, the margin on the Q component is still poor. Specifically,
we have the following lemma to show that Q is not learned well; by our hyperparameter choices, it
holds that Õ

(
d

η1ϵ1

)
≤ Õ

(
d9/8

η1

)
.

Lemma 8 With high probability, for all time steps t ≤ Õ
(
d9/8

η1

)
, it will hold that

|gt(z + ζ) + gt(z − ζ)− 2gt(z)| ≤ O(r2d9/8
√
log d)

D.2.2. PHASE 2: LEARNING RATE η2

After annealing at time t̂1 as defined in Lemma 7, we show that with high probability, the loss is
small when we stop training (i.e. at time t̂1 + t̂2).

Lemma 9 Using the t̂1 from Lemma 7, it holds with high probability that for some t̂2 ≤ Õ
(

1
η2ϵ32r

)
the training loss at time t̂1 + t̂2 will satisfy L̂(Ut̂1+t̂2

) ≤ O
(√

ϵ1
q

)
.

12
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We can further decompose the loss when we stop the training into M1 and M̄1, to get the
following.

Lemma 10 Using t̂1 and t̂2 defined in the Lemma 7 and Lemma 9 respectively, it holds with high
probability that L̂M1(rt̂1+t̂2

) ≤ O
(√

ϵ1
q

)
and L̂M̄1

(gt̂1+t̂2
) ≤ O

(√
ϵ1
q3

)
.

By decomposing the final loss into the M1 and M̄1 components, we can see that low loss on the
gt̂1+t̂2

component of the network implies good generalization directly, since the Q component of the
distribution has no noise. Furthermore, low loss on the by rt̂1+t̂2

network component implies low
test error by Rademacher complexity generalization bounds in Allen-Zhu et al. [2], hence proving
Theorem 4.

D.3. Analysis of Theorem 5 (LNSGD-S)

Towards proving Theorem 5, we will show that the algorithm converges to small training error very
fast, due to the memorization of the Q component under small learning rate. We will then show that
as Q is in the process of being memorized, the P component does not receive a lot of signal from
data in M1 ∩M2, since the Q feature is being used to learn the labels in this set. Consequently, the
weights in W must fit to the pN points in M̄2. Since pN ≤ d

2 there is insufficient sample complexity
to learn the component. This leads to the lower bound in classification error of Ω(p), as a constant
fraction of data points in M̄2 cannot be predicted correctly.

D.3.1. PHASE 1: MEMORIZING Q

We bound the time it takes for the algorithm to converge. In particular, we first show that the Q
component is memorized very quickly.

Lemma 11 With high probability, there will be a time t̂1 ≤ Õ
(

1
η2(ϵ′2)

3r

)
such that the loss of M2

at time t̂1 satisfies L̂M2(Ut̂1
) ≤ ϵ′2.

This above lemma bounds the time it takes to converge to a solution that already achieves low
loss on the M2 portion of the dataset, i.e. all the data points with the Q component as a feature is
mostly classified correctly.

D.3.2. PHASE 2: AFTER MEMORIZING Q

We then proceed to bound the additional time it takes to reach the stopping criterion loss of ϵ′2.

Lemma 12 Using t̂1 defined in Lemma 11, we have that with high probability, there will be a time
t̂2 ≤ Õ

(
pN
η2ϵ′2

)
so that the total loss at that time satisfies L̂(Ut̂1+t̂2

) ≤ ϵ′2.

We show that when we stop the training process, the accumulated gradient on W is still small, when
restricted to the subset of data points M2.

Lemma 13 Define W̄
(2)
t = −η2

∑t
s=1∇W

(
ℓ̄(y(is−1)fs−1(x

(is−1)))
)
· 1(is−1 ∈ M2). Then, with

high probability, for t ≤ Õ
(

d
η2ϵ′2

)
, it holds that that ∥W̄ (2)

t ∥F ≤ Õ
(
d31/64

ϵ′2
2

)
.

13
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Since the gradient signal is small for the P component on the data points from M2, this intuitively
implies that the weights W must be mostly learned from the examples in M̄2. On the other hand,
since |M̄2| = pN ≤ d

2 by Assumption 2, there is not enough sample complexity to learn P , since it
is a d-dimensional distribution. This leads to the following lemma, which states that the margin on P
remains small.

Lemma 14 Using t̂1 and t̂2 defined in the Lemma 11 and Lemma 12 respectively, we have that at
time t̂1 + t̂2, there will exist an α ∈ span({x(i)1 }i∈M̄2

) satisfying ∥α∥2 ≥ Ω(
√
pN), such that with

high probability over x1 ∼ P ,

rt̂1+t̂2
(x1)− rt̂1+t̂2

(−x1) = 2αTx1 ± Õ

(
1

d1/64(ϵ′2)
2

)
In other words, the margin is on the weights W is still very poor, which means the Gaussian

noise from the P component will be very significant. This therefore leads to the the lower bound in
generalization error in Theorem 5.

D.4. Analysis of Theorem 6 (FBGD-LS)

In this case where noise is completely removed from the training process, even with the same
annealing schedule as LNSGD-LS, the model will attempt to quickly memorize the examples for
the Q component first, because the activation patterns are not influenced by noise as in the case of
LNSGD-LS, and therefore progress is being made in learning Q. As a result, the training loss will
quickly fall below the annealing criterion q log 2 + ϵ1. Even though neither the P component nor
the Q component is yet fully learned, after annealing, the Q component will be quickly memorized.
This once again leads to the underfitting effect of P as in LNSGD-S, and hence the classification
error lower bound of Ω(p). Here, we unravel the impact of learning rate annealing in the absence of
label noise: a transition of the training process from a feature exploration stage of all features, to a
feature memorization stage of one specific feature.

D.4.1. PHASE 1: EXPLORING BOTH FEATURES BEFORE ANNEALING

For the first phase of training, we will argue that the anneal time is reached very quickly.

Lemma 15 With high probability, there will be a time t̂1 ≤ Õ
(

1
η1r

)
such that L̂M2(Ut̂1

) ≤
q log 2 + 2ϵ1.

This previous lemma bounds the time it takes to converge to a partial signal for the Q component.
The training is now close to the annealing condition; from this, we can further give an upper bound
on the annealing time via a construction of a partial P signal, formalized via the following lemma.

Lemma 16 Using t̂1 in Lemma 15, with high probability, there exists a t̂2 ≤ Õ
(
pN
η1

)
such that

L̂(Ut̂1+t̂2
) ≤ q log 2 + ϵ1.

14
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D.4.2. PHASE 2: MEMORIZING ONLY Q AFTER ANNEALING

After annealing, we show that with small learning rate and no label noise, the Q component will be
quickly memorized. We then show that the accumulated signal on W is small on M2, which allows
us to show that overall, the P component does not receive a lot of signal from the M2 portion of the
dataset.

For convenience, let us denote t̂ = t̂1 + t̂2, where t̂1 and t̂2 are from Lemma 15 and Lemma 16,
respectively. Then, the following lemma holds.

Lemma 17 With high probability, there exists a time t̂3 ≤ Õ
(

1
η2ϵ32r

)
such that L̂M2(Ut̂+t̂3

) ≤ ϵ2.

The above lemma bounds the time it takes for Q to be fully memorized. This is similar to the
setting of LNSGD-S; even though there is label noise in LNSGD-S, the result that we end up with
will be similar, because the analysis of LNSGD-S reveals that the label noise does not influence the
activation patterns much.

Finally, we can bound the time until FBGD-LS achieves its stopping criterion.

Lemma 18 Using t̂3 from Lemma 17, we have that with high probability, there exists a time
t̂4 ≤ Õ

(
pN
η2ϵ2

)
such that L̂(Ut̂+t̂3+t̂4

) ≤ ϵ2.

We once again argue that in this phase after annealing, the total accumulated signal is small as
well. This is shown by the following bound.

Lemma 19 Define W̄ (2)′
t = −η2

∑t̂+t̂3+t
s=1

1
N

∑
i∈M2

∇W ℓ(y(i)fs−1(x
(i))). Using t̂3 from Lemma 17,

with high probability, for t ≤ Õ
(

d
η2ϵ2

)
, it holds that that ∥W̄ (2)′

t ∥F ≤ Õ
(
d31/64

ϵ22

)
.

D.4.3. GENERALIZATION

By Lemma 19, we get that the total signal on the P component provided by the data points in M2

is small. Hence, the P component must once again be mostly learned via the signal from the pN
points in M̄2, leading the insufficient sample complexity. In particular, this can be formalized by the
following lemma.

Lemma 20 Using t̂3 and t̂4 defined in the Lemma 17 and Lemma 18 respectively, we have that at
time t̂ + t̂3 + t̂4, there will exist an α ∈ span({x(i)1 }i∈M̄2

) satisfying ∥α∥2 ≥ Ω(
√
pN), such that

with high probability over x1 ∼ Py,

rt̂+t̂3+t̂4
(x1)− rt̂+t̂3+t̂4

(−x1) = 2αTx1 ± Õ

(
1

d1/64ϵ22

)
This last lemma implies that the margin on the predictions W is still very poor when training

stops, and therefore even when training ends, the P component remains underfitted. This directly
leads to the generalization error lower bound in Theorem 6.
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Appendix E. Toolbox of Lemmas and Concentrations

E.1. Decoupling

Recall the following signal-noise decoupling Ut = Ūt + Ũt at time t of training from Appendix D.1;
we give more detailed decomposition as follows.

