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Abstract
Tuning hyperparameters, such as the stepsize, presents a major challenge of training machine learn-
ing models. To address this challenge, numerous adaptive optimization algorithms have been de-
veloped that achieve near-optimal complexities, even when stepsizes are independent of problem-
specific parameters, provided that the loss function is L-smooth. However, as the assumption is
relaxed to the more realistic (L0, L1)-smoothness, all existing convergence results still necessitate
tuning of the stepsize. In this study, we demonstrate that Normalized Stochastic Gradient De-
scent with Momentum (NSGD-M) can achieve a (nearly) rate-optimal complexity without prior
knowledge of any problem parameter, though this comes at the cost of introducing an exponential
term dependent on L1 in the complexity. We further establish that this term is inescapable to such
schemes. Interestingly, in deterministic settings, the exponential factor can be neutralized by em-
ploying Gradient Descent with a Backtracking Line Search. To the best of our knowledge, these
findings represent the first parameter-agnostic convergence results under the generalized smooth-
ness condition. Our empirical experiments further confirm our theoretical insights.

1. Introduction

We consider the unconstrained optimization problem

min
x∈Rd

F (x), (1)

where F : Rd → R may be non-convex and admits access to unbiased stochastic gradients. This
setting has been extensively studied due to its prevalence in modern machine learning and data-
driven optimization [3].

When the objective function F is L-smooth, i.e., F has L-Lipschitz gradients, the problem is
well-explored. For the goal of finding an ε-stationary point, lower bounds have been established
by Arjevani et al. [1], setting a limit of Ω

(
L∆1σ

2ε−4
)

for stochastic first-order methods. Here
σ denotes the variance of the stochastic gradient and ∆1 the initialization gap. Stochastic Gradi-
ent Descent (SGD) achieves this complexity with stepsizes depending on problem parameters like
L [11]. Remarkably, several algorithms such as AdaGrad-Norm, oblivious to problem parame-
ters, are recently proven to achieve a nearly rate-optimal complexity Õ

(
ε−4
)
, up to the dependency

on problem parameters and logarithmic factors [9, 25]. We call algorithms with this characteristic
parameter-agnostic, and parameter-dependent otherwise.

However, Zhang et al. [28] highlighted that not all machine learning applications satisfy L-
smoothness. Their experiments in language modeling tasks revealed that the norm of the Hessian
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is not uniformly upper-bounded as required by L-smoothness. Rather, it may increase affinely with
the gradient norm. To bridge the gap between theory and this observation, they introduced a more
general smoothness condition termed (L0, L1)-smoothness:

∥∥∇2F (x)
∥∥ ≤ L0+L1 ∥∇F (x)∥. This

condition has since been validated in various machine learning tasks [4, 27].
In light of this more realistic smoothness assumption, a substantial body of literature has emerged.

The nearly rate-optimal complexity Õ
(
ε−4
)

has been established for various algorithms, including
SGD [14], Clipped SGD [27, 28], Normalized SGD [29], AdaGrad-Norm [10, 23] and ADAM [13].
Yet, all of these algorithms require prior information of the problem, such as the values of L0 and
L1. Notably, unlike the L-smooth setting, AdaGrad-Norm may diverge without access to L1 [23],
shedding its fully parameter-agnostic nature. This dependence on problem parameters poses a sig-
nificant challenge as these parameters are usually unknown in practical applications, necessitating
resource-intensive tuning [24]. These observations culminate in the pressing question:

Is there an algorithm that converges with near-optimal complexity, without having ac-
cess to any problem parameters in the (L0, L1)-smoothness setting?

To tackle these challenges, this work makes the following contributions.
We show that, under the relaxed (L0, L1)-smoothness assumption, Normalized Stochastic Gra-

dient Descent with Momentum (NSGD-M), as introduced by [5], converges with a nearly rate-
optimal complexity of Õ

(
ε−4
)

without any prior knowledge of the problem parameters. However,
it results in an exponential dependency on L1, which vanishes when the stepsize is informed by
L1. Furthermore, we prove that this exponential dependency can also be avoided in the determin-
istic setting using Gradient Descent (GD) with Backtracking Line Search, resulting in a complexity
of O

((
L0∆1 + L2

1∆
2
1

)
ε−2
)
. To the best of our knowledge, these are the first parameter-agnostic

convergence results in the (L0, L1)-smoothness setting.
We furthermore demonstrate that the exponential term in L1 is indispensable for a class of

Normalized Momentum Methods, including NSGD-M, when the problem parameters are unknown.

1.1. Related Work

Parameter-Agnostic Algorithms. If the objective function is L-smooth, convergence results are
typically contingent upon stepsizes being less than 2/L [3]. In the deterministic context, GD with
a constant stepsize that does not satisfy this threshold may diverge [18]. However, this can be
rectified using a Backtracking Line Search, which does not rely on knowing problem parame-
ters, and achieves an optimal complexity of O(ϵ−2) [2]. Conversely, in stochastic environments,
Vaswani et al. [21] highlighted that line search techniques might not always converge. SGD with a
parameter-agnostic diminishing stepsize of 1/

√
t still reaches a near-optimal complexity of Õ(ϵ−4),

though it introduces an inescapable exponential term in L [26]. Various adaptive methods, such
as AdaGrad [7, 15], its variants AdaGrad-Norm [20] and NSGD-M [5], bypass this exponential
term, even without knowledge of the problem parameters, as recently shown in [9, 26]. These adap-
tive methods are typically considered more robust to different problem parameters [12, 24], given
their ability to tune algorithm hyperparameters dynamically during training. There is another line of
research dedicated to “parameter-free” algorithms for online convex optimization [6, 19]. However,
this research emphasizes the optimal dependence on ∥x∗ − x0∥, where x∗ is the predictor in the
regret bound.
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(L0, L1)-Smoothness. Zhang et al. [28] introduced the concept of (L0, L1)-smoothness, defined
by the following affine bound on the Hessian-norm:

∥∥∇2F (x)
∥∥ ≤ L0 + L1 ∥∇F (x)∥. The con-

vergence of both GD and SGD was only recently established in this setting [14]. However, their
stepsizes require prior knowledge of L0, L1, and also the exact gradient norm of the initial point,
which can be unavailable in stochastic settings. Clipped SGD [28], and its momentum-augmented
counterpart [27], both demand knowledge of L0 and L1 for convergence. They attain an optimal
complexity of O(ε−4) and are believed to improve over SGD in constants. Additionally, Zhang
et al. [27] also provided a convergence result for NSGD-M with constant stepsizes in the appendix.
Their analysis does however make use of a stronger noise assumption and requires access to all
parameters. Similar complexities have been established for Normalized SGD [29], signed SGD [4],
AdaGrad-Norm [10, 23], and ADAM [13, 22]. However, each of these methods requires prior
knowledge of problem-specific parameters. Notably, in stark contrast to the L-smooth setting, even
AdaGrad-Norm is not wholly parameter-agnostic. It risks divergence if the stepsize is not in-
formed by L1, despite the method generally demanding knowledge of fewer problem parameters
than other algorithms [23].

2. Preliminaries

Let us introduce basic notations, definitions and assumptions needed in the upcoming analysis.

Notation. Throughout the paper, d ∈ N≥1 denotes the dimensionality of the variable to be opti-
mized, F : Rd → R the objective and ∇f(·, ·) the gradient oracle. We use the common convention
that empty sums and products are given by their corresponding neutral element. The conic combi-
nation of x1, . . . , xn ∈ Rd will be denoted by cone (x1, . . . , xn) := {

∑n
i=1 λixi : λ1, . . . , λn ≥ 0}.

Assumption 1 (Lower Boundedness) The objective function F is lower bounded by F ∗ > −∞.

Assumption 2 (Bounded Variance) The gradient oracle is unbiased and has finite variance, i.e. there
exists σ ≥ 0 such that

E [∇f(x, ξ)] = ∇F (x) and E
[
∥∇f(x, ξ)−∇F (x)∥2

]
≤ σ2.

Instead of the traditional L-smoothness assumption, we adopt the weaker concept of (L0, L1)-
smoothness, as proposed by Zhang et al. [28]. Following the work of Zhang et al. [27], we choose
a definition that does not require the Hessian. This definition is therefore weaker than the original
(L0, L1)-smoothness assumption by Zhang et al. [28, Definition 1], but equivalent if the objective
function is twice differentiable as shown in Appendix B, Lemma 6.

