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Abstract
Meta-learned optimizers increasingly outperform analytical hand-crafted optimizers such as SGD
and Adam. However, on some tasks, they fail to generalize strongly, underperforming hand-crafted
methods. Then one can fall back on hand-crafted methods through a guard, to combine the effi-
ciency benefits of learned optimizers and the guarantees of analytical methods. At some point in
the iterative optimization process, however, such guards may make the learned optimizer incom-
patible with the remaining optimization, and thus useless for further progress. Our novel method
Meta Guard continues to adapt the learned optimizer to the target optimization problem. It experi-
mentally outperforms other baselines, adapting to new tasks during training.

1. Introduction

Neural networks can be used as function approximators to solve a wide range of machine learning
problems, including regression, classification, and sequence modelling [24]. Instead of optimizing
the parameters of the neural network using hand-crafted algorithms such as stochastic gradient
descent (SGD) [1], these neural networks can be trained to implement the learning algorithms in
their activation updates to learn how to learn [8, 21], potentially outperforming hand-crafted learning
algorithms [11]. Recently, such meta-learning approaches have been successful in Large Language
Models (LLMs) and related Transformer-based models under the name of in-context learning [3,
13].

Given a sufficiently universal architecture, such as LSTMs [7], standard Transformers [26] that
scale quadratically with sequence length, or Linear Transformers / Fast Weight Programmers [10,
20, 22], these neural networks can, in principle, not only implement new learning algorithms but
also meta-learn, meta-meta-learn, and so on [9, 12, 23]. Unfortunately, we have no guarantees that
such networks are sufficiently robust to generalize to unseen problems that were not part of meta-
training. A method that ensures that these universal models continue to improve without divergence
is desired.
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In this paper, we focus on the setting of learned optimization (L2O) [2, 16, 17]. A learned opti-
mizer implemented by a neural network gθ with parameters θ incrementally updates (optimizes) the
optimizee with parameters η. The optimizee is a neural network to solve any given task, for example,
an MNIST [4] classifier. L2O usually occurs in two phases: First, during meta-training, the opti-
mizer gθ is trained to optimize well on a distribution of tasks, i.e., for each task, producing ηT after T
steps of optimization with low loss values. Second, during meta-testing, the optimizer parameters θ
are frozen, and the optimizer is applied to a new test task. Doing well on any given test task requires
that either the test task is very similar to previously trained-on tasks or that the optimizer general-
izes well at the meta-test time. In practice, strong generalization is difficult to achieve [11, 15]. An
approach to address this issue is to undo underperforming self-modifications using the success story
algorithm [25] or to allocate more computational resources to better-performing solutions [12]. In-
stead, we propose to continue adjusting the meta-learner during meta-testing when its performance
falls below a known hand-crafted optimizer such as SGD. We refer to this as the ‘Meta Guard’. This
leverages the efficiency gains of a learned optimizer while ensuring that it is continuously adapted
to the meta-test task when it fails to generalize.

Inspired by Loss-Guarded L2O [18] (LGL2O), we propose two guard mechanisms (Alg. 1 and
Alg. 2) that select between analytical updates and learned updates to both the optimizer and op-
timizee parameters with respect to a meta objective that evaluates how well the learned optimizer
performs in optimizing the current optimizee. We theoretically justify their convergence and empir-
ically show their adaptation to novel tasks. This paper is organized as follows. We discuss learned
optimizers and loss guards in the background section 2. Section 3 introduces our Meta Guard,
a learned optimizer that continually adapts at meta-test time. Then, in section 4, we empirically
demonstrate that our proposed method outperforms other baselines, including non-adaptive guards,
in various problem settings. Finally, we conclude the paper in Section 5 with a summary.

2. Background

Learning to Optimize Let gθ be a learned optimizer parameterized by θ ∈ Θ ⊂ Rnθ . Let
η ∈ Rm represent the optimizee parameters, for example, the parameters of a convolutional neural
network (CNN) [5, 14] that classifies handwritten digit images. Given a loss function l : Rm → R
that measures the performance of the optimizee on specific data, our objective is to meta-learn
optimizers gθ that minimize the loss l(ηt) of the optimizee parameters ηt at each iteration t of the
optimization process. The learned optimizer is expressed as a function