Ūt = −
t−1∑
s=1

αs−1∇U

(
ℓ̄(y(is−1)fs−1(x

(is−1)))
)

= −
t−1∑
s=1

αs−1 · ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)Bs−1

Ũt = U0 −
t−1∑
s=1

αs−1ϵs−1y
(is−1) ·Bs−1

where we define

Bs−1 = ∇Ufs−1(x
(is−1))

=

 −u11([Us−1]1x) · x(is−1)−
...

−um1([Us−1]mx) · x(is−1)−


E.2. Lemmas and Concentrations

Proposition 21 Recall the random variable ϵt in the label noise term. Then it holds that E[ϵt] = 0,
and V[ϵt] = δ(1− δ)Γ2 = O(δ).

Lemma 22 Let [∇U L̂(U)]i = denote the i-th row of ∇U L̂(U). Then, with high probability
∥[∇U L̂(U)]i∥2 ≲ 1√

m
. Furthermore, with high probabiilty, it also holds that ∥[∇U ℓ̄(U)]i∥2 ≲ 1√

m
.

Proof For the first part of the lemma, note that this holds because

∥[∇U L̂(U)]i∥2 = Ê[ℓ′(f(u, U ; (x, y)) · ui1([U ]ix)x] ≲
1√
m

This follows from the fact that ℓ′ ∈ (−1, 0), and ∥x∥2 = O(1) with high probability. For the second
part of the lemma, note similarly that

∥[∇U ℓ̄(U)]i∥2 = ∥[ℓ̄′(f(u, U ; (x, y)) · ui1([U ]ix)x∥2 ≲
1√
m

Lemma 23 For any time step t prior to annealing, we have that ∥[Ūt]i∥2 ≲ η1t√
m

. The same holds

for ∥[Ũt]i∥2 ≲ η1t√
m
.
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Proof This follows from writing out the summation, followed by an application of triangle inequality
and Lemma 22.

Proposition 24 With high probability, the matrix Bt satisfies

∥Bt∥2 ≤ 1

Proof We have that with high probability, the spectral norm of ∥Bt∥2 satisfies

∥Bt∥2 =
√

∥BtBT
t ∥2 =

√
1

m
∥1([Ut]x(it))∥1∥x(it)∥2 ≲ 1

Lemma 25 (Freedman’s inequality for matrix martingales) Consider a matrix martingale {Yk :
k = 0, 1, . . . }, where the Yk ∈ Rd1×d2 , with difference sequence {Xk : k = 1, 2, . . . }; furthermore,

suppose that
√

∥XkX
T
k ∥2 ≤ R almost surely for k ≥ 1. Define the column and row quadratic

variation, respectively, as follows, for k ≥ 1:

Wcol,k ≜
k∑

j=1

E[XjX
T
j ]

Wrow,k ≜
k∑

j=1

E[XT
j Xj ]

Then, for all t ≥ 0 and σ2 > 0, with probability at least 1− (d1 + d2) · exp
(

−t2/2
σ2+Rt/3

)
, at least one

of the following holds for all k ≥ 0

∥Yk∥ ≤ t

∥Wcol,k∥ ≥ σ2

∥Wrow,k∥ ≥ σ2

Lemma 26 For all real numbers |z| = O(poly log d), it holds that |ℓ(z)− ℓ̄(z)| ≤ O( 1
poly(d)).

Proof Note that

|ℓ(z)− ℓ̄(z)| = δ|ℓ(z)− ℓ(−z)|

≲ O

(
poly log d
poly(d)

)
≲ O

(
1

poly(d)

)
where the first inequality follows from our Assumption 1.
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This lemma will be very useful throughout our analysis, because by our data distribution, it
implies that with high probability, |L(U)− L̄(U)| ≤ O

(
1

poly(d)

)
, where we define

L̄(U) ≜
1

N

∑
i∈[N ]

ℓ̄(y(i)f(x(i)))

Therefore, we will simply analyze L̄ throughout our proofs, as the results for the original L will hold
as well, due to the closeness. We also define

L̄t ≜
1

N

∑
i∈[N ]

ℓ̄(y(i)ft(x
(i)))

Appendix F. Proof of Theorem 4 (LNSGD-LS)

F.1. Proof of Lemma 7

For the following section, we denote t1 = Õ( d
η1ϵ1

). The proof structure roughly entails a construction
of a target signal, and demonstrating convergence to this target. We first give some concentration
results derived from Freedman’s inequality.

Lemma 27 With high probability, it holds that for all time steps s ≤ t1 (in particular, this includes
the time before annealing) that ∥∥∥∥∥∥

s∑
j=1

ϵj−1Bj−1

∥∥∥∥∥∥ ≤ τ0
√

log d · 1

η1

Proof This is an application of Freedman’s inequality on the martingale defined by {
∑t

s=1 ϵs−1Bs−1}t≥0.
In particular, we have that with high probability,√

∥XkX
T
k ∥2 =

√
∥ϵ2kBkB

T
k ∥2 ≲ δ

by Proposition 24. Thus, we can now choose σ2 = O(t1δ) and t = τ0
√
log d
η1

for Freedman’s
inequality, to give the high probability bound. In particular, this means that with high probability,
Freedman’s inequality tells us that because for times s ≤ t1, we have

∥Wcol,s∥ ≲ O(sδ) ≲ O(t1δ) = σ2

it must hold with high probability that

∥Ys∥ ≤ t =
τ0
√
log d

η1

By definition of Ys here, we have the desired result.

Lemma 28 With high probability, we have that

∥Ũt1∥2 = O(τ0
√
m)

18
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Proof We know that

∥Ũt1∥2 ≤ ∥U0∥2 + η1∥
t1∑
s=1

ϵs−1Bs−1∥2

≲ τ0
√
m+

η1τ0
√
log d

η1

≲ τ0
√
m

Here, the second inequality follows from the Freedman’s inequality guarantee we get in Lemma 27.

We first make use of a forward perturbation lemma from Allen-Zhu et al. [3], which tells us the
following:

Lemma 29 With high probability, it holds that for every Ũ satisfying ∥Ũ∥ ≲ ω that

∥1(Ut1x)− 1(Ũt1x)∥1 ≲ mω2/3

As a result, this gives us the bound of

|NUt1
(u, Ūt1 ;x)−NŨt1

(u, Ūt1 ;x)| ≲ (τ0
√
m)2/3η1t1

Proof The first part of the lemma is given by Allen-Zhu et al. [3]. Consequently, the second part
follows from the fact that

|NUt1
(u, Ūt1 ;x)−NŨt1

(u, Ūt1 ;x)| ≤
1√
m

∑
i∈[m]

|1([Ut1 ]ix)− 1([Ũt1 ]ix)| · |[Ūt1 ]ix|

≲
1√
m

·mω2/3 · η1t1√
m

≲ (τ0
√
m)2/3η1t1

where the last inequality follows from the choice of ω = O(τ0
√
m) from Lemma 28.

We also have the following lemmas, which, as we see, will be useful later.

Lemma 30 With high probability, it holds that

|NUt1
(u, Ũt1 ;x)−NŨt1

(u, Ũt1 ;x)| ≲ (τ0
√
m)2/3η1t1

Proof Similar to the analysis of the previous lemma, we have that

|NUt1
(u, Ũt1 ;x)−NŨt1

(u, Ũt1 ;x)| ≤
1√
m

∑
i∈[m]

|1([Ut1 ]ix)− 1([Ũt1 ]ix)| · |[Ũ ]ix|

≲
1√
m

·m(τ0
√
m)2/3 · η1t1√

m

≲ (τ0
√
m)2/3η1t1
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Lemma 31 With high probability, it holds that |NŨt1
(u, Ũt1 ;x)| ≲ τ0

√
log d.

Proof We have that with high probability

|NŨt1
(u, Ũt1 ;x)| =

∑
i∈[m]

uiσ([Ũt1 ]ix)

≲
1√
m

· ∥Ũt1x∥2

≲
1√
m

· τ0
√
m
√
log d

≲ τ0
√
log d

The second inequality follows from the fact that with high probability, ∥Ũt1∥2 ≲ τ0
√
m, which we

showed in Lemma 28, and the
√
log d factor comes from standard concentration inequality.

We can now combine the previous two lemmas to obtain a bound on |NUt1
(u, Ũt1 ;x)|, using

triangle inequality.

Lemma 32 With high probability, it holds that

|NUt1
(u, Ũt1 ;x)| ≲ (τ0

√
m)2/3η1t1 + τ0

√
log d

We are now able to give a high probability guarantee of what the loss will be at our fixed annealing
time t1. This is captured by the following.