Definition 1 Let L0, L1 ≥ 0 and f : Rd → R be a differentiable function for some d ∈ N≥1. Then
f is called (L0, L1)-smooth if for all x, y ∈ Rd and all c > 0 with L1 ∥x− y∥ ≤ c it holds that

∥∇f(x)−∇f(y)∥ ≤ (A0(c)L0 +A1(c)L1 ∥∇f(x)∥) ∥x− y∥ ,

where A0(c) := 1 + ec − ec−1
c and A1(c) :=

ec−1
c .

Assumption 3 ((L0, L1)-smoothness) The objective function F is (L0, L1)-smooth.
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3. Parameter-Agnostic Convergence under (L0, L1)-Smoothness

In this section, we present the first parameter-agnostic convergence results on (L0, L1)-smooth func-
tions. We show that in the stochastic setting, NSGD-M (see Algorithm 1) achieves the nearly rate-
optimal complexity of Õ

(
ε−4
)
, even without access to problem-dependent parameters. However,

this is accompanied by an undesirable exponential dependence on L1. In Section 3.1 we will then
show that the undesirable dependence is unavoidable for NSGD-M, even in the deterministic set-
ting. However, in Section 3.2 we will show that this exponential dependence can be avoided in
the deterministic setting, by using GD with Backtracking Line Search which is parameter-agnostic.
Experiments in Appendix E empirically confirm our theoretical insights.

Algorithm 1: Normalized SGD with Momentum (NSGD-M) [5]
Input: Starting point x1 ∈ Rd, stepsizes ηt > 0, moving average parameters βt ∈ [0, 1)
m0 ← 0
for t = 1, 2, . . . do

Independently sample ξt from the distribution of ξ.
gt ← ∇f(xt, ξt)
mt ← βtmt−1 + (1− βt)gt
xt+1 ← xt − ηt

∥mt∥mt

end

The convergence of NSGD-M occurs in two phases. In the initial adaptation phase, the algorithm
accumulates error due to a large stepsize. Unfortunately, this error may grow exponentially in L1.
Once the stepsize decreases below a threshold (polynomial in L1), the algorithm transitions into the
convergence phase. In this latter phase, the error decays proportionally to T−1/4 log (T ).

Theorem 2 (Convergence of NSGD-M under (L0, L1)-smoothness) Assume (Lower Bounded-
ness), ((L0, L1)-smoothness) and (Bounded Variance). Furthermore define the parameters βt :=

1− t−1/2 and ηt :=
t−

3/4

7 . Then NSGD-M with starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤

(
14 + 168eL

2
1

)
∆1 + 15σ log (T ) +

(
4 log (T ) + 6eL1 + 3eL

2
1

)
L0

T
1
4

,

where ∆1 := F (x1)− F ∗ is the initialization gap.

Since (L0, L1)-smoothness includes L-smoothness as a special case, the lower bound ofO(ε−4)
to find an ε-stationary point is still applicable here. Theorem 2 implies a near-optimal complexity in
ε up to the logarithmic factor without any prior knowledge of the problem parameters, but it comes
with the cost of an exponential term in L1. The following remark shows that this cost indeed comes
from the parameter-agnostic stepsize.

Remark 3 In Corollary 15, we show that tuning the stepsize using L1 only is sufficient to shave off
the exponential term and achieve a rate of

1

T

T∑
t=1

E [∥∇F (xt)∥] = Õ

(
∆1L1 + σ + L0

L1

T
1
4

)
.
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These results have indicated that NSGD-M is potentially more robust to hyper-parameters selec-
tion than other existing algorithms. In comparison, SGD necessitates knowledge of both L0 and L1,
as well as the exact value of ∥∇f(x1)∥ [14]. Clipped SGD requires to know L0 and L1 [27], and
even AdaGrad-Norm demands knowledge of L1 [10, 23].

3.1. Lower Bound for A Family of Normalized Momentum Methods

In this subsection we establish a parameter-agnostic lower bound for a generalized version of
NSGD-M. More specifically, for η > 0 and α ∈ (0, 1), we consider the following iteration rule:

gt ← ∇f(xt, ξt)
Choose mt ∈ cone (g1, . . . , gt)

xt+1 ← xt −
η

tα
mt

∥mt∥

(2)

We call algorithms following this procedure General Normalized Momentum Methods (see Algo-
rithm 3 in Appendix D.2). Clearly, NSGD-M from Theorem 2 belongs to this family of algorithms.

The lower bound is based on two rationales. Firstly, the relaxed smoothness assumption allows
for rapid changes in the gradient. This enables the construction of a function on which the optimality
gap increases to about F (x2) − F ∗ ≥ ∆1 + eηL1 after just one iteration. Secondly, due to the
normalization in stepsizes, we can bound the distance ∥xt − x1∥ by η

∑t−1
τ=1 τ

−α ≤ η
1−α t

1−α,
regardless of the momentum norm. This behaviour allows us to continue the construction of F in
such way, that reaching an ε-stationary point takes Ω

(
ε−1/(1−α)

)
iterations.

It is worth noting that these key ideas are also applicable to other algorithms and settings, such
as SGD with diminishing stepsizes under L-smoothness.

Theorem 4 (Lower Bound for General Normalized Momentum Methods) Consider a General
Normalized Momentum Method A with parameters η > 0 and α ∈ (0, 1). Let 0 < ε < 1/2,∆1 ≥
1/4, L0 ≥ 8/η, L1 > 0. Then there exists an (L0, L1)-smooth function F with F (x1)− F ∗ ≤ ∆1 for
which A requires at least

T ≥
(
1− α

2

) 1
1−α
(
∆1

η
+

2

ηL1

(
e

ηL1
4 − 1

)) 1
1−α

ε−
1

1−α

iterations to find an ε-stationary point in the deterministic setting. In particular, NSGD-M specified
in Theorem 2 has a lower complexity bound of

Ω

((
∆1 +

eL1/28 − 1

L1

)
ε−4

)
.

This lower bound reveals that one cannot achieve a parameter-agnostic convergence result for
NSGD-M without an exponential dependence on L1. It is important to note that the above is a
parameter-agnostic lower bound: We first fix an algorithm A before adversarially choosing a hard
function. Consequently, this finding does not contradict Remark 3. Moreover, it also suggests
that finding an ε-stationary point in a parameter-agnostic fashion is strictly harder in this relaxed
smoothness setting: in the L-smooth setting, equivalent to (L, 0)-smoothness, the exponential term
in Theorem 2 vanishes, which also aligns with previous upper bounds [5, 26].
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3.2. Deterministic Setting

Given the prior results, one might naturally wonder if there exists any algorithm that can attain
parameter-agnostic convergence without exponential dependence on L1. The subsequent theorem
confirms that this is indeed possible, at least in the deterministic setting, by Gradient Descent with
a Backtracking Line-search (see Algorithm 2).

Theorem 5 Assume (Lower Boundedness) and ((L0, L1)-smoothness) in the deterministic set-
ting. Then GD with Backtracking Line Search (see Algorithm 2) with parameters β, γ ∈ (0, 1) and
starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

∥∇F (xt)∥2 ≤
4L0∆1 + 14L2

1∆
2
1

βγ(1− γ)T
= O

(
L0∆1 + L2

1∆
2
1

T

)
,

where ∆1 := F (x1)− F ∗.

This implies a complexity of O
((
L0∆1 + L2

1∆
2
1

)
ε−2
)
, which is optimal in the dependence of

ε and L0 in the deterministic setting. The proof rests on the observation that GD with Backtracking
Line Search is a descent algorithm and hence both the function value and gradient norm remain
upper bounded along the trajectory. Consequently, the algorithm behaves as though it is addressing
(L0 + L1C)-smooth functions, where C represents the gradient norm’s upper bound. We have not
extended our considerations to the stochastic setting for this algorithm, as a stochastic line search
could potentially fail even under the stricter L-smoothness assumption [21].

4. Conclusion and Future Work

In this work, we conduct a theoretical investigation into parameter-agnostic algorithms under the
(L0, L1)-smoothness assumption. In the stochastic setting, we show that without requiring any
knowledge about problem parameters, Normalized Stochastic Gradient Descent with Momentum
(NSGD-M) converges at an order-optimal rate, albeit with an exponential term in L1. In the deter-
ministic setting, we show the exponential dependency can be circumvented using GD with Back-
tracking Line Search while being parameter-agnostic.