ηt, ht ← gθ(ηt−1, ht−1, σ(ηt−1)), (1)

and is applied at every iteration t for t ∈ 0, . . . , T . The function σ(ηt−1) includes auxiliary variables
regarding the previous optimizee parameters, such as loss and gradient, denoted as σ(ηt−1) =
(l(ηt−1),∇ηl(η)|η=ηt−1). Here, ht represents a memory component, e.g., the hidden state of a
long-short-term memory (LSTM) neural network [6, 7]. In principle, this allows the network to
adjust its optimization behavior to the problem, performing meta-meta-learning [12]. For notational
simplicity, the initial memory state h0 is included in the parameter vector θ, with θt containing the
updated ht instead of h0 after t iterations of gθ. We then further simplify the notation to ηt, θt ←
g(ηt−1, θt−1), with implicit input σ(ηt−1). Unrolling the learned optimizer for T steps leads to
ηT , θT ← gT (η0, θ0), where gT denotes T recurrent applications of the learned optimizer g.
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We parameterize the learned optimizer gθ using an LSTM, which processes each element of the
optimizee parameter vector η coordinate-wise (separately for each parameter scalar ηi), as shown
in Andrychowicz et al. [2]. Starting with a unique θ0, this results in multiple variants θiT , where i
ranges from 1 to m, producing a variant for each coordinate of η. To reduce them back into a single
θT , we calculate the average as θT = 1

m

∑m
i=1 θ

i
T . This averaging operation is applied after T steps

as part of gT .

Meta-Training and Meta-Testing In the context of learned optimizers, meta-training typically
involves minimizing a meta-objective L with respect to θ:

L(θ) = El∼p(l),η0∼p(η0)

[
1

T

T∑
t=1

l(ηt)

]
, (2)

where the expectation is taken over a particular distribution of tasks p(l) and initial optimizee pa-
rameters p(η0). During meta-testing, the optimizer parameters θ remain frozen, and the optimizer
is applied to a new test task.

Loss-Guarded L2O A method related to ours is the Loss-Guarded Learned Optimizer (LGL2O)
[18]. LGL2O employs a learned optimizer during meta-testing. However, if the performance of the
learned optimizer falls short when compared to a hand-crafted optimizer such as SGD, it switches
to using SGD. Unlike our approach, LGL2O does not continue adapting the learned optimizer;
its parameters remain fixed during meta-testing. Our paper illustrates that continuing to adapt the
learned optimizer during its meta-test time allows for exploiting regularities of the target problem
that further accelerates learning on the problem. This is related to online meta-gradient approaches,
which always adapt hyper-parameters [28] or learned loss functions [29] continually throughout
meta-testing but do not employ a guard.

3. Learned Optimizers That Continually Adapt

In the following, we propose learned optimizers that continually adapt. We first meta-train a learned
optimizer with a regular meta-training phase as in Equation 2 on a task distribution. Next, we select
an optimization task different from this training distribution and run our learned optimizer in meta-
test mode. Unlike previous work, we continue to adapt the learned optimizer by introducing a
Meta Guard. This guard operates the learned optimizer as usual, but switches to adapting both the
optimizer and the optimizee if the performance drops below the gradient descent baseline.

To adapt the optimizer and optimizee, we introduce a meta-objective which is optimized during
meta-testing:

LAdapt(η, θ) = l(ηT ), (3)

with ηT , θT = gT (η, θ). (4)

Note that unlike in Equation 2, here we are only optimizing for the current meta-test task l starting
from the current optimizee parameter η instead of using a meta-training distribution. Given the
current η and θ, the fallback adaptation step then becomes

η fallback, θ fallback ← (η, θ)− λ∇(η,θ)L
Adapt(η, θ), (5)

for a specified learning rate λ.
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Simple Meta Guard (SMG) We begin by introducing a simple implementation of this Meta
Guard mechanism in Algorithm 1. The learned optimizer gθ and the fallback from Equation 5
are applied to the current optimizer θ and optimizee η. This results in the learned optimizer solution
η learned, θ learned and the adapted fallback solution η fallback, θ fallback. The new optimizers and opti-
mizees are then evaluated through two other unrolls using the meta-objectives LAdapt(η learned, θ learned)
and LAdapt(η fallback, θ fallback). Based on the solution with the lowest meta-objective, we select as
optimizer and optimizee either the learned optimizer solution η learned, θ learned or the adapted fall-
back η fallback, θ fallback.