Lemma 33 With high probability, we have that at some time t̂1 ≲ t1,

1

N

N∑
i=1

ℓ̄(y(i)ft1(x
(x))) ≲ q log 2 + ϵ1

First, let us define

ht(B;x) ≜ NUt(u,B + Ũt;x)

Kt(B) ≜
1

N

N∑
i=1

ℓ̄(ht(B; ·); (x(i), y(i)))

These gadgets will faciliate the analysis by isolating the effects of the accumulated signal and noise.
Proof Note that we have ∥1(Ut1x) − 1(Ũt1x))∥1 ≲ m(τ0

√
m)2/3 by Lemma 29. Furthermore,

we also have that |NUt1
(u, Ũt1 ;x)| ≲ τ0

√
log d from the previous lemma. From our choice of

parameters that τ0
√
log d ≤ ϵ1

20 , we obtain that |NUt1
(u, Ũt1 ;x)| ≤ ϵ1

20 .

We now consider a target signal U⋆ =

(
W ⋆

V ⋆

)
of V ⋆ = 0 and W ⋆ = 20wi

√
d log 1

ϵ1
following

the analysis of Li et al. [19]. Consider this target signal at time t1, combined with our noise Ũt1 .
Then, we will have that

ht1(U
⋆) = NUt1

(u, U⋆ + Ũt1 ;x)

= NUt1
(u, U⋆;x) +NUt1

(u, Ũt1 ;x)

20
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We first consider the first term NUt1
(u, U⋆;x). In particular, from the definition of our constructed

signal, we know that

NUt1
(u, U⋆;x) = 20w⋆Tx1 ·

√
d log

1

ϵ1

∑
i∈[m]

w2
i 1([Wt1 ]ix1)

= 20w⋆Tx1 ·
√
d log

1

ϵ1
· ∥1(Wt1x1)∥1

m

= 20w⋆Tx1 ·
√
d log

1

ϵ1
· ∥1(W̃t1x1)∥1

m
±O

(√
d log d · (τ0

√
m)2/3

)
where the last equality follows with high probability from Lemma 29 and our choice of ϵ1. Now,

from the symmetry of the distribution of the martingale W̃t1 , we know that with high probability,

∥1(W̃t1x1)∥1
m

=
1

2
±O

(√
log d

m

)
=

1

2
±O(ϵ1)

where the last equality follows from our choice of parameters. Therefore, substituting this quantity
back into the expression for NUt1

(u, U⋆;x), we obtain that

|NUt1
(u, U⋆;x1)− 10w⋆Tx1 log

1

ϵ1
| ≤ ϵ1

20

which furthermore implies, by triangle inequality, that

|NUt1
(u, U⋆ + Ũt1 ;x1)− 10w⋆Tx1 log

1

ϵ1
| ≤ ϵ1

10

Therefore, we have that with high probability,

1

N

∑
i∈[N ]

ℓ̄(y(i) · 10w⋆Tx
(i)
1 log

1

ϵ1
) ≤ q log 2 +

ϵ1
10

where the q log 2 comes from the Q component that have x1 = 0, and the ϵ/10 comes from standard
concentration over the randomness in P. Therefore, since ℓ̄ is 1-Lipschitz, we obtain that

L̄(U⋆ + Ũt1) = Kt(U
⋆) ≤ q log 2 +

ϵ1
2

In particular, over the course of training, the function K is essentially a convex but changing
function of the matrix B. This property will be useful in the following result, showing that the target
in the previous theorem can be reached. We adapt a version of Li et al. [19]’s for stochastic gradient
descent and gradient descent, and without dependence on weight decay.
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Lemma 34 (Optimization via GD/SGD) Consider a fixed differentiable convex function K, and a
training process with gradient descent starting from z0 with update rule

zt+1 = zt − η∇K(zt)

Then, assuming that all the K’s is L-Lipschitz, and there exists a common point z⋆ such that for all
t, Kt(z

⋆) ≤ c⋆ for some fixed c⋆ and z⋆ satisfying ∥z⋆ − z0∥2, ∥z⋆∥2 ≤ R, we get that for all µ > 0

and R2

Tµ < η ≤ µ
100 with high probability, there exists a t⋆ ∈ [T ] satisfying

Kt⋆(zt⋆) ≤ c⋆ + µ

Furthermore, for all the t ≤ t⋆, it holds that ∥zt − z⋆∥2 ≤ R.

As a corollary to the optimization lemma, we are able to apply the lemma with R = O(d log2 1
ϵ1
),

with z⋆ being the target signal constructed; this gives the exact convergence time in Lemma 7.

F.2. Proof of Lemma 8

In this section, we reload the notation on t1 so that t1 = O
(
d9/8

η1

)
. Our overall proof strategy will

be to show that activations don’t change much in this first phase on this Q component. In particular,
we first show the result using Ṽt as network activations, and then show that it is "close" to the true
network (which uses Ṽ directly as activations by definition).

Definition 35 For a time step t and vector w, define Ew
t to be {i ∈ [m] : [Ṽt]iw ≥ 0}. In other

words, it’s the set of activated neurons in the V portion of the accumulated label noise. Define Ēw
t to

be the nonactivated neurons.

Definition 36 For a set E ⊂ [m], denote 1(E) to be the indicator vector.

Definition 37 Define g̃t(x) = NṼt
(v, V̄t;x).

Lemma C.2 from Li et al. [19] still holds in our setting. Specifically, we have that:

Lemma 38 (Partition into terms) Let Qt = diag(v)V̄t. Then it holds that

g̃t(z − ζ) + g̃t(z + ζ)− 2g̃t(z)

= (1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

TQtz + (1(Ez+ζ
t )− 1(Ez−ζ

t ))TQtζ

Proof This is by definition of 1 and Qt.

In bounding the two terms from the above lemma, we first give the following notation. For the
following section, let

Bs−1 = ∇V NVs−1(v, Vs−1;x
(is−1)) =

 −v11([Vs−1]1x) · x(is−1)−
...

−vm1([Vs−1]mx) · x(is−1)−


From the above, we obtain the following result, which bounds the number of neurons that have

different activations between z + ζ and z − ζ.
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Proposition 39 For i ∈ Ez−ζ
t ⊕ Ez+ζ

t (⊕ means symmetric difference of sets), we have that
|[Ṽt1 ]iζ| ≲ τ0r

√
log d. In addition, we also have that |Ez−ζ

t1
⊕ Ez+ζ

t1
| ≲ rm

√
log d.

Proof Consider an i ∈ Ez−ζ
t ⊕ Ez+ζ

t ; note that this is equivalent to |[Ṽt]iz| ≤ |[Ṽt]iζ|. We then note
that at initialization, it holds that Ṽ0 has iid N (0, τ20 ) entries. This implies that with high probability,
|[Ṽ0]iζ| ≤ τ0r

√
log d. Furthermore, since

Pr
[
|[Ṽ0]iz| ≤ |[Ṽ0]iζ|

]
≤ Pr

[
|[Ṽ0]iz| ≤ τ0r

√
log d

]
≲ r
√
log d (1)

we have by Bernstein’s that with high probability, at most rm
√
log d + log d ≲ rm

√
log d rows

i ∈ [m] of Ṽ0 have its index in Ez−ζ
t ⊕ Ez+ζ

t .

Now, if we assume that η1t1
√
δ√

m
≲ τ0

√
log d, then it holds with high probability that∣∣∣∣∣

t1∑
s=1

η1ϵs−1[Bs−1]iζ

∣∣∣∣∣ ≤ η1

t1∑
s=1

|ϵs−1[Bs−1]iζ|

≤ η1r√
m

t1∑
s=1

|ϵs−1|

≲
η1r√
m
t1(δ +

√
δ)

≲
η1r√
m
t1
√
δ

≲ τ0r
√
log d

Therefore, we have that with high probability,

|[Ṽt1 ]iζ| ≤ |[Ṽ0]iζ|+

∣∣∣∣∣
t1∑
s=1

η1ϵs−1[Bs−1]iζ

∣∣∣∣∣
≲ τ0r

√
log d

and thus the proposition follows.

To finish off the bound of the second term in Lemma 38, we have the following result.

Proposition 40 We have that at time t1, with high probability,

∥(1(Ez+ζ
t1

)− 1(Ez−ζ
t1

))TQt1ζ∥ ≲ η1r
2t1
√

log d

Proof

∥(1(Ez+ζ
t )− 1(Ez−ζ

t ))TQtζ∥ ≤ ∥(1(Ez+ζ
t )− 1(Ez−ζ

t ))TQt∥∥ζ∥

≤ |Ez−ζ
t ⊕ Ez+ζ

t | ·max
i

∥[Qt]i∥∥ζ∥

≲ rm
√

log d · 1√
m

· η1t1√
m

· r

≲ η1r
2t1
√

log d
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Thus, we have bounded the second term in Lemma 38. We will now proceed to bound the first
term.