This work motivates several questions for future research. The most pressing one is whether
there exists a parameter-agnostic algorithm in the stochastic setting without an exponential term. A
further interesting topic is the derivation of lower bounds for first-order parameter-agnostic methods.
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Appendix A. Organisation of the Appendix

The appendix is organised as follows.

Appendix B contains basic properties of (L0, L1)-smooth functions.
Appendix C lists the technical Lemmas needed for the main result.
Appendix D contains the proofs of Section 3.
Appendix E contains experiments on language modelling tasks.

Appendix B. Basic Properties of (L0, L1)-Smoothness

In this section we will prove basic properties of (L0, L1)-Smoothness. We will start with the proof
of the relation to the original definition by [28].

Lemma 6 Let F : Rd → R be twice continuously differentiable and L0, L1 ≥ 0. Then F satisfies∥∥∇2F (x)
∥∥ ≤ L0 + L1 ∥∇F (x)∥ if and only if F is (L0, L1)-smooth according to Definition 1.

Proof ”⇒”: This implication was already shown by [27, Corollary A.4].
”⇐”: We slightly adapt the proof of [10, Proposition 1]. Assume F is (L0, L1)-smooth accord-

ing to Definition 1. Let x, s ∈ Rd with ∥s∥ = 1. For α > 0 our assumption gives

∥∇F (x+ αs)−∇F (x)∥ ≤ (A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥)α

and hence ∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥ ≤ A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥ .

Using the continuity of norms and the assumption that F is twice continously differentiable, we
hence get

L0 + L1 ∥∇F (x)∥ = lim
α→0

A0(αL1)L0 +A1(αL1)L1 ∥∇F (x)∥

≥ lim
α→0

∥∥∥∥∇F (x+ αs)−∇F (x)

α

∥∥∥∥
=

∥∥∥∥ limα→0

∇F (x+ αs)−∇F (x)

α

∥∥∥∥
=
∥∥∇2F (x)s

∥∥ .
Taking the sup over all such s yields the claim.

The following Lemma serves as the (L0, L1)-smooth counterpart to the well-known quadratic
upper bound on the function value change in the L-smooth setting.

Lemma 7 (c.f. [27, Lemma A.3]) Let d ∈ N≥1 and L0, L1 ≥ 0. Assume that f : Rd → R is
(L0, L1)-smooth. Then all x, y ∈ Rd satisfy

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
1

2
(B0(L1 ∥x− y∥)L0 +B1(L1 ∥x− y∥)L1 ∥∇f(x)∥)∥x− y∥2,

10
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where

B0(c) = 1 + 2
ec − 1

c
− 4

ec − 1− c

c2
,

B1(c) = 2
ec − 1− c

c2

tend to 1 as c tends towards 0.
Proof This proof closely follows the arguments from [27]. We include the proof for completeness.
Let x, y ∈ Rd and calculate

f(y)− f(x)−∇f(x)⊤(y − x) =

∫ 1

0
∇f(x+ t(y − x))⊤(y − x)dt−∇f(x)⊤(y − x)

≤
∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥ ∥x− y∥ dt

≤ ∥x− y∥2
(
L0

∫ 1

0
tA0(tc)dt+ L1 ∥∇f(x)∥

∫ 1

0
tA1(tc)dt

)
where c := L1 ∥x− y∥. We now calculate∫ 1

0
tA0(tc) =

1

2
+

ec − 1

c
− 2

ec − 1

c2
=:

1

2
B0(c)

and ∫ 1

0
tA1(tc)dt =

ec − 1− c

c2
=:

1

2
B1(c).

This shows the claim.

Analogous to the L-smooth setting, we can also derive an upper bound for the gradient norm
based on the suboptimality gap.

Lemma 8 (Gradient Bound, c.f. [27, Lemma A.5]) Let L0, L1 > 0 and assume that f : Rd → R
is (L0, L1)-smooth. Further assume that f is lower bounded by f∗. Then all x ∈ Rd satisfy

min

{
∥∇f(x)∥

L1
,
∥∇f(x)∥2

L0

}
≤ 8(f(x)− f∗).

Proof This proof is again based on [27]. We include it since we require parts of the proof later. Let
x ∈ Rd. Firstly note that, for A1 from Definition 1, the equation

c =
L1 ∥∇F (x)∥

A1(c)L0 + L1A1(c) ∥∇F (x)∥

has a solution c ∈ (0, 1). Now we set λ := 1
2A1(c)(L0+L1∥∇F (x)∥) and y := x − λ∇F (x). Then

Lemma 7 yields

F ∗ ≤ F (y) ≤ F (x)− λ∥∇F (x)∥2 +A1(c)(L0 + L1 ∥∇F (x)∥)λ2∥∇F (x)∥2

= F (x)− λ

2
∥∇F (x)∥2.

11
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We now differentiate between the two cases ∥∇F (x)∥ ≤ L0
L1

and ∥∇F (x)∥ > L0
L1

. Therefore
calculate

2(F (x)− F ∗) ≥ ∥∇F (x)∥2

A1(c)(L0 + L1 ∥∇F (x)∥)
≥

{
∥∇F (x)∥2

4L0
, if ∥∇F (x)∥ ≤ L0

L1
∥∇F (x)∥

4L1
, otherwise.

This shows the claim.

12
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Appendix C. Technical Lemmas

This section presents crucial technical lemmas and their proofs. These results may be of interest on
their own as they can potentially be applied in the analysis of other momentum-based algorithms.

Lemma 9 (Technical Lemma) Let q ∈ (0, 1), p ≥ 0 and t > 0. Further let a, b ∈ N≥2 with
a ≤ b. Then the following statements are true.

i) We have

b∏
t=a

(
1− t−q

)
≤ exp

(
1

1− q

(
a1−q − b1−q

))
.

ii) If p ≥ q, then

b∑
t=a

t−p
t∏

τ=a

(
1− τ−q

)
≤

(a− 1)q−p exp
(
a1−q−(a−1)1−q

1−q

)
− bq−p exp

(
a1−q−b1−q

1−q

)
1 + (p− q)bq−1

,

and in particular,

b∑
t=a

t−p
t∏

τ=a

(
1− τ−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
= O

(
aq−p

)
.

iii) (c.f. [8, Lemma 15]1) If a ≥ p
1

1−q and a ≥
(p−q

2

) 1
1−q , then

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤ 2 exp

(
1

1− q

)
(b+ 1)q−p.

Note that these requirements are always fulfilled for p ≤ 1.

Proof i) The first claim follows from the calculation

b∏
t=a

(
1− t−q

)
≤ exp

(
−

b∑
τ=a

t−q

)
≤ exp

(
−
∫ b+1

a
t−qdt

)
= exp

(
1

1− q

(
a1−q − (b+ 1)1−q

))
,

(3)

where we used 1 − x ≤ e−x in the first, and the monotonicity of t−q in the second inequality.
Weakening the inequality by replacing (b+ 1) with b finishes the proof.
ii) For the second inequality we use i) to derive

b∑
t=a

t−p
t∏

τ=a

(
1− t−q

)
≤ exp

(
a1−q

1− q

) b∑
t=a

t−p exp

(
− t1−q

1− q

)
.

1. Note that the proof in the paper has a typo in the last line of page 42. Instead of (1− q) the authors meant (1− q)−1.
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Using the monotonicity of t−p exp
(
−t1−q

)
we obtain

b∑
t=a

t−p exp

(
− t1−q

1− q

)
≤
∫ b

a−1
t−p exp

(
− t1−q

1− q

)
dt =

∫ b

a−1
tq−pt−q exp

(
− t1−q

1− q

)
dt.

Partial integration now yields∫ b

a−1
tq−pt−q exp

(
− t1−q

1− q

)
dt

=

[
−tq−p exp

(
− t1−q

1− q

)]t=b

t=a−1

− (p− q)

∫ b

a−1
tq−p−1 exp

(
− t1−q

1− q

)
dt

= (a− 1)q−p exp

(
−(a− 1)1−q

1− q

)
− bq−p exp

(
− b1−q

1− q

)
+ (q − p)

∫ b

a−1
tq−p−1 exp

(
− t1−q

1− q

)
dt.