Accelerated Meta Guard (AMG) The meta-objective in SMG uses the performance of the learned
optimizer after T steps to assign credit to the current optimizer gθ and the optimizee η. Unfortu-
nately, using information about the future can be computationally expensive, as it requires unrolling
the learned optimizer when evaluating either the fallback update or the learned optimizer itself.
However, such an evaluation is necessary to ensure that the chosen update is not worse than the
fallback update in order to preserve the convergence property of the fallback algorithm. Indeed, if
we use the current performance of the optimizee, setting LAdapt(η, θ) = l(η), the parameters of the
learned optimizer are only updated through self-modifications, e.g., by updates in the memory of
the LSTM, and only when the performance of the learned optimizer is better than that of the hand-
crafted learning algorithm. This case reverts to the standard LGL2O, where the learned optimizer
cannot be optimized at test time. On the other hand, LGL2O benefits from immediate evaluation of
the optimizee, which can save computational resources.

In order to get the best of both methods, we introduce Accelerated Meta Guard (AMG), a hybrid
method that combines the meta-objectives of LGL2O and SMG. The new meta-objective for AMG
(replacing LAdapt) is defined as:

LAMG(η, θ) = min(l(η), l(ηT )), (6)

where ηT , θT = gT (η, θ). (7)

Taking the minimum of the two objectives guarantees that the resulting update should have a
lower optimizee loss than that of LGL2O and SMG. This results in Algorithm 2. Like in SMG,
the learned optimizer gθ and the fallback from Equation 5 are applied to the current optimizer θ
and optimizee η. The learned optimizer solution η learned and θ learned is computed as in SMG.
Unlike SMG, the fallback for the new objective LAMG assumes two expressions, depending on
the minimum inside the meta-objective. When l(η) ≤ l(ηT ), then the fallback is the one of
LGL2O with η fallback ← η − λ∇ηl(η) and θ fallback ← θ remaining constant. When l(η) ≥
l(ηT ), the fallback is the same as in SMG. We compute another unroll of the learned optimizer
to evaluate the new optimizers and optimizees using the meta-objective of AMG. However, for
the fallback, we must evaluate LAMG(η fallback, θ fallback) = min(l(η fallback), l(ηT

fallback)). For-
mally, we compute ηT

fallback, θT
fallback ← gT (η fallback, θ fallback). Similarly, for the learned op-

timizer solutions LAMG(η learned, θ learned), we would need to compute ηT
learned, θT

learned ←
gT (η learned, θ learned).

To trade off computational cost versus accurate evaluation, we evaluate this quantity using an
upper bound of LAMG(η learned, θ learned). Since LAMG(η learned, θ learned) ≤ l(η learned), we use
l(η learned) as a proxy to evaluate the meta-objective after applying the learned optimizer. Note
that since we compute LAMG(η fallback, θ fallback) to evaluate the fallback, we now have access to
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l(ηT
fallback), which is an upper bound for LAMG(ηT

fallback, θT
fallback). Following the same argu-

ment as above, we can implement a guard check consisting of four elements: LAMG(η fallback, θ fallback),
LAMG(η, θ), LAMG(η learned, θ learned), and LAMG(ηT

fallback, θT
fallback), with the last two ap-

proximated using their corresponding upper bounds. Therefore, we determine the minimum of
min(LAMG(η fallback, θ fallback), LAMG(η, θ), LAMG(η learned, θ learned), LAMG(ηT

fallback, θT
fallback))

≤ min(l(η fallback), l(ηT
fallback), l(η), l(η learned)) , to decide which update to take.

Convergence Results Our algorithm AMG inherits the convergence properties of LGL2O [18].
Under the assumption that the loss function l(·) is continuous, µ-strongly convex, and L-smooth,
given a constant learning rate 0 < λ < min( 2L , 2µ), we can guarantee that the sequence of opti-
mizees ηi generated by AMG will converge to the global optimum: limi→∞ l(ηi) = minη l(η) =
minη,θ L

AMG(η, θ). The proof is straightforward and closely follows Theorem 1 in Prémont-
Schwarz et al. [18]. In particular, in their Proposition 2, when ηi+1 is not chosen by the gradient
descent update with respect to l(ηi), we still have that l(ηi+1) < l(ηi−λ∇(η)l(ηi)). In SMG, we as-
sume that the loss LAdapt(η, θ) is continuous, µ-strongly convex, and L-smooth, with respect to the
vector [η, θ]. Given a constant learning rate 0 < λ < min( 2L , 2µ), one can apply Theorem 1 from
Prémont-Schwarz et al. [18]. This implies that limi→∞ LAdapt(ηi, θi) = min(η,θ) L

Adapt(η, θ).