Proposition 41 Let ∆Qt = diag(v)∇V ℓ̄(y
(it)ft(x

(it))), i.e. the change in Qt gained in time step t.
Then, we have that

|(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

TQtz| ≤ η

t∑
s=1

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs−1∥2

Proof We simply write out the terms. More specifically, we know that

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

TQt∥ = ∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T diag(v)
t∑

s=1

η∇V ℓ̄(y
(it)ft(x

(it)))∥

= ∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T
t∑

s=1

η∆Qs∥

Thus, by triangle inequality, it holds that

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

TQt∥ ≤ η

t∑
s=1

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs∥

The result then follows from ∥z∥ = 1.

We now attempt to bound ∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs∥. We give the following set
definitions and proposition from Li et al. [19].

Definition 42 Define the following sets

F+
s = {i ∈ [m] : [Ṽs]iz ≳ τ0r

√
log d}

F−
s = {i ∈ [m] : [Ṽs]iz ≲ τ0r

√
log d}

Fc
s = {i ∈ [m] : |[Ṽs]iz| ≲ τ0r

√
log d}

A = Ez+ζ
t \ Ez

t

B = Ez
t \ Ez−ζ

t

Proposition 43 By definitions of the above sets, we have that

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs∥2

≲
1

m

(∣∣|A ∪ F+
s | − |B ∪ F+

s |
∣∣+ ∣∣|A ∪ F−

s | − |B ∪ F−
s |
∣∣+ |A ∪ Fc

s |+ |B ∪ Fc
s |
)

Using the above tools, we are able to show the bound lemma, and therefore obtain our desired
bound.
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Lemma 44 With high probability, we have that

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs∥2 ≲ η1r
2t1
√
log d

Proof By the Li et al. [19] decomposition from the previous proposition, we see that it suffices to
bound the absolute value of
1

m
(|A ∩ F+

s | − |B ∩ F+
s |) = 1

m

∑
i∈[m]

[1(i ∈ Ez+ζ
t , i /∈ Ez

t , i ∈ F+
s )− 1(i ∈ Ez

t , i /∈ Ez−ζ
t , i ∈ F+

s )]

= Pr[i ∈ Ez+ζ
t , i /∈ Ez

t , i ∈ F+
s ]− Pr[i ∈ Ez

t , i /∈ Ez−ζ
t , i ∈ F+

s ]

as well as
1

m
|A ∩ Fc

s | = Pr[i ∈ Ez+ζ
t , i /∈ Ez

t , i ∈ Fc
s ]

We first note the following expression, by definition of Ṽ .

[Ṽt]iz = [Ṽs]iz −
t∑

j=s

η1ϵj−1[Bj−1]iz

We know that the second term on the right hand side is a martingale (and each term in the
summation forms the martingale difference sequence), and therefore we can get the variance of∑t

j=s η1ϵj−1[Bj−1]iz to be σ2
s,t = O(η21(t− s)δ) (follows from the fact that ∥z∥ = 1).

In bounding the difference of cardinalities from above, we first, for the sake of convenience,
define the random variables Y1 = [Ṽs]iz, Y2 = [Ṽt]iz, and Y3 = [Ṽt]iζ. We also define Y4 =∑t

j=s η1ϵj−1[Bj−1]iz = Y2 − Y1. Then, the following holds:

Pr[i ∈ Ez+ζ
t , i /∈ Ez

t , i ∈ F+
s ] = Pr[Y2 + Y3 ≥ 0, Y2 ≤ 0, Y1 ≥ O(τ0r

√
log d)]

and

Pr[i ∈ Ez
t , i /∈ Ez−ζ

t , i ∈ F+
s ] = Pr[Y2 ≥ 0, Y2 − Y3 ≤ 0, Y1 ≥ O(τ0r

√
log d)]

= Pr[Y2 ≤ 0,−Y2 − Y3 ≤ 0,−Y1 ≥ O(τ0r
√
log d)]

where the second inequality in the latter relation follows from symmetric distribution, since we are
dealing with martingales. From this, we obtain the following:∣∣∣Pr[i ∈ Ez+ζ

t , i /∈ Ez
t , i ∈ F+

s ]− Pr[i ∈ Ez
t , i /∈ Ez−ζ

t , i ∈ F+
s ]
∣∣∣

= EY2

[
1(Y2 ≤ 0) · Pr[Y3 ≥ −Y2 and |Y1| ≤ O(τ0r

√
log d)|Y2]

]
= EY2

[
1(Y2 ≤ 0) · Pr[Y3 ≥ −Y2 and |Y4 − Y2| ≤ O(τ0r

√
log d)|Y2]

]
≲ EY2

[
1(Y2 ≤ 0) · Pr[Y3 ≥ −Y2|Y2] ·

O(τ0r
√
log d)

σs,t

]
≲ EY2

[
1(Y2 ≤ 0) · exp(−Y 2

2 /2(r
2τ20 )) ·

O(τ0r
√
log d)

σs,t

]
≲

τ0r
√
log d

η1
√
(t− s)δ
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which immediately implies that

| 1
m
(|A ∩ F+

s | − |B ∩ F+
s |)| ≲ τ0r

√
log d

η1
√
(t− s)δ

By a similar argument, one can see that

| 1
m
(|A ∩ F−

s | − |B ∩ F−
s |)| ≲ τ0r

√
log d

η1
√
(t− s)δ

Now, to bound 1
m |A ∩ Fc

s | (and similarly 1
m |B ∩ Fc

s |), we note the following:

Pr[i ∈ Ez+ζ
t , i /∈ Ez

t , i ∈ Fc
s ] = Pr[Y2 + Y3 ≥ 0, Y2 ≤ 0, |Y1| ≤ O(τ0r

√
log d)]

= EY2

[
1(Y2 ≤ 0) · Pr[Y3 ≥ −Y2 and |Y4 − Y2| ≤ O(τ0r

√
log d)|Y2]

]
≲

τ0r
√
log d

η1
√

(t− s)δ

where the last inequality follows since we already bounded an identical expression above. Therefore,
it holds that

1

m
|A ∩ Fc

s | ≲
τ0r

√
log d

η1
√
(t− s)δ

We now see that

1

m

(∣∣|A ∪ F+
s | − |B ∪ F+

s |
∣∣+ ∣∣|A ∪ F−

s | − |B ∪ F−
s |
∣∣+ |A ∪ Fc

s |+ |B ∪ Fc
s |
)

≲
τ0r

√
log d

η1
√

(t− s)δ

In particular, this means that when we sum over all time steps s ≤ t, we obtain

η1

t∑
s=1

∥(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

T∆Qs∥2 ≲ η1

t∑
s=1

τ0r
√
log d

η1
√

(t− s)δ

≲ η1r
2t1
√
log d

where we used the assumption that τ0 ≲ η1
√
t1δ in the last step. The lemma then follows.

Lemma 45 (g̃t is close to gt) With high probability, it holds that

|gt(x)− g̃t(x)| ≤
1

poly(d)
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Proof We note that

|gt(x)− g̃t(x)| ≤ |NVt(v, V̄t;x)−NṼt
(v, V̄t;x)|+ |NVt(v, Ṽt;x)|

≲ (τ0
√
m)2/3η1t1 + (τ0

√
m)2/3η1t1 + τ0

√
log d

≲ τ0
√

log d

≲
1

poly(d)

As a corollary to this, we obtain the desired bound for Lemma 8, because we can just consider
the dynamics of g̃t1 . This is shown via the following.
Proof [Proof of Lemma 8] We know that

|gt1(z − ζ) + gt1(z + ζ)− 2gt1(z)| ≤ |g̃t1(z − ζ) + g̃t1(z + ζ)− 2g̃t1(z)|+
1

poly(d)

= |(1(Ez−ζ
t ) + 1(Ez+ζ

t )− 21(Ez
t ))

TQtz + (1(Ez+ζ
t )− 1(Ez−ζ

t ))TQtζ|

≲ η1r
2t1
√

log d

≲ r2d9/8
√
log d

as desired.

F.3. Proof of Lemma 9

Let t̂1 denote the annealing time from Lemma 7. Let us also denote throughout this section t2 =
O( 1

η2ϵ32r
). At a high level, the idea of the proof is that the additional variance added by the label noise

from annealing time t̂1 to any time t̂1 + t is small, because of the small learning rate. Intuitively, this
means that most of the noise from before annealing is preserved.

We first begin with the following lemma.

Lemma 46 With high probability, it holds for t ≥ 0 that

|NUt̂1+t
(u, Ũt̂1+t;x)| ≲ τ0

√
log d+ (τ0

√
m)2/3η1t̂1 + η

5/3
2 t5/3

Proof The proof of this is the same analysis as Lemma 32, followed by an application of triangle
inequality.

Lemma 47 For any x and any t = O(t2d
1/8), it holds with high probability that

∥1([Ut̂1+t]x)− 1([Ut̂1
]x)∥1 ≲ ϵ21

Proof Without loss of generality, let us assume ∥x∥2 = 1. First, let us give the following decomposi-
tion.