Finally, we use that tq−p−1 exp
(
− t1−q

1−q

)
is monotonically decreasing and p ≥ q to derive

(q − p)

∫ b

a−1
tq−p−1 exp

(
− t1−q

1− q

)
dt ≤ (q − p)bq−1

∫ b

a−1
t−p exp

(
− t1−q

1− q

)
dt.

Noting that this is the integral we started with and rearranging yields the claim.
iii) The proof of the last claim uses the same arguments as in [8]. First we use i) to obtain

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤

b∑
t=a

t−p exp

(
−

b∑
τ=t+1

τ−q

)
= exp

(
−

b∑
τ=1

τ−q

)
b∑

t=a

t−p exp

(
t∑

τ=1

τ−q

)
.

Using the monotonicity of τ−q, we get

exp

(
−

b∑
τ=1

τ−q

)
≤ exp

(
−
∫ b+1

1
τ−qdτ

)
= exp

(
1− (b+ 1)1−q

1− q

)
and

exp

(
t∑

τ=1

τ−q

)
≤ exp

(∫ t

0
τ−qdτ

)
= exp

(
t1−q

1− q

)
.

We now proceed to bound

b∑
t=a

t−p exp

(
t∑

τ=1

τ−q

)
≤

b∑
t=a

t−p exp

(
t1−q

1− q

)
.

Therefore, note that f(t) := t−p exp
(
t1−q

1−q

)
is monotonically increasing for t ≥ a by our assump-

tion on a. This implies

b∑
t=a

t−p exp

(
t1−q

1− q

)
≤
∫ b+1

a
t−p exp

(
t1−q

1− q

)
dt =: I.
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Integration by party now yields

I =

∫ b+1

a
tq−pt−q exp

(
t1−q

1− q

)
dt

=

[
tq−p exp

(
t1−q

1− q

)]t=b+1

t=a

− (q − p)

∫ b+1

a
tq−p−1 exp

(
t1−q

1− q

)
dt

≤ (b+ 1)q−p exp

(
(b+ 1)1−q

1− q

)
− aq−p exp

(
a1−q

1− q

)
+ (p− q)aq−1I,

where we used p ≥ q in the last inequality. By our second assumption on a we now get that
(p− q)aq−1 ≤ 1/2 and hence

I ≤ 2(b+ 1)q−p exp

(
(b+ 1)1−q

1− q

)
− 2aq−p exp

(
a1−q

1− q

)
.

Putting together the pieces yields

b∑
t=a

t−p
b∏

τ=t+1

(
1− τ−q

)
≤ 2 exp

(
1− (b+ 1)1−q

1− q

)(
(b+ 1)q−p exp

(
(b+ 1)1−q

1− q

)
− aq−p exp

(
a1−q

1− q

))

= 2 exp

(
1

1− q

)
(b+ 1)q−p − aq−p exp

(
1− (b+ 1)1−q + a1−q

1− q

)
,

thus proving the last claim.

The following lemma applies the specific values of p and q to Theorem 9.

Lemma 10 (Technical Lemma) Let η > 0 and for t ∈ N≥1 we set

βt := 1− t−
1/2,

ηt := ηt−
3/4.

Then, for αt := 1− βt, we have

a) For all T ∈ N≥1 the following inequalities hold:

i)
∑T

t=1 ηt
∏t

τ=2 βτ ≤
7
2η;

ii)
∑T

t=1 ηt

√∑t
τ=1 α

2
τ

∏t
κ=τ+1 β

2
κ ≤ η

(
7
2 +
√
2e2 log (T )

)
.

b) Let T ∈ N≥1 and define Ct := 1+2 eL1ηt−1
L1ηt

−4 eL1ηt−1−L1ηt
(L1ηt)

2 , Et := eL1ηt . Then the following
inequalities hold:

i)
∑T

t=1 η
2
tCt ≤ 6η2 e

L1η−1
L1η

;

ii)
∑T

t=1 ηt
∑t

τ=2 ητ−1Eτ−1
∏t

κ=τ βκ ≤
7
2η

2
(
3eηL1 + log (T )

)
.

15
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c) For t ∈ N≥1 we define Et := eL1ηt and δt := 4η(t− 1)
1
4 − 3η. Then for all b ∈ N≥2, the

following inequalities hold:

i)
∑b

t=2 L1ηtEtt
− 1

4 δte
L1δt ≤ 1

2η
2L1e

2ηL1 + 4ηe−
5
2
ηL1

(
e4ηL1b

1
4 − e4ηL1

)
;

ii)
∑b

t=1 L1ηtEtt
− 1

4 eL1δt ≤ 3
2ηL1e

5
3
ηL1 + e−

5
2
ηL1

(
e4ηL1b

1
4 − e4ηL1

)
;

iii) If additionally ηL1 ≥ 1
2 , we have∑b

t=1 L1ηtEtt
− 1

4 eL1δt ≤ 3
2ηL1e

5
3
ηL1 + e−

5
2
ηL1

(
2b−

1
4 e4ηL1b

1
4 − e4ηL1

)
.

Proof Let T ∈ N≥1 and denote p := 3/4, q := 1/2, αt := 1− βt for simplicity.

a) i) The inequality follows from

T∑
t=1

ηt

t∏
τ=2

βτ = η +
T∑
t=2

ηt

t∏
τ=2

βτ ≤ η + η exp
(
2
√
2− 2

)
≤ 7

2
η,

where we used Theorem 9 ii) in the first inequality.

a) ii) We start by regrouping

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

t∏
κ=τ+1

β2
κ <

T∑
t=1

ηt

 t∏
κ=2

(
1− κ−q

)
+

√√√√ t∑
τ=2

τ−2q

t∏
κ=τ+1

(1− κ−q)

.

Applying Theorem 9 i), iii) and a) i) now yields the statement:

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

t∏
κ=τ+1

β2
κ

i),9

≤ 7

2
η +

T∑
t=2

ηt

√
2e2(t+ 1)−q ≤ η

(
7

2
+
√
2e2 log (T )

)
.

Note that the first inequality is rather loose, a more precise analysis might yield a better result.
The above result does however suffice for our use-case.

b) i) First note that

Ct ≤ 2
eL1ηt − 1

L1ηt
(4)

and hence

T∑
t=1

η2tCt ≤
2

L1

T∑
t=1

ηt
(
eL1ηt − 1

)
. (5)

Now we calculate

T∑
t=1

ηt
(
eL1ηt − 1

)
≤ η2

eηL1 − 1

η
+

∫ T

1
ηt
(
eL1ηt − 1

)
dt = η2

(
eηL1 − 1

η
+

1

η

∫ T

1
t−p
(
eL1ηt − 1

))
(6)
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and further∫ T

1
t−p
(
eL1ηt − 1

)
=

∫ T

1
t−p

∞∑
k=1

(ηL1t
−p)

k

k!
dt =

∞∑
k=1

∫ T

1

(ηL1)
k

k!
t−p(k+1)dt, (7)

where we used that the exponential series converges locally uniformly in the second equality.
Finally we calculate for k ≥ 2∫ T

1
t−p(k+1)dt =

4

−3k + 1

(
T−p(k+1)+1 − 1

)
≤ 4

3k − 1
≤ 4

k + 1
. (8)

Combining (7) and (8) now yields∫ T

1
t−p
(
eL1ηt − 1

)
≤ 4

∞∑
k=1

(ηL1)
k

(k + 1)!
= 4

eηL1 − 1− ηL1

ηL1
(9)

and hence

T∑
t=1

η2tCt

(5)
≤ 2

L1

T∑
t=1

ηt
(
eL1ηt − 1

)
(6)
≤ η2

(
2
eηL1 − 1

ηL1
+

2

ηL1

∫ T

1
t−p
(
eL1ηt − 1

)
dt

)
(9)
≤ η2

(
2
eηL1 − 1

ηL1
+ 8

eηL1 − 1− ηL1

(ηL1)
2

)
.