Algorithm 1 Simple Meta Guard
Require: Initial optimizee parameters η, learned optimizer parameters θ

while termination condition not satisfied do
η learned, θ learned ← gT (η, θ) {Apply learned optimizer}
η fallback, θ fallback ← (η, θ)− λ∇(η,θ)L

Adapt(η, θ) {Fallback adaptation}
if LAdapt(η learned, θ learned) > LAdapt(η fallback, θ fallback) then

η, θ ← η fallback, θ fallback

else
η, θ ← η learned, θ learned

end if
end while

4. Experiments

Tasks We compare our proposed SMG and AMG on various different meta-train and meta-test
settings. For each of the experiments, the optimizee is either a multilayer perceptron (MLP) [19]
with one hidden layer and 20 hidden neurons or a 3-layer CNN [5]. The target problem is either
the MNIST [4] or the FashionMNIST [27]. To test the generalization capabilities of our learned
optimizers, we test four different settings in Figure 1: (1) Seen data and optimizee, (2) seen data
and unseen optimizee, (3) unseen data seen optimizee, and (4) unseen data and unseen optimizee.
We use mini-batches for learned optimizer and fallback gradient descent updates.

Baselines For the baselines, we use (1) only SGD, (2) only the learned optimizer (L2O), and (3)
the LGL2O loss guard. Two versions of LGL2O are tested (LGL20 (w/ Update) and LGL2O (w/o
Update)). The former carries over the hidden state between iterations, and the latter reverts back to
the initial hidden state.
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Algorithm 2 Accelerated Meta Guard
Require: Initial optimizee parameters η, learned optimizer parameters θ

while termination condition not satisfied do
η learned, θ learned ← gT (η, θ) {Apply learned optimizer}
η fallback, θ fallback ← η − λ∇(η,θ)min{l(η), LAdapt(η, θ)} {Fallback adaptation}
ηT

fallback, θT
fallback ← gT (η fallback, θ fallback)

{Apply the fallback updated learned optimizer}
if l(η learned) = min{l(η), l(η learned), l(η fallback), l(ηT

fallback)} then
η, θ ← η learned, θ learned

else if l(η fallback) = min{l(η), l(η learned), l(η fallback), l(ηT
fallback)} then

η, θ ← η fallback, θ fallback

else if l(ηT fallback) = min{l(η), l(η learned), l(η fallback), l(ηT
fallback)} then

η, θ ← ηT
fallback, θT

fallback

else
η, θ ← η, θ

end if
end while

Observations From Figure 1 we observe that standard L2O initially outperforms SGD, particu-
larly in the first 200 steps, but then diverges or stops optimizing as training progresses, which is a
typical issue for L2O. The LGL2O baselines are initially efficient, but the simple loss guard seems
to be ineffective after 1000 optimization steps. In contrast, our SMG continuously improves the
loss but is usually slower than SGD. Our AMG further improves on these results, outperforming all
baselines in most cases.

5. Conclusion

Learned optimizers do not always generalize to meta-test tasks significantly different from those in
the meta-training distribution. To address this problem, our continually adapting learned optimizer
Meta Guard tests whether the self-updating learned optimizer falls below the performance of a
hand-crafted learning algorithm. If so, it explicitly adapts both the learned optimizer as well as
the inner optimizee via gradient descent. We demonstrate that this combines the efficiency benefits
of learned optimizers with the robustness of a hand-crafted ones. Our Accelerated Meta Guard
performs favorably compared to SGD, standard learned optimizers, and non-adaptive loss guards.
For future work, we plan to expand our empirical evaluation to more difficult tasks and additional
baselines.
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Figure 1: Our adapting learned optimizers (SMG & AMG) generalize to various problem
settings. We observe that the baselines L2O and two versions of LGL2O either worsen or improve
very slowly after 1000 optimization steps. SGD keeps improving, however, initially significantly
slower than the learned optimizer. SMG does not prematurely converge, but is usually slower than
SGD. AMG outperforms the baselines in most cases. Each loss is averaged over 25 seeds with 95%
confidence intervals.
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Appendix A. Experimental details

A.1. Hyper-parameters

Our fallback SGD uses two different learning rates when applied to learned optimizers and opti-
mizees. The learning rate on the optimizee is set to λη = 3, (following [18]). The learned optimizer
adaptation learning rate is set to λθ = 0.1. The learned optimizers are meta-trained using Adam
with its default parameters in PyTorch 2.0.0, e.g., learning rate equal to 0.001. The CNN architec-
ture is adopted from [18] so that the “number of channels = (8, 16, 32), kernel sizes = (5, 3, 3) and
strides = (2, 2, 2), with a fully connected final layer". We use mini-batches of size 128. T is set to
be 10 for Algorithm 1 and Algorithm 2.
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