∥1(Ut̂1+tx)− 1(Ut̂1
x)∥1

= ∥1(Ut̂1+tx)− 1(Ũt̂1+tx)∥1 + ∥1(Ũt̂1+tx)− 1(Ũt̂1
x)∥1 + ∥1(Ũt̂1

x)− 1(Ut̂1
x)∥1
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We know from Lemma 29 that

∥1(Ũt̂1
x)− 1(Ut̂1

x)∥1 ≲ m · (τ0
√
m)2/3

By similar analysis, we obtain that

∥1(Ũt̂1+tx)− 1(Ut̂1+tx)∥1 ≲ m · (τ0
√
m)2/3 +m · η2/32 t2/3

We’d now like to bound the middle term. Note that

[Ũt̂1+t]ix = [Ũt̂1
]ix−

t̂1+t∑
s=t̂1

η2ϵs−1[Bs−1]ix

In order to compute Pr[1([Ũt̂1+t]ix) ̸= 1([Ũt̂1
]ix)], we consider the additional

∑t̂1+t
s=t̂1

η2ϵs−1[Bs−1]ix

term and the initial [Ũt̂1
]ix term. Note that both of these random variables are zero-mean; in partic-

ular, we know that [Ũt̂1
]ix has variance Ω(τ20 ), and

∑t̂1+t
s=t̂1

η2ϵs−1[Bs−1]ix has variance O
(
η22tδ√
m

)
.

Therefore, we obtain that

Pr[1([Ũt̂1+t]ix) ̸= 1([Ũt̂1
]ix)] = Pr[1([Ũt̂1

]ix+

t̂1+t∑
s=t̂1

η2ϵs−1[Bs−1]ix) ̸= 1(Ũt̂1
]ix)]

≲

√
η22tδ/

√
m

τ20

≲
η2
τ0

√
tδ ·m−1/4

This gives us that with high probability,

∥1(Ũt̂1+tx)− 1(Ũt̂1
x)∥1 ≲ m3/4 · η2

τ0

√
tδ +

√
m log d

Finally, the lemma follows, by summing all three terms together.

The result of Lemma 47 allows us to conclude the following:

Lemma 48 With high probability, it holds for any x that at time t ≤ O(t2d
1/8)

|NUt̂1+t
(u, Ut̂1+t;x)−NUt̂1

(u, Ūt̂1+t;x)| ≲ ϵ21.
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Proof This follows by triangle inequality, using previous lemmas. In particular, we have that

|NUt̂1+t
(u, Ut̂1+t;x)−NUt̂1

(u, Ūt̂1+t;x)|

≤ |NUt̂1+t
(u, Ut̂1+t;x)−NUt̂1+t

(u, Ūt̂1+t;x)|+ |NUt̂1+t
(u, Ūt̂1+t;x)−NUt̂1

(u, Ūt̂1+t;x)|

≲ |NUt̂1+t
(u, Ũt̂1+t;x)|+

1√
m

· ∥1(Ut̂1+tx)− 1(Ut̂1
x)∥1 ·max

i
∥[Ūt̂1+t′ ]i∥2

≲ |NUt̂1+t
(u, Ũt̂1+t;x)|

+
1√
m

(
m · (τ0

√
m) +m · η2/32 t2/3 +m3/4 · η2

τ0

√
tδ +

√
m log d

)
·
(
η1t̂1 + η2t

)
√
m

≲ τ0
√

log d+ (τ0
√
m)2/3η1t̂1 + η

5/3
2 t5/3

+
1

m

(
m · (τ0

√
m) +m · η2/32 t2/3 +m3/4 · η2

τ0

√
tδ +

√
m log d

)
·
(
η1t̂1 + η2t

)
≲ τ0

√
log d+ (τ0

√
m)2/3η1t̂1 + η

5/3
2 t5/3 + (m−1/4 η2

√
tδ

τ0
+m−1/2

√
log d)(η1t̂1 + η2t)

≲ τ0
√

log d+ (τ0
√
m)2/3η1t̂1 + η

5/3
2 t5/3

≲ ϵ21

where the last line follows from our choice of parameters that τ0
√
log d ≲ ϵ21, (τ0

√
m)2/3η1t̂1 ≲

ϵ21, η
5/3
2 t2d

1/8 ≲ ϵ21.

We now proceed to complete the proof of Lemma 9, via the following series of lemmas. We
can then show that there exists a target signal that the weights approaches after the learning rate is
annealed. In particular, this target signal analysis will be similar to the spirit of the target signal
analysis before the annealing. The difference is that here, we will construct a target V ⋆ for the
nonlinear component of the data.

First, let us recall the following notation. We use L̂ to denote the average loss on ℓ, and we use
L̄ to denote the average loss on ℓ̄. By Lemma 26 we know that in general, L̂ and L̄ will be close,
because of our choice of scaling for δ.

Let us now give the following Lemma C.9 from Li et al. [19], as adapted for our expected
smoothed loss ℓ̄.

Lemma 49 Consider a time t, where it holds that |gt(z + ζ) + gt(z − ζ)− 2gt(z)| ≤ κ for some
small κ. Then, it holds that

L̄M̄1
(u, Ut) ≥ log 2−O(κ)−O

(
log d√
qN

)
In addition, if L̄M̄1

≤ log 2 +O(κ′) for κ′ ≳ κ, then

|gt(z + ζ)|, |gt(z − ζ)|, |gt(z)| ≤ O

(√
κ′ +

log d√
qN

)

We can then continue to show the following, allowing us to bound the key term ϵ0.
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Lemma 50 With high probability, it holds that

|gt̂1(z + ζ)|, |gt̂1(z − ζ)|, |gt̂1(z)|, ϵ0 ≤ O

(√
ϵ1
q

)
where we define

ϵ0
∆
=

1

N

∑
i∈M1

ℓ̄(y(i)rt1(x
(i)))

to be a notion of pseudo-loss that is computed via just the W weights.

Proof To show this, we first recall that with high probability, L̄t̂1
≤ q log 2 + ϵ1, which implies

that L̄M1(u, Ut̂1
) ≤ log 2 + ϵ1

q . In the setting of the previous lemma, let κ = κ′ = O(ϵ1) =

O(r2d9/8
√
log d). Then this implies that |gt̂1(z + ζ)|, |gt̂1(z − ζ)|, |gt̂1(z)| ≤ O

(√
ϵ1
q

)
.

Thus, we obtain that

ϵ0 =
1

N

∑
i∈M1

ℓ̄(y(i)rt1(x
(i)))

≤ 1

N

∑
i∈M1

ℓ̄(y(i)(rt1(x
(i)
1 ) + gt1(x

(i)
2 ))) +

1

N

∑
i∈M1

|gt1(x
(i)
2 )|

≤ (L̄t1 − qℓ̄M̄1
(u, Ut1)) +O

(√
ϵ1/q

N

)

≤ (q log 2 + ϵ1 − q log 2 + qϵ1) +O

(√
ϵ1/q

N

)

≤ O

(√
ϵ1
q

)

We are now able to construct a target signal for V ⋆ that we can show convergence to in the
second phase of training. This will be formalized via the following lemma.

Lemma 51 At some time t̂2 ≲ t2 time steps after annealing, we have that there exists a target signal
U⋆ such that

Kt̂1+t(Ūt̂1
+ U⋆) ≤ ϵ0 + ϵ1.

Proof We follow the construction of Li et al. [19] for the additional target signal. In particular, first
define the sets

E1 = {i ∈ [m] : [Vt̂1
]i(z − ζ) ≥ 0, [Vt̂1

]iz ≥ 0, [Vt̂1
]i(z + ζ) < 0}

E2 = {i ∈ [m] : [Vt̂1
]i(z − ζ) ≥ 0, [Vt̂1

]iz < 0, [Vt̂1
]i(z + ζ) < 0}

E3 = {i ∈ [m] : [Vt̂1
]i(z − ζ) < 0, [Vt̂1

]iz < 0, [Vt̂1
]i(z + ζ) ≥ 0}
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Then, define the target additional signal matrix after annealing as U⋆ with W ⋆ = 0 and V ⋆ to be

V ⋆
i =


20c log(1/ϵ1)vi

rϵ1
z if i ∈ E1

−40c log(1/ϵ1)vi
rϵ1

z if i ∈ E2
−20c log(1/ϵ1)vi

rϵ1
z if i ∈ E3

0 otherwise

Now, let us consider [Ṽt̂1
]i; in particular, i will be in the E sets with probability O(r)2, the angle

between z − ζ and z, because at time t1 the network still has a bad margin on Q, and hence hasn’t
learned much.

Next, we note that for x2 = α(z − ζ), with high probability it holds that, by definition of V ⋆,

NVt̂1
(v, V ⋆;α(z − ζ)) = α

1

m

(
|E1|

20c log(1/ϵ1)

rϵ1
− |E2|

40c log(1/ϵ1)

rϵ1

)
≤ α

−2c log(1/ϵ1)

ϵ1

Similarly, we get high probability bounds of the cases of x2 = α(z + ζ) and x2 = αz as follows.