The claim now follows by noting that for all x ≥ 0 the inequality 2 ex−1−x
x2 ≤ ex−1

x is satisfied.

b) ii) Firstly, a) i) yields

T∑
t=1

t∑
τ=2

ηtητ−1

(
t∏

κ=τ

βκ

)
Eτ−1 =

T∑
τ=2

ητ−1Eτ−1

T∑
t=τ

ηt

t∏
κ=τ

βκ

a)i)

≤ 7

2
η

T∑
τ=2

ητ−1Eτ−1(τ − 1)q−p

≤ 7

2
η2

T∑
τ=1

τ−1Eτ .

(10)

To upper bound
∑T

t=1 t
−1Et = eηL1 +

∑T
t=2 t

−1Et we again use the locally uniform con-
vergence of the exponential series to get
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T∑
t=2

t−1Et ≤
∫ T

1
t−1

∞∑
k=0

(L1ηt)
k

k!
dt

= log (T ) +
∞∑
k=1

(ηL1)
k

k!

∫ T

1
t−pk−1dt

= log (T ) +
∞∑
k=1

(ηL1)
k

k!

1− T−pk

pk

≤ log (T ) +
4

3

(
eηL1 − 1

)
.

Combining these results yields

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1

t∏
κ=τ

βκ ≤
7

2
η2
(
eηL1 + log (T ) +

4

3

(
eηL1 − 1

))
≤ 7

2
η2
(
log (T ) + 3eηL1

)
and hence proves the claim.

c) i) We start off by calculating

b∑
t=2

L1ηtEtt
− 1

4 δte
L1δt ≤ L1η2E22

− 1
4 ηeηL1 +

b∑
t=3

L1ηtEtt
− 1

4 δte
L1δt

≤ 1

2
η2L1e

2ηL1 + 4η
b∑

t=3

L1ηtEte
L1δt

and further

b∑
t=3

L1ηtEte
L1δt ≤

b∑
t=3

L1ηt exp
(
L1

(
4η(t− 1)

1
4 − 3η + ηt

))
≤ e−

5
2
ηL1

b∑
t=3

L1ηt−1e
4ηL1(t−1)

1
4

≤ e−
5
2
ηL1

∫ b+1

2
ηL1(t− 1)−pe4ηL1(t−1)1−p

dt

= e−
5
2
ηL1

(
e4ηL1b

1
4 − e4ηL1

)
.

(11)

Here we used that g(t) := L1ηt−1e
4ηL1(t−1)

1
4 is non-negative and monotonically decreasing

before turning monotonically increasing in the third inequality. Noting that (11) also holds
for b = 2 yields the claim.
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ii) We have

b∑
t=1

L1ηtEtt
− 1

4 eL1δt = ηL1E1 +
1

2
ηL1E2e

ηL1 +
b∑

t=3

L1ηtEtt
− 1

4 eL1δt

≤ ηL1e
ηL1 +

1

2
ηL1e

(
1+2−

3
4

)
ηL1 +

b∑
t=3

L1ηtEte
L1δt

(12)

and using (11) yields

b∑
t=1

L1ηtEtt
− 1

4 eL1δt ≤ 3

2
ηL1e

5
3
ηL1 + e−

5
2
ηL1

(
e4ηL1b

1
4 − e4ηL1

)
.

iii) We first again calculate

b∑
t=3

L1ηtEtt
− 1

4 eL1δt ≤ e−
5
2
ηL1

∫ b+1

2
t−

1
4L1η(t− 1)−

3
4 e4ηL1(t−1)

1
4 dt

before, similar to the proof of Theorem 9 iii), using partial integration to derive

I :=

∫ b+1

2
t−

1
4L1η(t− 1)−

3
4 e4ηL1(t−1)

1
4 dt

=

[
t−

1
4 e4ηL1(b−1)

1
4

]t=b+1

t=2

+
1

4

∫ b+1

2
t−

5
4 e4ηL1(t−1)

1
4 dt

≤ b−
1
4 e4ηL1b

1
4 − 1

2
e4ηL1 +

1

2
1
4 4ηL1

∫ b+1

2
ηL1(t− 1)−1e4ηL1(t−1)

1
4

≤ b−
1
4 e4ηL1b

1
4 − 1

2
e4ηL1 +

1

4ηL1
I.

By our assumption we have 1
4ηL1

≤ 1
2 and hence

I ≤ 2b−
1
4 e4ηL1b

1
4 − e4ηL1 .

Finally (12) yields the claim.
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Appendix D. Missing Proofs

This section contains the missing proofs and mentioned results from Section 3.

D.1. Upper Bounds

D.1.1. PARAMETER-AGNOSTIC

We start with the proof of Theorem 2, which has the same structure as in the L-smooth setting [5]:
We first derive a Descent Lemma, second bound the momentum deviation ∥mt −∇F (xt)∥ and third
combine these two to show the result. The last step is however more intricate, as large stepsizes in
the beginning can lead to an exponential increase in the gradient norm. The main intuitions behind
the third step are the following:

Due to potentially too large stepsizes, we cannot use the descent lemma to control the expected
gradient norm in the beginning. Only after reaching a threshold t0 ∝ (ηL1)

4 the gradient norms
can be controlled in this fashion. Before this threshold, in the adaption phase, we instead use
(L0, L1)-smoothness to control the gradient norms based on ∥∇F (x1)∥. After this threshold, in the
convergence phase, Lemma 10 essentially establishes that the diminishing step-size rule ηt = t−p

exhibits the same asymptotically behaviour as if the stepsizes were chosen constantly as ηt ≡ T−p,
where T denotes the iteration horizon. This aligns with the behaviour of NSGD-M in the L-smooth
setting [25]. In particular, this implies that p = 3/4 is the only possible choice to achieve the optimal
complexity [5, 27].

Unless stated otherwise, the notations {ξ1, ξ2, . . .}, {g1, g2, . . .}, {m1,m2, . . .} and {x1, x2, . . .}
correspond to the iterations generated by NSGD-M throughout this section. We denote the natural
filtration of ξ1, . . . , ξt with respect to the underlying probability space by Ft := σ(ξ1, ξ2, . . . , ξt).

Lemma 11 (Descent Lemma) Assume ((L0, L1)-smoothness) and let t ∈ N≥2. Then

F (xt+1)− F (xt) ≤ −ηt ∥∇F (xt)∥+ 2ηt ∥∇F (xt)−mt∥+
η2t
2
(L0Ct + L1Dt ∥∇F (xt)∥),

where Ct := B0(L1ηt) and Dt := B1(L1ηt), where B0, B1 are as defined in Theorem 7. If we
further assume (Lower Boundedness) we also get

T∑
t=1

(
ηt −

L1η
2
tDt

2

)
∥∇F (xt)∥ ≤ ∆1 +

L0

2

T∑
t=1

η2tCt + 2

T∑
t=1

ηt ∥∇F (xt)−mt∥ ,

where ∆1 := F (x1)− F ∗.

Proof The proof follows the arguments by Zhao et al. [29]. Using Lemma 7 we get

F (xt+1)− F (xt) ≤ ∇F (xt)
⊤(xt+1 − xt) +

η2t
2
(L0Ct + L1Dt ∥∇F (xt)∥)

= − ηt
∥mt∥

∇F (x)⊤mt +
η2t
2
(L0Ct + L1Dt ∥∇F (xt)∥)

= − ηt
∥mt∥

(∇F (xt)−mt)
⊤mt − ηt ∥mt∥+

η2t
2
(L0Ct + L1Dt ∥∇F (xt)∥).
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Utilizing Cauchy-Schwarz and ηt ∥∇F (xt)∥ ≤ ηt ∥∇F (xt)−mt∥+ ηt ∥mt∥ now yields

F (xt+1)− F (xt) ≤ −ηt ∥∇F (xt)∥+ 2ηt ∥∇F (xt)−mt∥+
η2t
2
(L0Ct + L1Dt ∥∇F (xt)∥)

and hence the first claim. For the second statement we sum up to get

T∑
t=1

(
ηt −

L1η
2
tDt

2

)
∥∇F (x)∥ ≤ ∆1 +

1

2

T∑
t=1

L0η
2
tCt + 2

T∑
t=1

ηt ∥∇F (xt)−mt∥ .

Lemma 12 (General Momentum Deviation Bound) Assume ((L0, L1)-smoothness), (Bounded Vari-
ance) and let t ∈ N≥1. Suppose β1 = 0. Then we have

E [∥mt −∇F (xt)∥] ≤ σ

√√√√ t∑
τ=1

β2
(τ+1):t(1− βτ )

2 + L0

t∑
τ=2

ητ−1Eτ−1βτ :t

+ L1

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ−1)∥] ,

where βa:b denotes
∏b

t=a βt and Et := eL1ηt .