NVt̂1
(v, V ⋆;α(z + ζ)) = −α

1

m
|E3|

20c log(1/ϵ1)

rϵ1
≤ α

−2c log(1/ϵ1)

ϵ1

and

NVt̂1
(v, V ⋆;αz) = α

1

m
|E1|

20c log(1/ϵ1)

rϵ1
≥ α

2c log(1/ϵ1)

ϵ1

In particular, by definitions of the labels, we obtain that for all i ∈ [N ],

y(i)NVt̂1
(v, V ⋆, x

(i)
2 ) ≥ 2c log(1/ϵ1)

ϵ1
∥x(i)2 ∥2

Now, recall that we want to bound Kt̂1+t′(Ūt̂1
+U⋆) = Kt̂1+t2

((W̄t̂1
, V̄t̂1

+V ⋆)). For the signal
W̄ , it suffices to note that

|NWt̂1+t2
(w, W̄t̂1

;x1)−NWt̂1+t2
(w,Wt̂1

;x1)|

≤ |NWt̂1+t2
(w, W̄t̂1

;x1)−NWt̂1
(w, W̄t̂1

;x1)|+ |NWt̂1
(w, W̃t̂1

;x1)|

≲
1√
m
∥1(Wt̂1+t2

x1)− 1(Wt̂1
x1)∥1max

i
∥[W̄t̂1

]i∥2 + |NWt̂1
(w, W̃t̂1

;x1)|

≲
1

m
ϵ21 · η1t̂1 + τ0

√
log d

≲ qϵ1

Now, we will bound the loss accounted for by the V̄t̂1
+ V ⋆ term. In particular, we note that

by triangle inequality, yNVt̂1+t2
(v, V̄t̂1

+ V ⋆;x2) ≥ yNVt̂1+t2
(v, V ⋆;x2) − |yNVt̂1+t2

(v, V̄t̂1
;x2)|,

where the first term on the right hand side is always positive as shown before (which allows us to
remove the absolute value). We will proceed to bound the terms on the right hand side.

2. For ∥ζ∥2 ≪ ∥z∥2, the small-angle approximation holds.
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First, note that for all i,

|V ⋆
i x2| ≲

1√
mϵ1r

by definition of our V ⋆. As such we can give the following bound:∣∣∣∣∣∣
∑
i∈[m]

vi(V
⋆
i x2) · (1([Vt̂1+t2

]ix2)− 1([Vt̂1
]ix2]))

∣∣∣∣∣∣
≲

1

mϵ1r
· ∥1([Vt̂1+t2

]x2))− 1([Vt̂1
]x2])∥1

≲
1

mϵ1r
· ϵ21

≲ O(1)

From this, we obtain that

yNVt̂1+t2
(v, V ⋆;x2) = y

∑
i∈[m]

vi(V
⋆
i x2) · 1([Vt̂1+t2

]ix2)


≥ y(

∑
i∈[m]

vi(V
⋆
i x2) · (1([Vt̂1+t2

]ix2)− 1([Vt̂1
]ix2]))) + y(

∑
i∈[m]

vi(V
⋆
i x2) · (1([Vt̂1

]ix2]))

≳
c∥x2∥2

ϵ1
log(1/ϵ1)

We now upper bound the |yNVt̂1+t2
(v, V̄t̂1

;x2)| term. To do so, first note that

|yNVt̂1
(v, V̄t̂1

;x2)| ≤ |NVt̂1
(v, V̄t̂1

;x2)−NVt̂1
(v, Vt̂1

;x2)|+ |NVt̂1
(v, Vt̂1

;x2)|

= |NVt̂1
(v, Ṽt̂1

;x2)|+ |gt̂1(x2)|

≲ τ0
√

log d+ |gt̂1(x2)|
≲ O(1)

In particular, this gives us

|yNVt̂1+t2
(v, V̄t̂1

;x2)| =

∣∣∣∣∣∣
∑

i∈[m]

vi([V̄t̂1
]ix2)1([Vt̂1+t2

]ix2)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈[m]

vi([V̄t̂1
]ix2)1([Vt̂1

]ix2)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i∈[m]

vi([V̄t̂1
]ix2)(1([Vt̂1+t2

]ix2)− 1([Vt̂1
]ix2))

∣∣∣∣∣∣
= |yNVt̂1

(v, V̄t̂1
;x2)|+

∣∣∣∣∣∣
∑

i∈[m]

vi([V̄t̂1
]ix2)(1([Vt̂1+t2

]ix2)− 1([Vt̂1
]ix2))

∣∣∣∣∣∣
≲ O(1)
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As noted earlier, since yNVt̂1+t2
(v, V̄t̂1

+V ⋆;x2) ≥ yNVt̂1+t2
(v, V ⋆;x2)−|yNVt̂1+t2

(v, V̄t̂1
;x2)|,

we can prove the following:

yNVt̂1+t2
(v, V̄t̂1

+ V ⋆;x2) ≥ yNVt̂1+t2
(v, V ⋆;x2)− |yNVt̂1+t2

(v, V̄t̂1
;x2)|

≳
c

ϵ1
log(1/ϵ1)−O(1)

≳ log

(
1

ϵ1

)
From this point, we obtain that

Kt1+t′(Ūt1 + U⋆) = Kt1+t′((W̄t1 , V̄t1 + V ⋆))

≤ |M1|
N

L̄M1(rt1) +O(qϵ1) +
|M̄1|
N

L̄M̄1
(Nt1+t′(v, V̄t1 + V ⋆); ·)

≤ ϵ0 + ϵ1

Here, convergence using the Lemma 34 will give the desired upper bound for number of time steps.

F.4. Proof of Lemma 10

We can then show that our label noise SGD algorithm converges to a low training loss on both the
P and Q component, which is good. In particular, for the P component, the low loss is on the
entire M1, which implies generalization via standard Rademacher complexity bounds. This will be
formalized by the following analysis.
Proof Consider the difference between losses at time t̂1 and time t̂1 + t̂2 on the P component,
restricted to the set M1. Then, we have that

|L̄M1(rt̂1)− L̄M1(rt̂1+t̂2
)|

= | 1

|M1|
∑
i∈M1

(ℓ̄(y(i)rt1(x
(i)))− ℓ̄(y(i)rt1+t′(x

(i))))|

≤ 1

|M1|
∑
i∈M1

|rt1(x(i))− rt̂1+t̂2
(x(i))|

≤ 1

|M1|
·
√
N ·

√∑
i∈M1

(rt̂1(x
(i))− rt̂1+t̂2

(x(i)))2

where the third line follows from ℓ̄ being 1-Lipschitz, and the fourth line follows from Cauchy-
Schwartz. In particular, by our choice of η2, we will bound the term inside the square root as
follows.

|rt̂1(x
(i))− rt̂1+t̂2

(x(i))|

≤ |NWt̂1+t̂2
(w,Wt̂1+t̂2

;x
(i)
1 )−NWt̂1

(w, W̄t̂1+t̂2
;x

(i)
1 )|+ |NWt̂1

(w, W̄t̂1+t̂2
;x

(i)
1 )−NWt̂1

(w, W̄t̂1
;x

(i)
1 )|

+ |NWt̂1
(w, W̃t̂1

;x
(i)
1 )|

≲ |NWt̂1
(w, W̄t̂1+t̂2

;x
(i)
1 )−NWt̂1

(w, W̄t̂1
;x

(i)
1 )|+ ϵ21
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Therefore, we have that

√
N ·

√∑
i∈M1

(rt̂1(x
(i))− rt̂1+t̂2

(x(i)))2

≤
√
N

√∑
i∈M1

|NWt̂1
(w, W̄t̂1+t̂2

;x
(i)
1 )−NWt̂1

(w, W̄t̂1
;x

(i)
1 )|2

≲
√
N
√

∥W̄t̂1+t̂2
− W̄t̂1

∥2F ∥X∥22

≲
√
N

√
∥W̄t̂1+t̂2

− W̄t̂1
∥2F

N

d

≲
N√
d
· 1

ϵ1
√
r

≲ Nϵ1

where the last line follows from

1

ϵ41
≲ dr2 ≲ dr

Now, we note that simply ϵ0 = (1− q)L̄M1(rt̂1). Therefore, substituting everything back in, we
obtain that ∣∣∣∣L̄M1(rt̂1+t̂2

)− ϵ0
1− q

∣∣∣∣ ≤ ϵ1
q

Hence, |L̄M1(rt̂1+t̂2
)| ≲ O

(√
ϵ1
q

)
follows directly from our previous upper bound of ϵ0 ≲

√
ϵ1
q .

Furthermore, since L̄M1 ≤ L̄t̂1+t̂2
≤ O

(√
ϵ1
q

)
, we have that

L̄M̄1
(gt̂1+t̂2

) ≲
√

ϵ1
q3

as desired.

F.5. Proof of Theorem 4

We now make use of the lemmas we have proved, to finally prove the theorem statement of algorithm
LNSGD-LS. Essentially, the fine grained loss from Lemma 10 allows us to conclude the theorem,
because P has enough sample complexity, and Q naturally generalizes well.
Proof First, we give a lemma due to Li et al. [19], which essentially lower bounds the magnitude of
the output at stopping time of training. We adapt it as follows.