Proof This proof is motivated by Cutkosky and Mehta [5], and similar arguments are carried by
Zhang et al. [27] and Yang et al. [25]. To simplify notation we first define

µt := mt −∇F (xt),

γt := gt −∇F (xt),

αt := 1− βt,

βa:b :=
b∏

t=a

βt.

Now let i, j ∈ N, i < j and calculate

E
[
γ⊤j γi

]
= E

[
E
[
γ⊤j γi

∣∣∣Fj−1

]]
= E

[
E [γj | Fj−1]

⊤ γi

]
= 0,

(13)

where we used that E [γj | Fj−1] = 0 in the last equality. Next we define St := ∇F (xt−1)−∇F (xt)
and calculate

mt = βtmt−1 + (1− βt)gt

= βt(∇F (xt−1) + µt−1) + (1− βt)(γt +∇F (xt))

= ∇F (xt) + (1− βt)γt + βtSt + βtµt−1.
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This yields

µt = β2:tµ1 +
t∑

τ=2

β(τ+1):tατγτ +
t∑

τ=2

βτ :tSτ =
t∑

τ=1

β(τ+1):tατγτ +
t∑

τ=2

βτ :tSτ ,

where we used β1 = 0 in the second inequality. Therefore

E [∥µt∥] ≤ E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατγτ

∥∥∥∥∥
]
+

t∑
τ=2

βτ :tE [∥Sτ∥] .

To further concretize this upper bound, (13) firstly yields

E

[∥∥∥∥∥
t∑

τ=1

β(τ+1):tατγτ

∥∥∥∥∥
]
≤

√√√√ t∑
τ=1

β2
(τ+1):tα

2
tσ

2.

Secondly, ((L0, L1)-smoothness) implies

∥St∥ ≤ ηt−1(A0(L1ηt−1)L0 +A1(L1ηt−1)L1 ∥∇F (xt−1)∥)
≤ ηt−1(Et−1L0 + Et−1L1 ∥∇F (xt−1)∥)

and hence

t∑
τ=2

βτ :tE [∥Sτ∥] ≤ L0

t∑
τ=2

ητ−1Eτ−1βτ :t + L1

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ−1)∥] .

Putting these results together we get the claim.

Now we are ready for the main result.

Theorem 13 (NSGD-M for (L0, L1)-smoothness) Assume (Lower Boundedness), ((L0, L1)-smoothness) and
(Bounded Variance). Let η > 0 and define the parameters

βt := 1− t−
1/2

ηt := ηt−
3/4.

Then NSGD-M with starting point x1 ∈ Rd satisfies

T∑
t=1

ηt
2
E [∥∇F (xt)∥] ≤ ∆1 + ησ

(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
21eηL1 + 7 log (T )

)
+ 21η2L0e

48(ηL1)
2

+ 6ηe48(ηL1)
2

∥∇F (x1)∥ ,

where ∆1 := F (x1) − F ∗. Furthermore, if L1 ≥ 1/2η, the statement also holds when replacing

6ηe48(ηL1)
2

∥∇F (x1)∥ with e48(ηL1)
2

L1
∥∇F (x1)∥.
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The main workhorse behind the following proof is Lemma 10. It intuitively states that the
quantities which emerge due to the nonconstant parameters behave (nearly) asymptotically the same
as constant stepsizes would.
Proof To simplify notation we define

βa:b :=
b∏

τ=a

βτ .

We start the proof by combining Lemma 11 and Lemma 12 to obtain

T∑
t=1

ηtE [∥∇F (xt)∥]
11
≤ ∆1 +

L0

2

T∑
t=1

η2tCt +
L1

2

T∑
t=1

η2tDtE [∥∇F (xt)∥] + 2

T∑
t=1

ηtE [∥∇F (xt)−mt∥]

12
≤ ∆1 +

L0

2

T∑
t=1

η2tCt +
L1

2

T∑
t=1

η2tDtE [∥∇F (xt)∥] + 2σ

T∑
t=1

ηt

√√√√ t∑
τ=1

α2
τ

(
β(τ+1):t

)2
+ 2L0

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1βτ :t + 2L1

T∑
t=1

ηt

t∑
τ=2

ητ−1Eτ−1βτ :tE [∥∇F (xτ−1)∥] .

Next, we use Lemma 10 a) and b) to bound all terms that are independent of the iterates xt. This
leaves us with
T∑
t=1

ηtE [∥∇F (xt)∥] ≤∆1 + ησ
(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
21eηL1 + 7 log (T )

)
+

L1

2

T∑
t=1

η2tDtE [∥∇F (xt)∥] + 2L1

T∑
τ=2

(
T∑

t=τ

ηtβτ :t

)
ητ−1Eτ−1E [∥∇F (xτ−1)∥]︸ ︷︷ ︸

=:(A)

,

(14)

where we rearranged the sums of the last term. We then focus on upper bounding (A). Therefore
we use Lemma 9 ii) which yields

(A) ≤
T∑
t=1

ηtEt

(
L1

2
ηt + 2e2(

√
2−1)L1ηt

− 1
4

)
E [∥∇F (xt)∥] ≤

T∑
t=1

ηtEt

(
ML1ηt

−1/4
)
E [∥∇F (xt)∥] ,

where M := 1
2 +2 exp

(
2
√
2− 2

)
≤ 5.1. In a setting with access to problem parameters, we could

now set η := 1
12L1

and hence guarantee that MηL1t
− 1

4Et ≤ 1
2 , which would complete the proof.

In the parameter agnostic setting we have to wait until the stepsize decreased below this threshold.
We therefore define the threshold t0 := ⌈(12ηL1)

4⌉ after which we again have MηL1t
− 1

4Et ≤ 1
2 .

This is due to Et ≤ Et0 ≤ 12
2M for t ≥ t0. We are therefore left with the task of controlling the sum

in (A) up to t0, i.e. (B) in

(A) ≤
t0−1∑
t=1

ηt

(
ML1ηt

−1/4Et

)
E [∥∇F (xt)∥]︸ ︷︷ ︸

(B)

+

T∑
t=t0

ηt
2
E [∥∇F (xt)∥] . (15)
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We start by upper bounding ∥∇F (xt)∥ using ((L0, L1)-smoothness). For δt := ∥xt − x1∥ ≤ 4ηt
1
4−

3η our smoothness assumption implies

∥∇F (xt)∥ ≤ ∥∇F (x1)∥+ ∥∇F (xt)−∇F (x1)∥ ≤ eL1δtL0δt + eL1δt ∥∇F (x1)∥

and plugging into (B) yields

(B) ≤

(
ηM

t0−1∑
t=2

L1ηtt
− 1

4 δtEte
L1δt

)
︸ ︷︷ ︸

=:(B1)

L0 +

(
ηM

t0−1∑
t=1

L1ηt
−1Ete

L1δt

)
︸ ︷︷ ︸

=:(B2)

∥∇F (x1)∥ .

Now Lemma 10 c) i) allows us to upper bound (B1) via

(B1) ≤ η2ML0

(
ηL1

2
e2ηL1 + 4e−

5
2
ηL1

(
e4ηL1(t0−1)

1
4 − e4ηL1

))
≤ η2ML0

((
ηL1

2
− 4

)
e2ηL1 + 4e4ηL1(t0−1)

1
4

)
≤ η2ML0

((
ηL1

2
− 4

)
e2ηL1 + 4e48(ηL1)

2
)
,

where we used the definition of t0 in the last inequality. Next we use that, for all x ≥ 0, we have
(x/2− 4)e4x + e48x

2 ≤ 21
4M e48x

2
and hence

(B1) ≤ 21η2L0e
48(ηL1)

2

.

Using Lemma 10 c) ii) and the same technique as for (B1) we obtain

(B2) ≤ ηM

(
3

2
ηL1e

5/3ηL1 + e−
5/2ηL1

(
e4ηL1(t0−1)

1
4 − e4ηL1

))
≤ ηM

((
3

2
ηL1 − 1

)
e2ηL1 + e48(ηL1)

2
)

≤ 6ηe48(ηL1)
2

<
3

L1
e48(ηL1)

2

.

We plug these results into (15) to obtain

(A) ≤ 21η2L0e
48(ηL1)

2

L0 + 6ηe48(ηL1)
2

∥∇F (x1)∥+
T∑

t=t0

ηt
2
E [∥∇F (xt)∥]

and combing with (14) yields

1

2

T∑
t=1

ηtE [∥∇F (xt)∥] ≤∆1 + ησ
(
7 + 2

√
2e2 log (T )

)
+ η2L0

(
45

eηL1 − 1

ηL1
+ 14 log (T )

)
+ 21η2L0e

48(ηL1)
2

L0 + 6ηe48(ηL1)
2

∥∇F (x1)∥ .

This finishes the proof of the first statement.
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For the second statement assume ηL1 ≥ 1/2. In this case we apply Lemma 10 c) iii) and get

(B2) ≤ ηM

(
3

2
ηL1e

5/3ηL1 + e−
5/2ηL1

(
2(t0 − 1)−

1/4e4ηL1(t0−1)
1/4

− e4ηL1

))
≤ ηM

((
3

2
ηL1 − 1

)
e2ηL1 +

1

6ηL1
e48(ηL1)

2
)

≤ 1

L1
e48(ηL1)

2

Proceeding as before yields the second claim.

By plugging in η = 1/7 we now get the formal result of Theorem 2.

Corollary 14 Assume (Lower Boundedness), ((L0, L1)-smoothness), (Bounded Variance) and T ≥
3. Furthermore define the parameters βt := 1− t−1/2 and ηt :=

t−
3/4

7 . Then NSGD-M with starting
point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤

(
14 + 96L1e

L2
1

)
∆1 +

(
6eL1/7 + 2 log (T ) + 6eL

2
1

)
L0

T
1
4

+
12e log (T )σ + 12eL

2
1 min

{
L0
L1

,
√
8L0∆1

}
T

1
4

,

where ∆1 := F (x1) − F ∗ is the initialization gap. Furthermore, if L1 ≥ 7/2, we get the following
improved dependence on L1:

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
126eL

2
1∆1 + 12e log (T )σ +

(
8eL

2
1 + 2 log (T )

)
L0

T
1
4

.

Proof Plugging the choice of η = 1
7 into Theorem 13 and using that log (T ) ≥ 1 yields

η

2

T∑
t=1

t−
3/4E [∥∇F (xt)∥] ≤∆1 + 6eη log (T )σ + 6ηeL

2
1 ∥∇F (x1)∥+ ηL0

(
3e

L1/7 + log (T ) + 3eL
2
1

)
.

Next, from the proof of Lemma 8, we get that

∥∇F (x1)∥ ≤ 8L1∆1 +min

{
L0

L1
,
√

8L0∆1

}
and hence, by noting that 1

T

∑T
t=1 E [∥∇F (xt)∥] ≤ T− 1

4
∑T

t=1 t
−3/4E [∥∇F (xt)∥] we obtain

1

T 3/4

T∑
t=1

E [∥∇F (xt)∥] ≤
(
14 + 96L1e

L2
1

)
∆1 +

(
6e

L1/7 + 2 log (T ) + 6eL
2
1

)
L0

+ 12e log (T )σ + 12eL
2
1 min

{
L0

L1
,
√
8L0∆1

}
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and hence proved the first claim.
For the second claim assume L1 ≥ 7/2. We now can use the second statement in Lemma 13 to

get

1

T 3/4

T∑
t=1

E [∥∇F (xt)∥] ≤
(
14 + 112eL

2
1

)
∆1 + 12e log (T )σ +

(
6e

L1/7 + 2 log (T ) + 6eL
2
1

)
L0

+ 2
eL

2
1

L1
min

{
L0

L1
,
√
8L0∆1

}
≤ 126eL

2
1∆1 + 12e log (T )σ +

(
8eL

2
1 + 2 log (T )

)
L0,

where we used that 6eL1/7 + 2L−2
1 eL

2
1 ≤ 2eL

2
1 for L1 ≥ 7/2.

D.1.2. PARAMETER-DEPENDENT

This section contains the proof of Remark 3.

Corollary 15 (Non parameter-agnostic NSGD-M) Assume (Lower Boundedness), ((L0, L1)-smoothness)
and (Bounded Variance). Furthermore define the parameters βt := 1− t−1/2 and ηt :=

t−
3/4

12L1
. Then

NSGD-M with starting point x1 ∈ Rd satisfies

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
24L1∆1 +

(
14 + 4

√
2e2 log (T )

)
σ + (4 + 2 log (T ))L0

L1

T 1/4
.

where ∆1 := F (x1)− F ∗ is the initialization gap.

Proof Denote η := 1/12. By plugging our choice of ηt into (14) we obtain

T∑
t=1

1

2
ηtE [∥∇F (xt)∥] ≤∆1 + ησ

(
7 + 2

√
2e2 log (T )

)
+ η2L0(21 + 7 log (T ))

and by using the same arguments as in the proof of Theorem 2 we get

1

T

T∑
t=1

E [∥∇F (xt)∥] ≤
2∆1
η +

(
14 + 4

√
2e2 log (T )

)
σ + η(42 + 14 log (T ))L0

T 1/4
.

D.1.3. DETERMINISTIC SETTING

This section contains the proof of Theorem 5.
Proof of Theorem 5. By Lemma 8 we have that ∥∇F (x)∥ ≤ max

{
8L1(F (x)− F ∗), L0

L1

}
. Since

GDwith Backtracking Line Search is a descent algorithm, we get that ∥∇F (xt)∥ ≤ max
{
8L1∆1,

L0
L1

}
=:
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Algorithm 2: GD with Backtracking Line Search
Input: Starting point x1 ∈ Rd, Armijo Parameters β ∈ (0, 1) and γ ∈ (0, 1)
k ← 1
for t = 1, 2, . . . do

gt ← ∇F (xt)

while
(
F
(
xt − βkgt

)
> F (xt)− βkγ∥∇F (xt)∥2

)
do

k ← k + 1
end
ηt ← βk

xt+1 ← xt − ηtgt
end

u(L0, L1,∆1) for all t ∈ N. Now let x ∈ Rd be an iterate of GD with Backtracking Line Search and
η ≤ 1

L1
. Then Lemma 7 implies

F (x− η∇F (x)) ≤ F (x)− η∥∇F (x)∥2 + η2(2L0 + (e− 1)L1 ∥∇F (x)∥)∥∇F (x)∥2

≤ F (x)− η∥∇F (x)∥2 + η2(2L0 + (e− 1)u(L0, L1,∆1))∥∇F (x)∥2

= F (x)− η(1− ηL)∥∇F (x)∥2,

where L := 2L0+(e− 1)L1u(L0, L1,∆1). In particular we have that F (x− η∇F (x)) ≤ F (x)−
ηβ∥∇F (x)∥2 whenever η ≤ 1−β

L . This allows us to lower bound our stepsizes by ηt >
γ(1−β)

L . As
in the L-smooth setting, the definition of xt+1 now yields

β

T

T∑
t=1

ηt∥∇F (xt)∥2 ≤
∆1

T

and thus

1

T

T∑
t=1

∥∇F (xt)∥2 ≤
L∆1

βγ(1− β)T
.

This finishes the proof.

D.2. Lower Bound

This section contains the proof for Theorem 4.
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Algorithm 3: General Normalized Momentum Method
Input: Starting point x1 ∈ Rd, stepsize η > 0, power α > 0
m0 ← 0
for t = 1, 2, . . . do

Independently sample ξt from the distribution of ξ.
gt ← ∇f(xt, ξt)
Choose mt ∈ cone (g1, . . . , gt) \ ′
xt+1 ← xt − η

tα
mt

∥mt∥
end

η
2

z1 z2

∆1

M

η x

F (x)

Figure 1: Plot of F (x)

z1 η
2

eηL1/4

z2 z3

x

F ′(x)

Figure 2: Plot of F ′(x)

Plots of the hard function used in the proof of Theorem 4.