Lemma 52 With high probability for t̂1, t̂2 from earlier, for every κ ≥ 1√
qN

, it holds that L̄M̄1
(gt̂1+t̂2

) ≤
δ implies ygt̂1+t̂2

(x2) ≳
∥x∥2
κ .
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This lemma is useful in our analysis as it allows us to reason that the low-norm x2 observations
of the Q component will still have large output in g.

First, note that by our choice of hyperparameters, ϵ1 ≥ 1√
N

. Therefore, it holds that ygt̂1+t̂2
(x2) ≳

∥x∥2√
ϵ1/q3

. To look at the P component, we note that with high probability,

|rt̂1+t̂2
| = |Nt̂1+t̂2

(u, Ut̂1+t̂2
;x1)| ≲ 1

This implies the quantity ∥x2∥ will determine the magnitude of y(rt̂1+t̂2
+ gt̂1+t̂2

). In particular,

if ∥x2∥ ≳
√

ϵ1
q3

log 1
ϵ1

, then

y(rt̂1+t̂2
+ gt̂1+t̂2

) ≳ log
1

ϵ1

Otherwise, if ∥x2∥2 ≲
√

ϵ1
q3

, then

y(rt̂1+t̂2
+ gt̂1+t̂2

) ≲ 1

Recall from the construction of the target signal of W that ∥Wt̂1+t̂2
∥2F ≲ d log2 1

ϵ1
. Then, it

holds that

E(x,y)[ℓ̄(rt̂1+t̂2
+ gt̂1+t̂2

)]

≤ Pr[x2 = 0]E[ℓ̄(rt̂1+t̂2
)] + Pr[x2 ̸= 0]E[ℓ̄(rt̂1+t̂2

+ gt̂1+t̂2
)]

≤ pκ log
1

ϵ1
+ ϵ1

≤ O(pκ log
1

ϵ1
)

where the second to last inequality comes from our choice of ϵ1, and the last equality follows from
our previously conditional expectations.

Appendix G. Proof of Theorem 5 (LNSGD-S)

G.1. Proof of Lemma 11

Proof Essentially, we construct a target signal for the Q, and show convergence to this target. The
proof follows the same target signal construction as Lemma 51. In particular, here the upper bound
on the time steps needed is O( 1

η2(ϵ′2)
3r
), and the SGD optimization Lemma 34 can be used to show

the target signal is reached.
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G.2. Proof of Lemma 12

For this second phase of training after Q is memorized, we follow Li et al. [19]’s construction of the
target signal, which roughly states that the target signal has a dependency on the linearly separating
hyperplane fit via only the pN observations in M̄2.
Proof The target matrix U⋆ is constructed by considering the vector β = X(XTX)−1yT ∈ Rd×1,
where X ∈ Rd×pN and y ∈ R1×pN . Then, construct W ⋆

i = 10wi log
1
ϵ′2
β, and V ⋆ as in Lemma 51.

It suffices here to note that ∥β∥2 ≲
√
pN ; by following the SGD optimization Lemma 34, we obtain

the time to be O
(

pN
η2ϵ′2

)
.

G.3. Proof of Lemma 13 and Lemma 14

Essentially, this lemma tells us that the accumulated gradient signal W̄ on the M2 component is
small when we stop the training.

In proving this lemma, we first denote t3 = O
(

d
η2ϵ′2

)
. Furthermore, we define the following.

ρt =
1

N

∑
i∈M2

|ℓ̄′(y(i)ft(x(i)))|

Intuitively, this quantity represents the average absolute value of the logistic loss’s derivative over all
the observations in M2. We basically argue that ρt will decrease very quickly.

Lemma 53 For t ≤ t3, it holds that if ρt = Ω
(
1
N

)
, then with high probability,

∥∇L̄t∥2F ≳ rρ4t

We use the following ReLU geometry lemma due to Li and Liang [17], which we use to show
that with high probability, the gradient as calculated by the noise activations is large.

Lemma 54 For any v1, v2, v3 ∈ R, it holds that

Ew[∥v11(wT (z − ζ))(z − ζ) + v21(w
T (z + ζ))(z + ζ) + v31(w

T z)z∥22]
≳ r(v21 + v22 + v23)

where w ∼ N (0, τ20 I).

Proof [Proof of Lemma 53] Fix a time t. We first note that, for a fixed j ∈ [m],

∇[V ]j L̄t =
1

N

∑
i∈M2

ℓ̄′(y(i)ft(x
(i))) · vi · 1([Vt]jx

(i)
2 )x

(i)
2

Following Li et al. [19]’s definitions of the following sets, we denote

Sw
α0

= {i ∈ [N ] : x
(i)
2 = αiw for some αi ≥ α0}

where w is a vector.
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Then, note that

Nmvj∇[V ]j L̄t

=
∑

i∈Sz−ζ
0

αiℓ̄
′(y(i)ft(x

(i)))1([Vt]j(z − ζ))(z − ζ) +
∑

i∈Sz+ζ
0

αiℓ̄
′(y(i)ft(x

(i)))1([Vt]j(z + ζ))(z + ζ)

+
∑
i∈Sz

0

αiℓ̄
′(y(i)ft(x

(i)))1([Vt]jz)z

We can then define the matrix L̃ so that

[L̃]j =
∑

i∈Mz−ζ
0

αiℓ̄
′(y(i)ft(x

(i)))1([Ṽt]j(z − ζ))(z − ζ) +
∑

i∈Mz+ζ
0

αiℓ̄
′(y(i)ft(x

(i)))1([Ṽt]j(z + ζ))(z + ζ)

+
∑
i∈Mz

0

αiℓ̄
′(y(i)ft(x

(i)))1([Ṽt]jz)z

Thus, we obtain that with high probability,

E[∥[L̃]j∥22] ≳ r


 ∑
i∈Mz−ζ

0

αiℓ̄
′(y(i)ft(x

(i)))


2

+

 ∑
i∈Mz+ζ

0

αiℓ̄
′(y(i)ft(x

(i)))


2

+

 ∑
i∈Mz

0

αiℓ̄
′(y(i)ft(x

(i)))

2


≳ r

∑
i∈M2

αi|ℓ̄′(y(i)ft(x(i)))|

2

Since this holds for all neurons, we get that

∥L̃∥2F ≳ mr

∑
i∈M2

αi|ℓ̄′(y(i)ft(x(i)))|

2

−O(m1/2N4)

by concentration inequalities.
We can now reason that 1

N2m
∥L̃∥2F and ∥∇ ¯L(Ut)∥2F are close. In particular, we can note that∣∣∣∣ 1

N2m
∥L̃∥2F − ∥∇L̄(Ut)∥2F

∣∣∣∣ ≲ 1

Nm

∑
j

∑
i

ℓ̄′(y(i)ft(x
(i)))2|1([Vt]jx

(i)
2 )− 1([Ṽt]jx

(i)
2 )|

≲ η
2/3
2 t2/3

Now, to bound the
(∑

i∈M2
αi|ℓ̄′(y(i)ft(x(i)))|

)2
term, we note that∑

i∈M2

αi|ℓ̄′(y(i)ft(x(i)))|

2

≳ ρt

 ∑
i∈MΘ(

√
ρt)

|ℓ̄′(y(i)ft(x(i)))|

2

≳ ρt(Nρt)
2
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Therefore, this tells us that

∥∇L̄(Ut)∥2F ≳
1

N2m
∥L̃∥2F − η

2/3
2 t2/3 (2)

≳
1

N2m
[mr

∑
i∈M2

αi|ℓ̄′(y(i)ft(x(i)))|

2

−O(m1/2N4)] (3)

≳ rρ4t (4)

as desired.

At this point, we can bound the number of time steps where ρt is large (and hence where the
gradient norm is large). This is formalized by the following lemma.

Lemma 55 With high probability, the number of time steps t where ρt ≳ d−1/32

(ϵ′2)
2 is smaller than

d1/8(ϵ′2)
8

η2r
.

Proof To bound this, we will analyze the gradient dynamics on the loss function itself. Consider a
pseudo-network activated on the initialization weights; we define such to be Fs(x)

∆
= NU0(u, Ūs;x).

Then, we obtain that

L̄(Fs+1) ≤ L̄(Fs)− η2⟨∇U ℓ̄(y
(is)fs(x

(is))),∇U L̄(Fs)⟩+O(η2)

This implies that

L̄(F0) +O(η22t) ≥ η2

t∑
s=1

⟨∇U ℓ̄(y
(is)fs(x

(is))),∇U L̄(Fs)⟩

≳ η2t∥∇U L̄(Fs)∥2F

Therefore, we see that for a given scalar β, if ρ ≥ β, then ∥∇U L̄(Fs)∥2F ≥ rβ4 by the previous
lemma. In particular, the last inequality implies that there are ≲ 1

η2rβ4 time steps where ρt is big;

here, we have β = O
(
d−1/32

(ϵ′2)
2

)
.