Proof of Theorem 4. We start by constructing F via its derivative F ′. Therefore let z1 := 2
L0

,

z2 := η − z1 +
1+2ε
L0
≤ η and set

F ′(x) =



−1, if x ≤ 0

L0x− 1, if 0 < x ≤ z1

eL1(x−z1), if z1 < x ≤ η
2

F ′(η − x), if η
2 < x ≤ z2

−2ε, if z2 < x ≤ z3,

L0(x− z3)− 2ε, if z3 < x ≤ z4,

0, if x > z4

,

where z3 and z4 will be determined later. Note that z2 is chosen in such way, that F ′ is continuous.
A plot of F ′ can be seen in Figure 2. Then F (x) := ∆1 +

∫ x
0 F ′dλ (see Figure 1) satisfies

F (η) ≥ ∆1 +
2

L1

(
eL1(η/2−z1) − 1

)
≥ ∆1 +

2

L1

(
e

ηL1
4 − 1

)
=: M,

where the second inequality follows by our choice of L0 ≥ 8/η, which implies η
2 − z1 ≥ η

4 . We now
choose z3, z4 in such a way, that a) F never attains negative values and b) F ′ is continuous. By doing
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so, we guarantee that a) F ∗ ≥ 0 and hence F (x1) − F ∗ ≤ ∆1, and b) that F is (L0, L1)-smooth.
Therefore set z3 := M

2ε and calculate

F (z3) = F (η) +

(
M

2ε
− η

)
(−2ε) ≥ 2ηε.

Finally we choose z4 = z3 +
2ε
L0

and get

F (z4) = F (z3) +
L0

2

(
2ε

L0

)2

− 2ε
2ε

L0
≥ 2ηε− 2ε2

L0
> 0,

where we again used L0 ≥ 8/η in the last inequality. To show that F is indeed (L0, L1)-smooth,
first notice that F is (L0, L1)-smooth on each of the subintervals (−∞, 0), ..., [z3, z4), [z4,∞). The
claim now follows from the upcoming Lemma 16. F therefore satisfies all the properties required
from the statement and we can turn out attention to the behaviour of the iterates.

Induction yields that each gradient points in the same direction F ′(xt) ≤ 0 and hence so does
the momentum. Therefore, by the normalizing nature of the algorithm, we get

xT = η

T−1∑
t=1

t−α ≤ η

(
1 +

1

1− α

(
(T − 1)1−α − 1

))
≤ η

1− α
T 1−α. (16)

Now suppose the inequality in Theorem 4 is violated, i.e.

T <

(
(1− α)M

2ηε

) 1
1−α

.

Plugging into (16) yields xT < M
2ε = z3 and therefore, by construction, |F ′(xt)| ≥ 2ε for all

t ∈ [T ]. This completes the proof.

Lemma 16 Let I ⊆ R be an interval, a ∈ I and set I− := § ∈ I | § ≤ ⊣, I+ := § ∈ I | § ≥ ⊣.
Further Let f : R → R be continuously differentiable and suppose that f satisfied the inequality
from Theorem 1 on I+ and I−. Then the inequality is also satisfied on I , i.e. it also holds for
x ∈ I−, y ∈ I+.

Proof W.l.o.g. let x ∈ I−, y ∈ I+ and set c := L1 ∥x− y∥. Furthermore set c1 := L1 ∥x− a∥ , c2 :=
L1 ∥a− y∥ and calculate

∥∇f(x)−∇f(y)∥ = ∥∇f(x)−∇f(a) +∇f(a)−∇f(y)∥
≤ L0(∥x− a∥A0(c1) + ∥a− y∥A0(c2))

+ L1 ∥x− a∥A1(c1) ∥∇f(x)∥+ L1 ∥a− y∥A1(c2) ∥∇f(a)∥ .
(17)

Next, since a ∈ I−, we get that

∥∇f(a)∥ ≤ L0 ∥x− a∥A0(c1) + ec1 ∥∇f(x)∥
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and hence

L1 ∥a− y∥A1(c2) ∥∇F (a)∥ ≤ L0L1 ∥a− y∥A1(c2) ∥x− a∥A0(c1) + L1 ∥a− y∥A1(c2)e
c1 ∥∇f(x)∥

= L0(e
c2 − 1) ∥x− a∥A0(c1) + L1 ∥a− y∥A1(c2)e

c1 ∥∇f(x)∥

We now plug this result into (17) and rearrange to obtain

∥∇f(x)−∇f(y)∥ ≤ L0(e
c2 ∥x− a∥A0(c1) + ∥a− x∥A0(c2))

+ L1 ∥∇f(x)∥ (∥x− a∥A1(c1) + ∥a− y∥A1(c2)e
c1).

(18)

Now we focus on the second term, involving L1 ∥∇f(x)∥. Therefore we calculate

∥x− a∥A1(c1) + ∥a− y∥A1(c2)e
c1

=
eL1∥x−a∥ − 1

L1
+

eL1∥x−y∥ − eL1∥x−a∥

L1

= A1(c) ∥x− y∥ .

Next we focus on the first term in (18), which corresponds to the L0-dependence. Calculating yields

ec2 ∥x− a∥A0(c1) + ∥a− y∥A0(c2)

= ∥x− a∥ eL1∥a−y∥ + ∥x− a∥ eL1∥x−y∥ − eL1∥x−y∥ − eL1∥a−y∥

L1

+ ∥a− y∥+ ∥a− y∥ eL1∥a−y∥ − eL1∥a−y∥ − 1

L1

= ∥a− y∥+ ∥x− y∥ eL1∥a−y∥ + ∥x− a∥ eL1∥x−y∥ − eL1∥x−y∥ − 1

L1

≤ ∥x− y∥+ ∥x− y∥ eL1∥x−y∥ − eL1∥x−y∥ − 1

L1
= A0(L1 ∥x− y∥) ∥x− y∥ .

In the last inequality we used that for all a, b, L1 ≥ 0 the following inequality holds: b + (a +

b)eL1b+ beL1(a+b) ≤ a+ b+(a+ b)L1(a+b). This follows by taking partial derivatives with respect
to L1. Finally we plug everything into (18) and obtain

∥∇f(x)−∇f(y)∥ ≤ (A0(c)L0 +A1(c)L1 ∥∇f(x)∥) ∥x− a∥ .

This finishes the proof.
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Figure 3: Training curves of NSGD-M.
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Figure 4: Minimal training loss.

Figure 3 shows training curves of NSGD-M for stepsizes η = 10k/3 ·ηopt, where ηopt = 90. Figure 4
shows the smallest train loss within 150 epochs of different algorithms with stepsizes λ · ηopt.
Shaded areas represent the minimal and maximal value within 3 seeds, the line the median.

Appendix E. Experiments

In concordance with our theory, the experiment’s primary focus is to demonstrate the robustness
of NSGD-M to stepsize selection in the context of (L0, L1)-smoothness. Based on the empirical
findings in [4, 28], confirming the necessity of (L0, L1)-smoothness in this setting, we train the
AWD-LSTM architecture [17] on the WikiText-2 dataset [16]. We first conduct a 50 epoch coarse
grid search to tune the stepsize of NSGD-M, AdaGrad-Norm [10] and Clipped SGD [28]. The
clipping threshold for Clipped SGD was fixed to be 0.25 in concordance to previous work [28], the
decay-rates of NSGD-M were chosen according to Theorem 2 and b0 of AdaGrad-Norm was set
to be b0 = 10−6 [24]. For each algorithm, the final training was then carried out with stepsizes
η = λ · ηopt, where λ = 10k/3, k ∈ {−3,−2, . . . , 5}, for 150 epochs. This procedure is replicated
with three different seeds to get more reliable results. In order to observe the actual algorithm
behaviour, we disabled the averaging mechanism of the model. The code is based on [27].

Discussion. Figure 3 shows the behaviour of NSGD-M with different stepsizes. The result sup-
ports the narrative behind Theorem 2 that NSGD-M needs an adaption phase before transitioning
to a convergence phase. During the adaption phase, NSGD-M plateaus instead of accumulating an
exponential error. Figure 4 focuses on the robustness to hyperparameter selection. It compares the
smallest training loss across 150 epochs of different algorithms on scaled versions of their optimally
tuned stepsize. As expected, well-tuned Clipped SGD with constant stepsize outperforms all decay-
ing algorithms, while decaying algorithms are more robust to untuned stepsizes. Between NSGD-M
and AdaGrad-Norm we notice that NSGD-M has slightly preferable behaviour for small stepsizes.
Furthermore the trend for large stepsizes points towards a more robust behaviour of NSGD-M.
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