Now, we can finally go about proving Lemma 13.
Proof [Proof of Lemma 13] Recall W̄ (2)

t = −η2
∑t

s=1 ·ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)Bs−1 ·

1(is−1 ∈ M2). Then, we have that∥∥∥∥∥∥
∑
i∈M2

∇W ℓ̄(y(i)ft(x
(i)))

∥∥∥∥∥∥
2

F

=
∑
j∈[m]

∥∥∥∥∥∥
∑
i∈M2

ℓ̄′(y(i)ft(x
(i)))wj1([Wt]jx

(i)
1 )x

(i)
1

∥∥∥∥∥∥
2

2

≤
∑
j∈[m]

∥X∥22

∑
i∈M2

|ℓ̄′(y(i)ft(x(i)))|


≲

N2

d
· ρt
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We can now bound ∥W̄ (2)
t ∥F . In particular, this gives us

∥W̄ (2)
t ∥F ≤ η2

∑
s≤t:ρs small

∥1(is ∈ M2)∇W ℓ̄′(y(is)fs(x
(is))))∥F

+ η2
∑

s≤t:ρs large

∥1(is ∈ M2)∇W ℓ̄′(y(is)fs(x
(is))))∥F

≲
η2
√
βt√
d

+ η2
∑

s≤t:ρs large

∥1(is ∈ M2)∇W ℓ̄′(y(is)fs(x
(is))))∥F

≲
η2
√
βt√
d

+
η2(rβ

4)√
d

Again, substituting in β = O
(
d−1/32

(ϵ′2)
2

)
and recalling that t ≲ t3 = O

(
d

η2ϵ′2

)
, we get the desired

bound in Lemma 13.

We now give a lemma, which states that the signal W̄t must mostly lie in the span of the
data points in M̄2. We’ve already shown that the remainder is small in some sense from proving
Lemma 13, so we formalize this argument below.

Lemma 56 For t ≲ t3, there exists scalars αi for every i ∈ M̄2 such that with high probability, for
all j ∈ [m],

[W̄t]j = wj

∑
i∈M̄2

αix
(i)
1 1([W̃ ]0x

(k)
1 ) + [Pt]j

it holds that ∥Pt∥F ≲ d31/64

ϵ′2
2

Proof Note that for j ∈ [m],

[W̄
(2)
t ]j = −η2

t∑
s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)[Bs−1]j · 1(is−1 ∈ M2)

= −η2

t∑
s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)wj1([Ws−1]jx

(is−1)
1 )x

(is−1)
1 · 1(is−1 ∈ M2)

This implies that

[W̄t]j = [W̄
(2)
t ]j − η2

t∑
s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)wj1([Ws−1]jx

(is−1)
1 )x

(is−1)
1 · 1(is−1 ∈ M̄2)

= [W̄
(2)
t ]j

− η2

t∑
s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)wj1([W0]jx

(is−1)
1 )x

(is−1)
1 · 1(is−1 ∈ M̄2)

− η2

t∑
s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)wj(1([Ws−1]jx

(is−1)
1 )− 1([W0]jx

(is−1)
1 ))x

(is−1)
1 · 1(is−1 ∈ M̄2)

39



ON THE SYNERGY BETWEEN LABEL NOISE AND LEARNING RATE ANNEALING IN NEURAL NETWORK TRAINING

We note that for large t, because of our choice of small η2, we get this this is roughly

[W̄
(2)
t ]j − η2

t∑
s=1

∇W L̄M̄2
≤ [W̄

(2)
t ]j − η2wj

t∑
s=1

1

N

∑
i∈M̄2

∇W ℓ̄(y(i)fs(x
(i)))

≤ [W̄
(2)
t ]j − η2wj

t∑
s=1

1

N
(
∑
i∈M̄2

ℓ̄′(y(i)fs(x
(i))) · 1([W0]jx

(i)
1 )x

(i)
1

+
∑
i∈M̄2

ℓ̄′(y(i)fs(x
(i))) · [1([Ws]jx

(i)
1 )− 1([W0]jx

(i)
1 )]x

(i)
1 )

We note that for large t, because of our choice of small η2, we can bound the last term as follows:∥∥∥∥∥
t∑

s=1

ℓ̄′(y(is−1)fs−1(x
(is−1))) · y(is−1)wj(1([Ws−1]jx

(is−1)
1 )− 1([W0]jx

(is−1)
1 ))x

(is−1)
1 · 1(is−1 ∈ M̄2)

∥∥∥∥∥
2

≲ pt∥(1([Wt−1]jx
(it−1)
1 )− 1([W0]jx

(it−1)
1 )) · x(it−1)

1 ∥2
≲ ptϵ21

Combining everything together, we obtain

∥Pt∥F ≤ ∥W̄ (2)
t ∥F + ϵ21 ≲

d31/64

ϵ′2
2

Finally, we can simply apply Lemma 5.3 from Li et al. [19], which exactly recovers Lemma 14.
For clarity of exposition, we include the lemma statement here, adapted as follows.

Lemma 57 For t ≲ t3, there exists some ∥α∥2 = Ω(
√
pN) in the span of the M̄2 datapoints. Then,

it holds that with high probability,

rt(x1)− rt(−x1) = 2αTx1 ± Õ

(
d−1/64

ϵ′2
2

)

G.4. Proof of Theorem 5

Using the lemmas we have showed, we can now prove the theorem for LNSGD-S. In particular,
this last lemma tells us that the predictions at the time training stops are still not good on the P
component, because the margin is heavily influenced by noise.
Proof Refer to Theorem 3.5 in Li et al. [19] for the classification lower bound.
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Appendix H. Proof of Theorem 6 (FBGD-LS)

H.1. Proof of Lemma 15

Proof Here, we construct a partial target solution of Q. In particular, we use the notation from
Lemma 51 to construct V ⋆. Here, we take W ⋆ = 0 and

V ⋆
i =

{
−40c log(1/ϵ1)vi

r z if i ∈ E2
0 otherwise

Here, for x2 = z − ζ, we have that

NVt(v, V
⋆;x2) =

1

m

(
−40c log(1/ϵ1)

r
|E2|
)

≤ −40c log(1/ϵ1)

for some constant c. Essentially, only the z − ζ vectors in Q are currently classified correctly. For
the remainder of this lemma, a similar analysis can be performed as Lemma 51 to obtain the desired
upper bound on time steps of O

(
1

η1r

)
, by considering Lemma 34 for full batch gradient descent.

H.2. Proof of Lemma 16

We now proceed to show convergence to a partial solution on the P component as well.
Proof Here, we construct our target signal W ⋆ to be the similar to Lemma 12; the difference is that
here, it is a partial solution. In particular, we define β similarly to Lemma 12, but here W ⋆ = wiβ;
V ⋆ = 0 here. It can be verified that by following Lemma 34, we get the upper bound on iterations to
be O

(
pN
η1

)
.

As a result, we observe that at annealing time, both P and Q have a partial signal. Contrasting
this case with LNSGD-LS, we see that we enter phase 2 of the algorithm with indeed a much bigger
signal in Q (as constructed by V ⋆), due to the lack of noise in the gradients.

H.3. Proof of Phase 2 of FBGD-LS

We refer readers to the proofs of Lemma 11, Lemma 12, Lemma 13, and Lemma 14 for algorithm
LNSGD-S; the results and target signals for the post-annealing phase of FBGD-LS are identical to
those lemmas, including the proof of the classification lower bound.

41


	Introduction
	Preliminaries
	Main Results
	Training Algorithms
	Assumptions
	Main Theorems

	Discussion and Future Work
	Data Distribution
	Experiments
	Additional Notations
	Outline of Algorithm Analyses
	Tools for Label Noise Analysis
	Analysis of [a1]Theorem  4 (LNSGD-LS)
	Phase 1: Learning Rate 1
	Phase 2: Learning Rate 2

	Analysis of [a2]Theorem  5 (LNSGD-S)
	Phase 1: Memorizing Q
	Phase 2: After Memorizing Q

	Analysis of [a3]Theorem  6 (FBGD-LS)
	Phase 1: Exploring Both Features Before Annealing
	Phase 2: Memorizing Only Q After Annealing
	Generalization


	Toolbox of Lemmas and Concentrations
	Decoupling
	Lemmas and Concentrations

	Proof of [a1]Theorem  4 (LNSGD-LS)
	Proof of [thm p learned well]Lemma  7
	Proof of [thm q barely learned]Lemma  8
	Proof of [training loss after stopping]Lemma  9
	Proof of [fine grained loss]Lemma  10
	Proof of [a1]Theorem  4

	Proof of [a2]Theorem  5 (LNSGD-S)
	Proof of [optim1]Lemma  11
	Proof of [optim2]Lemma  12
	Proof of [not much p signal on m2]Lemma  13 and [bad margin on p a2]Lemma  14
	Proof of [a2]Theorem  5

	Proof of [a3]Theorem  6 (FBGD-LS)
	Proof of [algo3 optim1]Lemma  15
	Proof of [algo3 optim2]Lemma  16
	Proof of Phase 2 of FBGD-LS


